Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (112)

Search Parameters:
Keywords = exposed aggregate concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6625 KiB  
Article
Short- and Long-Term Mechanical and Durability Performance of Concrete with Copper Slag and Recycled Coarse Aggregate Under Magnesium Sulfate Attack
by Yimmy Fernando Silva, Claudia Burbano-Garcia, Eduardo J. Rueda, Arturo Reyes-Román and Gerardo Araya-Letelier
Appl. Sci. 2025, 15(15), 8329; https://doi.org/10.3390/app15158329 (registering DOI) - 26 Jul 2025
Viewed by 246
Abstract
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly [...] Read more.
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly deleterious to concrete structures. Therefore, this study investigates the short- and long-term performance of concrete produced with copper slag (CS)—a massive waste generated by copper mining activities worldwide—employed as a supplementary cementitious material (SCM), together with recycled coarse aggregate (RCA), obtained from concrete construction and demolition waste, when exposed to MgSO4. CS was used as a 15 vol% cement replacement, while RCA was incorporated at 0%, 20%, 50%, and 100 vol%. Compressive strength, bulk density, water absorption, and porosity were measured after water curing (7–388 days) and following immersion in a 5 wt.% MgSO4 solution for 180 and 360 days. Microstructural characteristics were assessed using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis with its differential thermogravimetric derivative (TG-DTG), and Fourier transform infrared spectroscopy (FTIR) techniques. The results indicated that replacing 15% cement with CS reduced 7-day strength by ≤10%, yet parity with the reference mix was reached at 90 days. Strength losses increased monotonically with RCA content. Under MgSO4 exposure, all mixtures experienced an initial compressive strength gain during the short-term exposures (28–100 days), attributed to the pore-filling effect of expansive sulfate phases. However, at long-term exposure (180–360 days), a clear strength decline was observed, mainly due to internal cracking, brucite formation, and the transformation of C–S–H into non-cementitious M–S–H gel. Based on these findings, the combined use of CS and RCA at low replacement levels shows potential for producing environmentally friendly concrete with mechanical and durability performance comparable to those of concrete made entirely with virgin materials. Full article
Show Figures

Figure 1

23 pages, 7058 KiB  
Article
Experimental Investigation of Steel Bar Corrosion in Recycled Plastic Aggregate Concrete Exposed to Calcium Chloride Cycles
by Federica Zanotto, Alice Sirico, Andrea Balbo, Patrizia Bernardi, Sebastiano Merchiori, Vincenzo Grassi, Beatrice Belletti and Cecilia Monticelli
Materials 2025, 18(14), 3361; https://doi.org/10.3390/ma18143361 - 17 Jul 2025
Viewed by 210
Abstract
Recycling plastics waste into concrete represents one of the possible approaches for its valorization, offering both economic and environmental benefits. Although numerous studies have explored the mechanical properties of concrete with plastics waste, its durability performance remains largely unexplored. In this context, this [...] Read more.
Recycling plastics waste into concrete represents one of the possible approaches for its valorization, offering both economic and environmental benefits. Although numerous studies have explored the mechanical properties of concrete with plastics waste, its durability performance remains largely unexplored. In this context, this study aims to assess the electrochemical behavior of rebars embedded in reinforced concrete modified by partially replacing natural aggregates with recycled plastics, comparing their behavior to that of conventional concrete. The corrosion of reinforcing steel bars was evaluated by wet and dry cycles (w/d) in calcium chloride solutions, monitoring corrosion potential and potentiostatic polarization resistance, and recording electrochemical impedance spectroscopy (EIS) and polarization curves. In addition, the chloride diffusion tendency and the mechanical performances were assessed in unreinforced samples. The findings indicate that in environments with lower chloride concentrations, concrete with plastic granules provides good protection against rebar corrosion. Although the mechanical results of the studied mixes confirmed that incorporating plastic granules as aggregates in the concrete matrix causes a reduction in compressive strength, as known in the literature, the modified concrete also exhibits improved post-cracking behavior, resulting in enhanced ductility and fracture toughness. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 453
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

