Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,411)

Search Parameters:
Keywords = exposure condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 720 KiB  
Study Protocol
A Study Protocol to Assess the Association Between Ambient Air Pollution and Asthma and Other Respiratory Health Outcomes Amongst Children Below 5 Years of Age in Alexandra Township’s Early Childhood Development Centers, Johannesburg
by Velisha Thompson, Joyce Shirinde, Masilu D. Masekameni and Thokozani P. Mbonane
Methods Protoc. 2025, 8(4), 84; https://doi.org/10.3390/mps8040084 (registering DOI) - 1 Aug 2025
Abstract
Air pollution is linked to childhood mortality and morbidity in low- and middle-income countries globally. There is growing evidence linking air pollution to asthma and other respiratory diseases in children. Studies have shown that children are likely to experience asthma due to their [...] Read more.
Air pollution is linked to childhood mortality and morbidity in low- and middle-income countries globally. There is growing evidence linking air pollution to asthma and other respiratory diseases in children. Studies have shown that children are likely to experience asthma due to their narrow airways and their heightened sensitivity to environmental irritants. This study aims to investigate the relationship between ambient air pollution and respiratory diseases in children under the age of 5. The study will be conducted in the informal township of Alexandra, north of Johannesburg, South Africa. A quantitative approach will be used in this cross-sectional analytical study. Data will be collected using different tools that include a questionnaire to determine the prevalence of asthma and respiratory disease and potential risk factors. While environmental air pollution will be measured using Radiello passive samplers and Gillian pumps. Data will be analyzed using the latest version of the STATANow/MP 19.5 software. Furthermore, health risk assessment will be conducted for lifetime non-carcinogenic and carcinogenic risk estimation following the USEPA framework. The study will identify environmental triggers that exacerbate asthma and other respiratory conditions in other similar community settings and will contribute to the body of knowledge in public health. Ethical approval was obtained from the Research Ethics Committee, Faculty of Health Sciences at the University of Johannesburg. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

14 pages, 2052 KiB  
Article
Study on the Shear Strength and Durability of Ionic Soil Stabilizer-Modified Soft Soil in Acid Alkali Environments
by Zhifeng Ren, Shijie Lin, Siyu Liu, Bo Li, Jiankun Liu, Liang Chen, Lideng Fan, Ziling Xie and Lingjie Wu
Eng 2025, 6(8), 178; https://doi.org/10.3390/eng6080178 (registering DOI) - 1 Aug 2025
Abstract
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. [...] Read more.
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. Ionic soil stabilizers (ISSs), which operate through electrochemical mechanisms, offer a promising alternative. However, their long-term performance—particularly under environmental stressors such as acid/alkali exposure and cyclic wetting–drying—remains insufficiently explored. This study evaluates the strength and durability of ISS-modified soil through a comprehensive experimental program, including direct shear tests, permeability tests, and cyclic wetting–drying experiments under neutral, acidic (pH = 4), and alkaline (pH = 10) environments. The results demonstrate that ISS treatment increases soil cohesion by up to 75.24% and internal friction angle by 9.50%, particularly under lower moisture conditions (24%). Permeability decreased by 88.4% following stabilization, resulting in only a 10–15% strength loss after water infiltration, compared to 40–50% in untreated soils. Under three cycles of wetting–drying, ISS-treated soils retained high shear strength, especially under acidic conditions, where degradation was minimal. In contrast, alkaline conditions caused a cohesion reduction of approximately 26.53%. These findings confirm the efficacy of ISSs in significantly improving both the mechanical performance and environmental durability of soft soils, offering a sustainable and effective solution for soil stabilization in chemically aggressive environments. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

15 pages, 2424 KiB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 (registering DOI) - 1 Aug 2025
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 (registering DOI) - 31 Jul 2025
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

