Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,595)

Search Parameters:
Keywords = expression profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2015 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 (registering DOI) - 1 Aug 2025
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
21 pages, 1979 KiB  
Article
A Comparative Analysis of Usual- and Gastric-Type Cervical Adenocarcinoma in a Japanese Population Reveals Distinct Clinicopathological and Molecular Features with Prognostic and Therapeutic Insights
by Umme Farzana Zahan, Hasibul Islam Sohel, Kentaro Nakayama, Masako Ishikawa, Mamiko Nagase, Sultana Razia, Kosuke Kanno, Hitomi Yamashita, Shahataj Begum Sonia and Satoru Kyo
Int. J. Mol. Sci. 2025, 26(15), 7469; https://doi.org/10.3390/ijms26157469 (registering DOI) - 1 Aug 2025
Abstract
Gastric-type cervical adenocarcinoma (GCA) is a rare and aggressive subtype of cervical adenocarcinoma. Despite its clinical significance, its molecular carcinogenesis and therapeutic targets remain poorly understood. This study aimed to compare the clinicopathological, immunohistochemical, and molecular profiles of GCA and usual-type cervical adenocarcinoma [...] Read more.
Gastric-type cervical adenocarcinoma (GCA) is a rare and aggressive subtype of cervical adenocarcinoma. Despite its clinical significance, its molecular carcinogenesis and therapeutic targets remain poorly understood. This study aimed to compare the clinicopathological, immunohistochemical, and molecular profiles of GCA and usual-type cervical adenocarcinoma (UCA), exploring prognostic and therapeutic biomarkers in a Japanese population. A total of 110 cervical adenocarcinoma cases, including 16 GCA and 94 UCA cases, were retrospectively analyzed for clinicopathological features, and a panel of immunohistochemical markers was assessed. Sanger sequences were performed for the KRAS, PIK3CA, and BRAF genes, and survival and clinicopathological correlations were assessed using Kaplan–Meier and Cox regression analyses. GCA was significantly associated with more aggressive features than UCA, including lymph node involvement, advanced FIGO stages, increasing recurrence rate, and poor survival status. High ARID1B expression was observed in a subset of GCA cases and correlated with worse progression-free and overall survival. Additionally, PD-L1 expression was more frequent in GCA than UCA and was associated with unfavorable prognostic factors. Conversely, UCA cases showed strong p16 expression, supporting their HPV-driven pathogenesis. Molecular profiling revealed KRAS and PIK3CA mutations in both subtypes, while BRAF mutations were identified exclusively in GCA. These findings reveal distinct clinical and molecular profiles for both tumor types and underscore ARID1B and PD-L1 as predictive prognostic and therapeutic biomarkers in GCA, implicating the use of subtype-specific treatment strategies. Full article
(This article belongs to the Special Issue Genomics and Proteomics of Cancer)
20 pages, 2424 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 (registering DOI) - 1 Aug 2025
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
24 pages, 7174 KiB  
Article
Profiling the Expression Level of a Gene from the Caspase Family in Triple-Negative Breast Cancer
by Anna Makuch-Kocka, Janusz Kocki, Jacek Bogucki, Przemysław Kołodziej, Monika Lejman, Karolina Szalast and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2025, 26(15), 7463; https://doi.org/10.3390/ijms26157463 (registering DOI) - 1 Aug 2025
Abstract
It is believed that caspases may play a significant role in the development of cancer, and the expression levels of genes encoding these proteins may influence the prognosis and clinical course of cancer. Taking into account the information presented, we examined the expression [...] Read more.
It is believed that caspases may play a significant role in the development of cancer, and the expression levels of genes encoding these proteins may influence the prognosis and clinical course of cancer. Taking into account the information presented, we examined the expression profiles of 11 genes from the caspase family in patients diagnosed with triple-negative breast cancer (TNBC). We qualified 29 patients with TNBC. A fragment of the tumor and a fragment of normal tissue surrounding the tumor were collected from each patient. Then, RNA was isolated, and the reverse transcription process was performed. The expression levels of caspase family genes were determined using the real-time PCR method. The obtained data were correlated with clinical data and compared with data from the Cancer Genome Atlas database using the Breast Cancer Gene Expression Miner v4.8 and Ualcan. Based on the results of the conducted research, it can be assumed that the levels of expression of caspase family genes may be correlated with the clinical course of cancer in patients with TNBC, and further research may indicate that profiling the expression levels of these genes may be used in selecting personalized treatment methods. Full article
(This article belongs to the Special Issue Molecular Genetics of Breast Cancer—Recent Progress)
30 pages, 1325 KiB  
Review
Molecular Targets for Pharmacotherapy of Head and Neck Squamous Cell Carcinomas
by Robert Sarna, Robert Kubina, Marlena Paździor-Heiske, Adrianna Halama, Patryk Chudy, Paulina Wala, Kamil Krzykawski and Ilona Nowak
Curr. Issues Mol. Biol. 2025, 47(8), 609; https://doi.org/10.3390/cimb47080609 (registering DOI) - 1 Aug 2025
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold standard but is limited by toxicity and tumor resistance. Immunotherapy, particularly immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and its ligand (PD-L1), has improved overall survival, especially in patients with high PD-L1 expression. In parallel, targeted therapies such as poly (ADP-ribose) polymerase 1 (PARP1) inhibitors—which impair DNA repair and increase replication stress—have shown promising activity in HNSCC. Cyclin-dependent kinase (CDK) inhibitors are also under investigation due to their potential to correct dysregulated cell cycle control, a hallmark of HNSCC. This review aims to summarize current and emerging pharmacotherapies for HNSCC, focusing on chemotherapy, immunotherapy, and PARP and CDK inhibitors. It also discusses the evolving role of targeted therapies in improving clinical outcomes. Future research directions include combination therapies, nanotechnology-based delivery systems to enhance treatment specificity, and the development of diagnostic tools such as PARP1-targeted imaging to better guide personalized treatment approaches. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 (registering DOI) - 1 Aug 2025
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