13 pages, 4342 KiB  
Article
Wholesale Destruction Inside a Marine Protected Area: Anchoring Impacts on Sciaphilic Communities and Coralligenous Concretions in the Eastern Mediterranean
by Carlos Jimenez, Magdalene Papatheodoulou, Vasilis Resaikos and Antonis Petrou
Water 2025, 17(14), 2092; https://doi.org/10.3390/w17142092 - 14 Jul 2025
Viewed by 588
Abstract
The marine habitats of the world’s oceans are being driven beyond their resilience. The ongoing biodiversity crisis is happening fast, within the lifespan of researchers trying to produce the information necessary for the conservation of habitats and marine ecosystems. Here, we report on [...] Read more.
The marine habitats of the world’s oceans are being driven beyond their resilience. The ongoing biodiversity crisis is happening fast, within the lifespan of researchers trying to produce the information necessary for the conservation of habitats and marine ecosystems. Here, we report on the destruction of sciaphilic sessile communities and coralligenous concretions produced by the anchoring of a high-tonnage vessel inside a Marine Protected Area in Cyprus. The damage from the anchors and the chains consisted of the dislodgement of large boulders that were dragged or rolled over the seafloor, increasing the breakage and further dislodgement of more boulders; many were left upside-down. The biological communities that thrived in the dark environments below the boulders were directly exposed to high irradiance levels and went through a slow mortality and decaying process, most probably due to a combination of several deterioration agents, such as exposure to direct sunlight, predation, mucilage aggregates, and cyanobacterial blooms. The enforcement of regulatory measures for anchoring and transit in the MPA is necessary to prevent similar destruction. Given the extent of the irreversible damage to these sciaphilic communities, our study is, unfortunately, another environmental post-mortem contribution. Full article
(This article belongs to the Special Issue Effect of Human Activities on Marine Ecosystems)
Show Figures

Graphical abstract

24 pages, 5443 KiB  
Article
Impact of Early-Age Curing and Environmental Conditions on Shrinkage and Microcracking in Concrete
by Magdalena Bacharz, Kamil Bacharz and Wiesław Trąmpczyński
Materials 2025, 18(13), 3185; https://doi.org/10.3390/ma18133185 - 5 Jul 2025
Viewed by 390
Abstract
This study analyzed the effects of curing and maturation on the formation of shrinkage strain and destructive processes in concrete. Experimental tests were performed on commonly used concrete, class C30/37, with basalt aggregate and blast furnace cement tested: at constant temperature after water [...] Read more.
This study analyzed the effects of curing and maturation on the formation of shrinkage strain and destructive processes in concrete. Experimental tests were performed on commonly used concrete, class C30/37, with basalt aggregate and blast furnace cement tested: at constant temperature after water curing, at constant temperature without water curing, and under cyclically changing temperature without prior curing. Shrinkage strain was measured for 46 days with an extensometer on 150 × 150 × 600 mm specimens, and the acoustic emission (AE) method was used to monitor microcracks and processes in concrete in real time. The results were compared with the model according to EN 1992-1-1:2023. It was found that this model correctly estimates shrinkage strain for wet-curing concrete, but there are discrepancies for air-dried concrete, regardless of temperature and moisture conditions (constant/variable). Correlation coefficients between shrinkage strain increments and process increments in early-age concrete are proposed. Correlations between shrinkage strain and destructive processes occurring in concrete were confirmed. It was found that by using correlation coefficients, it is possible to estimate internal damage in relation to shrinkage strain. The results indicate the need to develop guidelines for estimating shrinkage strain in non-model environmental conditions and demonstrate the usefulness of the nondestructive AE method in diagnosing early damage, especially in concrete structures exposed to adverse service conditions. Full article
(This article belongs to the Collection Concrete and Building Materials)
Show Figures