16 pages, 2259 KiB  
Article
Probiotic Potential and Characterization of Enterococcus faecium Strains Isolated from Camel Milk: Implications for Animal Health and Dairy Products
by Imen Fguiri, Manel Ziadi, Samira Arroum, Touhami Khorchani and Hammadi Mohamed
Fermentation 2025, 11(8), 444; https://doi.org/10.3390/fermentation11080444 (registering DOI) - 31 Jul 2025
Abstract
In this study, 62 lactic acid bacteria (LAB) strains were isolated from raw camel milk and evaluated for their probiotic potential. The strains exhibited significant variability in their ability to withstand simulated gastrointestinal conditions. Of the isolates, only 26 survived exposure to pH [...] Read more.
In this study, 62 lactic acid bacteria (LAB) strains were isolated from raw camel milk and evaluated for their probiotic potential. The strains exhibited significant variability in their ability to withstand simulated gastrointestinal conditions. Of the isolates, only 26 survived exposure to pH 2, and just 10 were tolerant to 0.3% bile salts. Partial sequencing of the 16S rRNA gene identified all the strains as belonging to the species Enterococcus faecium. Several probiotic traits were assessed, including adhesion to gastric mucin and STC-1 intestinal epithelial cells, as well as auto-aggregation and co-aggregation capacities. Although adhesion to hydrophobic solvents such as chloroform and ethyl acetate was generally low to moderate, all the strains demonstrated strong adhesion to gastric mucin, exceeding 60% at all the growth stages. Notably, two strains—SCC1-33 and SLch6—showed particularly high adhesion to STC-1 cells, with values of 7.8 × 103 and 4.2 × 103 CFU/mL, respectively. The strains also exhibited promising aggregation properties, with auto-aggregation and co-aggregation ranging between 33.10% and 63.10%. Furthermore, all the isolates displayed antagonistic activity against Listeria innocua, Micrococcus luteus, and Escherichia coli. Cytotoxicity assays confirmed that none of the tested strains had harmful effects on STC-1 cells, indicating their safety and supporting their potential application as probiotics. Full article
Show Figures

Figure 1

20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 (registering DOI) - 31 Jul 2025
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

13 pages, 769 KiB  
Article
A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects
by Rohan Kalahasty, Gayathri Yerrapragada, Jieun Lee, Keerthy Gopalakrishnan, Avneet Kaur, Pratyusha Muddaloor, Divyanshi Sood, Charmy Parikh, Jay Gohri, Gianeshwaree Alias Rachna Panjwani, Naghmeh Asadimanesh, Rabiah Aslam Ansari, Swetha Rapolu, Poonguzhali Elangovan, Shiva Sankari Karuppiah, Vijaya M. Dasari, Scott A. Helgeson, Venkata S. Akshintala and Shivaram P. Arunachalam
Sensors 2025, 25(15), 4735; https://doi.org/10.3390/s25154735 (registering DOI) - 31 Jul 2025
Abstract
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low [...] Read more.
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model’s capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed. Full article
(This article belongs to the Special Issue Biomedical Signals, Images and Healthcare Data Analysis: 2nd Edition)
Show Figures

Figure 1

22 pages, 1556 KiB  
Article
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 (registering DOI) - 31 Jul 2025
Abstract
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive [...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds. Full article
Show Figures

Figure 1

23 pages, 1447 KiB  
Article
Heat Risk Perception and Vulnerability in Puerto Rico: Insights for Climate Adaptation in the Caribbean
by Brenda Guzman-Colon, Zack Guido, Claudia P. Amaya-Ardila, Laura T. Cabrera-Rivera and Pablo A. Méndez-Lázaro
Int. J. Environ. Res. Public Health 2025, 22(8), 1197; https://doi.org/10.3390/ijerph22081197 - 31 Jul 2025
Abstract
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during [...] Read more.
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during the extreme heat events of the summer of 2020. We conducted a cross-sectional telephone survey of 500 adults across metropolitan and non-metropolitan areas of Puerto Rico, using stratified probability sampling. The questionnaire assessed heat risk perception, sociodemographic characteristics, health status, prior heat exposure, and heat-related behaviors. While most participants expressed concern about climate change and high temperatures, fewer than half perceived heat as a high level of personal health risk. Higher levels of risk perception were significantly associated with being male, aged 50–64, unemployed, and in fair health, having multiple chronic conditions, and prior experience with heat-related symptoms. Those with symptoms were nearly five times more likely to report high levels of risk perception (OR = 4.94, 95% CI: 2.93–8.34). In contrast, older adults (65+), despite their higher level of vulnerability, reported lower levels of risk perception and fewer symptoms. Nighttime heat exposure was widespread and strongly associated with heat-related symptoms. Common coping strategies included the use of fans and air conditioning, though economic constraints and infrastructure instability limited access. The findings highlight the disparity between actual and perceived vulnerability, particularly among older adults. Public health strategies should focus on risk communication tailored to vulnerable groups and address barriers to heat adaptation. Strengthening heat resilience in Puerto Rico requires improved infrastructure, equitable access to cooling, and targeted outreach. Full article
Show Figures