8 pages, 347 KiB  
Article
Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies
by Marlis Ontivero-Ortega, Gorana Mijatovic, Luca Faes, Fernando E. Rosas, Daniele Marinazzo and Sebastiano Stramaglia
Entropy 2025, 27(8), 820; https://doi.org/10.3390/e27080820 (registering DOI) - 1 Aug 2025
Abstract
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is [...] Read more.
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is often joint and synergistic. We propose to quantify the synergy of the joint influence of factors on the observed variables using O-information, a recently introduced metric to assess high-order dependencies in complex systems; in the proposed framework, latent factors and observed variables are jointly analyzed in terms of their joint informational character. Two case studies are reported: analyzing resting fMRI data, we find that DMN and FP networks show the highest synergy, consistent with their crucial role in higher cognitive functions; concerning HeLa cells, we find that the most synergistic gene is STK-12 (AURKB), suggesting that this gene is involved in controlling the HeLa cell cycle. We believe that our approach, representing a bridge between factor analysis and the field of high-order interactions, will find wide application across several domains. Full article
(This article belongs to the Special Issue Entropy in Biomedical Engineering, 3rd Edition)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

15 pages, 2636 KiB  
Article
Genome-Wide Identification of DNA Methyltransferase and Demethylase in Populus sect. Turanga and Their Potential Roles in Heteromorphic Leaf Development in Populus euphratica
by Chen Qiu, Jianhao Sun, Mingyu Jia, Xiaoli Han, Jia Song, Zhongshuai Gai and Zhijun Li
Plants 2025, 14(15), 2370; https://doi.org/10.3390/plants14152370 - 1 Aug 2025
Abstract
DNA methylation, mediated by DNA methyltransferases (DMTs) and demethylases (DMLs), is an important epigenetic modification that maintains genomic stability and regulates gene expression in plant growth, development, and stress responses. However, a comprehensive characterization of these gene families in Populus sect. Turanga remains [...] Read more.
DNA methylation, mediated by DNA methyltransferases (DMTs) and demethylases (DMLs), is an important epigenetic modification that maintains genomic stability and regulates gene expression in plant growth, development, and stress responses. However, a comprehensive characterization of these gene families in Populus sect. Turanga remains lacking. In this study, eight PeDMT and two PeDML genes were identified in Populus euphratica, and six PpDMT and three PpDML genes in Populus pruinosa. Phylogenetic analysis revealed that DMTs and DMLs could be classified into four and three subfamilies, respectively. The analysis of cis-acting elements indicated that the promoter regions of both DMTs and DMLs were enriched with elements responsive to growth and development, light, phytohormones, and stress. Collinearity analysis detected three segmentally duplicated gene pairs (PeDMT5/8, PeDML1/2, and PpDML2/3), suggesting potential functional diversification. Transcriptome profiling showed that several PeDMTs and PeDMLs exhibited leaf shape- and developmental stage-specific expression patterns, with PeDML1 highly expressed during early stages and in broad-ovate leaves. Whole-genome bisulfite sequencing revealed corresponding decreases in DNA methylation levels, suggesting that active demethylation may contribute to heteromorphic leaf formation. Overall, this study provides significant insights for exploring the functions and expression regulation of plant DMTs and DMLs and will contribute to future research unraveling the molecular mechanisms of epigenetic regulation in P. euphratica. Full article
Show Figures