Figure 1

30 pages, 10507 KiB  
Article
Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
by Agnieszka Przybek, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(13), 3150; https://doi.org/10.3390/ma18133150 - 3 Jul 2025
Cited by 1 | Viewed by 534
Abstract
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that [...] Read more.
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that incorporate expanded clay aggregate (E.C.A.), perlite (P), and foamed geopolymer aggregate (F.G.A.). The composites were designed to ensure a density below 1200 kg/m3, reducing overall weight while maintaining necessary performance. Aggregate content ranged from 60 to 75 wt.%. Physical (density, thickness, water absorption), mechanical (flexural and compressive strength), and thermal (conductivity, resistance) properties were evaluated. F.G.A. 60 achieved a 76.8% reduction in thermal conductivity (0.1708 vs. 0.7366 W/(m·K)) and a 140.4% increase in thermal resistance (0.1642 vs. 0.0683). The F.G.A./E.C.A./P 60 mixture showed the highest compressive strength (18.069 MPa), reaching 52.7% of the reference concrete’s strength, with a 32.3% lower density (1173.3 vs. 1735.0 kg/m3). Water absorption ranged from 4.9% (REF.) to 7.3% (F.G.A. 60). All samples, except F.G.A. 70 and F.G.A. 75, endured heating up to 800 °C. The F.G.A./E.C.A./P 60 composite demonstrated well-balanced performance: low thermal conductivity (0.2052 W/(m·K)), thermal resistance up to 1000 °C, flexural strength of 4.386 MPa, and compressive strength of 18.069 MPa. The results confirm that well-designed geopolymer lightweight concretes are suitable for chimney and flue pipe linings operating between 500 and 1000 °C and exposed to acidic condensates and aggressive chemicals. This study marks the initial phase of a broader project on geopolymer-based prefabricated chimney systems. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

29 pages, 7501 KiB  
Article
Theoretical Analysis of Suspended Road Dust in Relation to Concrete Pavement Texture Characteristics
by Hojun Yoo, Gyumin Yeon and Intai Kim
Atmosphere 2025, 16(7), 761; https://doi.org/10.3390/atmos16070761 - 21 Jun 2025
Viewed by 331
Abstract
Particulate matter (PM) originating from road dust is an increasing concern in urban air quality, particularly as non-exhaust emissions from tire–pavement interactions gain prominence. Existing models often focus on meteorological and traffic-related variables while oversimplifying pavement surface characteristics, limiting their applicability across diverse [...] Read more.
Particulate matter (PM) originating from road dust is an increasing concern in urban air quality, particularly as non-exhaust emissions from tire–pavement interactions gain prominence. Existing models often focus on meteorological and traffic-related variables while oversimplifying pavement surface characteristics, limiting their applicability across diverse spatial and traffic conditions. This study investigates the influence of concrete pavement macrotexture—specifically the Mean Texture Depth (MTD) and surface wavelength—on PM10 resuspension. Field data were collected using a vehicle-mounted DustTrak 8530 sensor following the TRAKER protocol, enabling real-time monitoring near the tire–pavement interface. A multivariable linear regression model was used to evaluate the effects of MTD, wavelength, and the interaction between silt loading (sL) and PM10 content, achieving a high adjusted R2 of 0.765. The surface wavelength and sL–PM10 interaction were statistically significant (p < 0.01). The PM10 concentrations increased with the MTD up to a threshold of approximately 1.4 mm, after which the trend plateaued. A short wavelength (<4 mm) resulted in 30–50% higher PM10 emissions compared to a longer wavelength (>30 mm), likely due to enhanced air-pumping effects caused by more frequent aggregate contact. Among pavement types, Transverse Tining (T.Tining) exhibited the highest emissions due to its high MTD and short wavelength, whereas Exposed Aggregate Concrete Pavement (EACP) and the Next-Generation Concrete Surface (NGCS) showed lower emissions with a moderate MTD (1.0–1.4 mm) and longer wavelength. Mechanistically, a low MTD means there is a lack of sufficient voids for dust retention but generates less turbulence, producing moderate emissions. In contrast, a high MTD combined with a very short wavelength intensifies tire contact and localized air pumping, increasing emissions. Therefore, an intermediate MTD and moderate wavelength configuration appears optimal, balancing dust retention with minimized turbulence. These findings offer a texture-informed framework for integrating pavement surface characteristics into PM emission models, supporting sustainable and emission-conscious pavement design. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