Figure 1

24 pages, 1117 KiB  
Article
Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
by Dan Bodescu, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu and Radu-Adrian Moraru
Agriculture 2025, 15(15), 1648; https://doi.org/10.3390/agriculture15151648 - 31 Jul 2025
Abstract
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and [...] Read more.
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and other pesticides in biological materials (bees, bee brood, etc.) and beehive products (honey, pollen, etc.) applied as seed dressings in rapeseed and sunflower plants in two growing seasons (2020–2021) in fields located in three agro-climatic regions in Romania. The study involved the comparative sampling of hive products (honey, pollen, adult bees, and brood) from experimental and control apiaries, followed by pesticide residue analysis in an accredited laboratory (Primoris) using validated chromatographic techniques (LC-MS/MS and GC-MS). Toxicological analyses of 96 samples, including bees, bee brood, honey, and pollen, confirmed the presence of residues in 46 samples, including 10 bee samples, 10 bee brood samples, 18 honey samples, and 8 pollen bread samples. The mean pesticide residue concentrations detected in hive products were 0.032 mg/kg in honey, 0.061 mg/kg in pollen, 0.167 mg/kg in bees, and 0.371 mg/kg in bee brood. The results highlight the exposure of honeybee colonies to multiple sources of pesticide residue contamination, under conditions where legal recommendations for the controlled application of agricultural treatments are not followed. The study provides relevant evidence for strengthening the risk assessment framework and underscores the need for adopting stricter monitoring and regulatory measures to ensure the protection of honeybee colony health. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

18 pages, 2436 KiB  
Article
Integrated Cytotoxicity and Metabolomics Analysis Reveals Cell-Type-Specific Responses to Co-Exposure of T-2 and HT-2 Toxins
by Weihua He, Zuoyin Zhu, Jingru Xu, Chengbao Huang, Jianhua Wang, Qinggong Wang, Xiaohu Zhai and Junhua Yang
Toxins 2025, 17(8), 381; https://doi.org/10.3390/toxins17080381 (registering DOI) - 30 Jul 2025
Abstract
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four [...] Read more.
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs. Synergistic cytotoxicity was observed at low concentrations, while antagonistic interactions emerged at higher doses. Untargeted metabolomic profiling identified consistent and significant metabolic perturbations in four different porcine cell lines under co-exposure conditions. Notably, combined treatment with T-2 and HT-2 resulted in a uniform downregulation of LysoPC (22:6), LysoPC (20:5), and LysoPC (20:4), implicating disruption of membrane phospholipid integrity. Additionally, glycerophospholipid metabolism was the most significantly affected pathway across all cell lines. Ether lipid metabolism was markedly altered in PLCs and PEFs, whereas PHs displayed a unique metabolic response characterized by dysregulation of tryptophan metabolism. This study identified markers of synergistic toxicity and common alterations in metabolic pathways across four homologous porcine cell types under the combined exposure to T-2 and HT-2 toxins. These findings enhance the current understanding of the molecular mechanisms underlying mycotoxin-induced the synergistic toxicity. Full article
Show Figures