Figure 1

16 pages, 2503 KiB  
Article
rs2231142 (421 C>A, Q141K) Is More Functionally Influential than rs2231137 (34 G>A, V12M) on Anticancer Drug Resistance Mediated by the ABCG2 Haplotype In Vitro
by Miho Yamashita, Megumi Tsukamoto, Ritsuko Imai, Himari Muramatsu and Hiroshi Nakagawa
Int. J. Mol. Sci. 2025, 26(15), 7428; https://doi.org/10.3390/ijms26157428 (registering DOI) - 1 Aug 2025
Abstract
The ATP-binding cassette transporter ABCG2 plays a critical role in drug pharmacokinetics and multidrug resistance in cancer therapy. Two common nonsynonymous polymorphisms, rs2231137 (V12M) and rs2231142 (Q141K), are associated with altered ABCG2 function, drug response, and disease susceptibility. However, the functional impact of [...] Read more.
The ATP-binding cassette transporter ABCG2 plays a critical role in drug pharmacokinetics and multidrug resistance in cancer therapy. Two common nonsynonymous polymorphisms, rs2231137 (V12M) and rs2231142 (Q141K), are associated with altered ABCG2 function, drug response, and disease susceptibility. However, the functional impact of their haplotype remains poorly understood. In this study, we established Flp-In™-293 cell lines stably expressing ABCG2 (12M/141K) and systematically compared their expression and drug resistance profiles with those of cells expressing ABCG2 (12V/141Q) (WT), ABCG2 (12M/141Q), and ABCG2 (12V/141K). The mRNA of ABCG2 (12M/141K) was expressed at levels comparable to those of the other variants in cells. Cells expressing ABCG2 (12M/141K) exhibited significantly higher resistance to mitoxantrone (10.7-fold) and SN-38 (5.99-fold) than the mock cells. While ABCG2 (12M/141Q) conferred the highest resistance among the tested variants, the ABCG2 (12M/141K) haplotype showed a trend toward higher mitoxantrone resistance than the ABCG2 (12V/141Q) (WT) (p = 0.066), suggesting a haplotype-specific effect. These findings provide novel insights into haplotype-based modulation of ABCG2 function and its contribution to multidrug resistance, with potential implications for optimizing personalized chemotherapy strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 1549 KiB  
Article
Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species
by Atsbha Gebreslasie Gebrekidan, Yong Zhang and Julian Chen
Biology 2025, 14(8), 964; https://doi.org/10.3390/biology14080964 (registering DOI) - 1 Aug 2025
Abstract
Disparities in the functional classification of secretory genes among aphid taxa may be attributed to variations in coding sequences and gene expression profiles. However, the driving factors that regulate sequence evolution remain unclear. This study aimed to investigate the differences in coding sequences [...] Read more.
Disparities in the functional classification of secretory genes among aphid taxa may be attributed to variations in coding sequences and gene expression profiles. However, the driving factors that regulate sequence evolution remain unclear. This study aimed to investigate the differences in coding sequences and expression patterns of secretory genes between the rose grain aphid (Metopolophium dirhodum) and the pea aphid (Acrythosiphon pisum), with a particular focus on their roles in evolutionary adaptations and functional diversity. The study involved the rearing of aphids, RNA extraction, de novo transcriptome assembly, functional annotation, secretory protein prediction, and comparative analysis of coding sequences and expression patterns across various functional categories using bioinformatics tools. The results revealed that metabolic genes exhibited greater coding sequence divergence, indicating the influence of positive selection. Moreover, significant expression divergence was noted among functional categories, particularly in metabolic and genetic information processing genes, which exhibited higher variability. This study enhances our understanding of the molecular mechanisms that contribute to phenotypic and genetic diversity among aphid species. This study elucidates the relationship between variations in coding sequences and differences in gene expression among functional categories, thereby establishing a foundation for future studies on gene evolution in response to environmental pressures. Full article
Show Figures