18 pages, 14135 KiB  
Article
Investigation of the Properties of Low Water-to-Solid Ratio Vibro-Press-Formed Alkali-Activated Municipal Solid Waste Incineration Bottom-Ash Concrete
by Gintautas Tamošaitis, Danutė Vaičiukynienė and Diana Bajare
Materials 2025, 18(13), 2926; https://doi.org/10.3390/ma18132926 - 20 Jun 2025
Viewed by 265
Abstract
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There [...] Read more.
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There are currently three incineration plants operating in major cities in Lithuania. The non-hazardous bottom ash remaining from the incineration process is stored in dedicated sorting and aging sites until it is used as an inert form of aggregate for the installation of road foundations. However, it has been observed that these ashes have a tendency to bind and cement when exposed to atmospheric precipitation at the storage site. Based on this characteristic, it was decided in this study to use alkaline activation of the ash to accelerate the bonding process and to create a dense, non-porous composite concrete structure. This activation method is known to create another problem during ash bonding, where the presence of metallic aluminum particles in the ash leads to the release of hydrogen gas and makes the structure of the cured samples porous. For the purposes of the study, it was decided to create a completely different mixture structure and not to use additional water in the mixtures tested. A very low water/solids ratio (W/S) of <0.08 was used for the alkaline activation of the mixtures. All the water required for ash activation was obtained from sodium silicate and sodium hydroxide solution. Metakaolin waste (MKW) was used to adjust the SiO2/Na2O/Al2O3 ratio of the mixtures. Vibro-pressing was used to form and increase the density of the samples. And for the formation of the concrete structure, 0/4 fraction sand was used as aggregate. The final alkali-activated sample obtained had properties similar to those of the very widely used vibro-pressed cementitious paving tiles and did not exhibit hydrogen evolution during alkali activation due to the very low W/S ratio. The best results were achieved by samples with a highest compressive strength of 40.0 MPa and a tensile strength of 5.60 MPa, as well as a density of 1950 kg/m3. It is believed that this alkaline activation and vibro-pressing method can expand the use of MSWI ash in the development of building products. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3964 KiB  
Article
Modified Aggregates for Mitigating Anodic Acidification in Impressed Current Cathodic Protection Systems Toward Infrastructure Modernization
by Yuxin Xing, Zhangmin Zhang, Qiang You and Jie Hu
Buildings 2025, 15(11), 1891; https://doi.org/10.3390/buildings15111891 - 30 May 2025
Viewed by 363
Abstract
In the context of infrastructure modernization, enhancing the durability of reinforced concrete (RC) structures is crucial for achieving sustainable and resilient development. Impressed current cathodic protection (ICCP) is a popular technique to improve corrosion resistance of RC structures exposed to chloride-rich environments but [...] Read more.
In the context of infrastructure modernization, enhancing the durability of reinforced concrete (RC) structures is crucial for achieving sustainable and resilient development. Impressed current cathodic protection (ICCP) is a popular technique to improve corrosion resistance of RC structures exposed to chloride-rich environments but may also induce localized acidification in the external anode mortar due to continuous OH consumption and H+ generation. This phenomenon leads to the dissolution of calcium hydroxide and acidification erosion damage on the anode metal and mortar, undermining the long-term performance of the protection system. This study uses modified aggregates that are incorporated with Ca(OH)2 to improve the corrosion resistance of anode metal and mortar. Results from electrochemical measurements, pH monitoring, and XRD analysis show that the Ca(OH)2-loaded aggregates extended the stable alkaline buffer time of simulated pore solution during ICCP by 1.5 to 2 times longer and exhibited good resistance to the mortar acidification. These findings offer a promising pathway for safeguarding RC structures and advancing infrastructure modernization by integrating protective functionalities at the material level. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 5352 KiB  
Article
Optimization of Exposed Aggregate Concrete Mix Proportions for High Skid Resistance and Noise Reduction Performance
by Xudong Zha, Chengzhi Wu, Runzhou Luo and Yaqiang Liu
Appl. Sci. 2025, 15(11), 5881; https://doi.org/10.3390/app15115881 - 23 May 2025
Viewed by 379
Abstract
Conventional cement concrete pavements often suffer from rapid skid resistance degradation and excessive traffic noise, necessitating effective solutions. This study investigates exposed aggregate concrete (EAC) through orthogonal experimental methods to evaluate the effects of four mix design parameters—water–binder ratio, sand ratio, coarse aggregate [...] Read more.
Conventional cement concrete pavements often suffer from rapid skid resistance degradation and excessive traffic noise, necessitating effective solutions. This study investigates exposed aggregate concrete (EAC) through orthogonal experimental methods to evaluate the effects of four mix design parameters—water–binder ratio, sand ratio, coarse aggregate volume ratio, and proportion of aggregates >9.5 mm—on surface texture characteristics, skid resistance and noise reduction (SRNR) performance, and mechanical properties. The optimal EAC mix proportions were developed, and the correlations between surface texture characteristics and SRNR performance were established. Results indicate that the proportion of aggregates >9.5 mm significantly influences surface texture characteristics and SRNR performance. The optimal mix proportions (water–binder ratio: 0.43, sand ratio: 31%, coarse aggregate volume ratio: 42%, and proportion of aggregates >9.5 mm: 50%) exhibited superior mechanical properties, achieving a 31.5% increase in pendulum value and a 6.48 dB reduction in tire/surface noise compared to grooved conventional concrete. The noise reduction frequency range is mainly concentrated in the mid-high frequency range of 1.5~4.0 kHz, which is more sensitive to the human ear. High correlations were observed between the surface texture characteristics and SRNR performance. Specifically, noise value decreased progressively with increasing exposed aggregate depth, while the pendulum value exhibited a trend of initial decrease, followed by an increase and subsequent decrease in response to the elevated exposed aggregate area ratio. Compared to traditional cement concrete pavements, the optimized EAC, while maintaining mechanical properties, exhibits superior SRNR performance, providing a valuable reference for the construction of high SRNR cement concrete pavements. Full article
Show Figures