Graphical abstract

41 pages, 1640 KiB  
Review
Early Roots of Childhood Obesity: Risk Factors, Mechanisms, and Prevention Strategies
by Giuseppina Rosaria Umano, Simonetta Bellone, Raffaele Buganza, Valeria Calcaterra, Domenico Corica, Luisa De Sanctis, Anna Di Sessa, Maria Felicia Faienza, Nicola Improda, Maria Rosaria Licenziati, Melania Manco, Carla Ungaro, Flavia Urbano, Giuliana Valerio, Malgorzata Wasniewska and Maria Elisabeth Street
Int. J. Mol. Sci. 2025, 26(15), 7388; https://doi.org/10.3390/ijms26157388 - 30 Jul 2025
Abstract
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to [...] Read more.
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to long-term metabolic and cardiovascular diseases. The “Developmental Origins of Health and Disease” (DOHaD) paradigm provides a framework for understanding how early life environmental exposures, particularly during the periconceptional, fetal, and neonatal periods, can program future health outcomes through epigenetic mechanisms. Epigenetic modifications alter gene expression without changing the DNA sequence and are increasingly recognized as key mediators in the development of obesity. This narrative review summarizes current findings on the early determinants of childhood obesity, emphasizing the molecular and epigenetic pathways involved. A comprehensive literature search was conducted across multiple databases and international sources, focusing on recent studies from the past decade. Both human and animal research were included to provide a broad perspective. This review aims to consolidate recent insights into early life influences on obesity, underscoring the need for preventive strategies starting as early as the preconception period. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Comparison of the Trueness of Complete Dentures Fabricated Using Liquid Crystal Display 3D Printing According to Build Angle and Natural Light Exposure
by Haeri Kim, KeunBaDa Son, So-Yeun Kim and Kyu-Bok Lee
J. Funct. Biomater. 2025, 16(8), 277; https://doi.org/10.3390/jfb16080277 - 30 Jul 2025
Abstract
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration [...] Read more.
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration on the intaglio surface trueness of maxillary complete denture bases. Standardized denture base designs (2 mm uniform thickness) were fabricated using an LCD 3D printer (Lilivis Print; Huvitz, Seoul, Republic of Korea) at build angles of 0°, 45°, and 90° (n = 7 per group). All specimens were printed using the same photopolymer resin (Tera Harz Denture; Graphy, Seoul, Republic of Korea) and identical printing parameters, followed by ultrasonic cleaning and ultraviolet post-curing. Specimens were stored under controlled light-emitting diode lighting and exposed to natural light (400–800 lux) for 0, 14, or 30 days. The intaglio surfaces were scanned and superimposed on the original design data, following the International Organization for Standardization 12836. Quantitative assessment included root mean square deviation, mean deviation, and tolerance percentage. Statistical analyses were performed using one-way analysis of variance and paired t-tests (α = 0.05). Build angle and light exposure duration significantly affected surface trueness (p < 0.05). The 90° build angle group exhibited the highest accuracy and dimensional stability, while the 0° group showed the greatest deviations (p < 0.05). These findings underscore the importance of optimizing build orientation and storage conditions in denture 3D printing. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

9 pages, 2757 KiB  
Article
Externally Triggered Activation of Nanostructure-Masked Cell-Penetrating Peptides
by Gayong Shim
Molecules 2025, 30(15), 3205; https://doi.org/10.3390/molecules30153205 - 30 Jul 2025
Abstract
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon [...] Read more.
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon complexation with a DNA-based nanostructure. Upon localized plasma exposure, DNA masking was disrupted, restoring the biological functions of the peptides. Transmission electron microscopy revealed that the synthesized DNA nanoflower structures were approximately 150–250 nm in size. Structural and functional analyses confirmed that the system remained inert under physiological conditions and was rapidly activated by plasma treatment. Fluorescence recovery, cellular uptake assays, and cytotoxicity measurements demonstrated that the peptide activity could be precisely controlled in both monolayer and three-dimensional spheroid models. This externally activatable nanomaterial-based system enables the spatial and temporal regulation of peptide function without requiring biochemical triggers or permanent chemical modifications. This platform provides a modular strategy for the development of potential peptide therapeutics that require precise control of activation in complex biological environments. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

Back to TopTop