Figure 1

23 pages, 6758 KiB  
Article
Screening of an FDA-Approved Drug Library: Menadione Induces Multiple Forms of Programmed Cell Death in Colorectal Cancer Cells via MAPK8 Cascades
by Liyuan Cao, Weiwei Song, Jinli Sun, Yang Ge, Wei Mu and Lei Li
Pharmaceuticals 2025, 18(8), 1145; https://doi.org/10.3390/ph18081145 - 31 Jul 2025
Abstract
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing [...] Read more.
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing new drugs is time-consuming and resource-intensive. As a more efficient approach, drug repurposing offers a promising alternative for discovering new therapies. Methods: In this study, we screened 1068 small molecular compounds from an FDA-approved drug library in CRC cells. Menadione was selected for further study based on its activity profile. Mechanistic analysis included a cell death pathway PCR array, differential gene expression, enrichment, and network analysis. Gene expressions were validated by RT-qPCR. Results: We identified menadione as a potent anti-tumor drug. Menadione induced three programmed cell death (PCD) signaling pathways: necroptosis, apoptosis, and autophagy. Furthermore, we found that the anti-tumor effect induced by menadione in CRC cells was mediated through a key gene: MAPK8. Conclusions: By employing methods of cell biology, molecular biology, and bioinformatics, we conclude that menadione can induce multiple forms of PCD in CRC cells by activating MAPK8, providing a foundation for repurposing the “new use” of the “old drug” menadione in CRC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

27 pages, 5071 KiB  
Article
Immunohistochemical and Ultrastructural Study of the Degenerative Processes of the Hip Joint Capsule and Acetabular Labrum
by Riana Maria Huzum, Bogdan Huzum, Marius Valeriu Hînganu, Ludmila Lozneanu, Fabian Cezar Lupu and Delia Hînganu
Diagnostics 2025, 15(15), 1932; https://doi.org/10.3390/diagnostics15151932 - 31 Jul 2025
Abstract
Background/Objectives: Degenerative processes of the hip joint increasingly affect not only the articular cartilage but also periarticular structures such as the joint capsule and acetabular labrum. This study aimed to investigate the structural and molecular changes occurring in these tissues during advanced [...] Read more.
Background/Objectives: Degenerative processes of the hip joint increasingly affect not only the articular cartilage but also periarticular structures such as the joint capsule and acetabular labrum. This study aimed to investigate the structural and molecular changes occurring in these tissues during advanced hip osteoarthritis. Methods: A combined analysis using immunohistochemistry (IHC), scanning electron microscopy (SEM), and micro-computed tomography (microCT) was conducted on tissue samples from patients undergoing total hip arthroplasty and from controls with morphologically normal joints. Markers associated with proliferation (Ki67), inflammation (CD68), angiogenesis (CD31, ERG), chondrogenesis (SOX9), and lubrication (Lubricin) were evaluated. Results: The pathological group showed increased expression of Ki67, CD68, CD31, ERG, and SOX9, with a notable decrease in Lubricin. SEM analysis revealed ultrastructural disorganization, collagen fragmentation, and neovascular remodeling in degenerative samples. A significant correlation between structural damage and molecular expression was identified. Conclusions: These results suggest that joint capsule and acetabular labrum degeneration are interconnected and reflect a broader pathophysiological continuum, supporting the use of integrated IHC and SEM profiling for early detection and targeted intervention in hip joint disease. Full article
(This article belongs to the Special Issue Diagnosis and Management of Osteoporosis)
Show Figures

Figure 1

34 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

Back to TopTop