Figure 1

16 pages, 4660 KiB  
Article
Erosion Resistance of Iron Ore Tailings as Aggregate for Manufacturing of Cement-Based Materials
by Shuang Liu, Kangning Liu, Jing Wu and Sheliang Wang
Buildings 2025, 15(10), 1741; https://doi.org/10.3390/buildings15101741 - 21 May 2025
Viewed by 441
Abstract
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments [...] Read more.
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments of cement-based materials made with iron ore tailings (IOTs) as an aggregate (namely, IOTCs). The compressive strength, mass loss, and relative dynamic elastic modulus (RDEM) macroscopic performance of IOTC undergoing different chloride diffusion times (0–180 d) were explored in detail. Chloride ion profiles at 0–180 d were analyzed via chemical titration, while X-ray computed tomography (CT) and scanning electron microscopy (SEM) were employed to characterize microstructural evolution. The results demonstrate that IOTC exhibited superior chloride resistance compared to conventional concrete (GC). While both materials showed early strength gain (<60 d) due to hydration and pore-filling effects, IOTC experienced only a 23.9% strength loss after long-term exposure (180 d) significantly less than the 37.2% reduction in GC. Chloride profiling revealed that IOTC had 43.5% lower free chloride ions (Cf) and 32% lower total chloride ions (Ct) at 1 mm depth after 180 d, alongside reduced chloride diffusion coefficients (Da). The CT analysis revealed that IOTC exhibited a significantly denser and more uniformly distributed pore structure than GC, with a porosity of only 0.67% under chloride-free conditions. SEM confirmed IOTC’s more intact matrix and fewer microcracks. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 7802 KiB  
Article
Electrochemical Differences in the Passivity State of Reinforced Concrete for Two Mix Design Methods
by Jorge Alberto Briceño-Mena, Mercedes Guadalupe Balancán-Zapata, Edurado Jesús Pérez-García, Demetrio Nieves-Mendoza and Pedro Castro-Borges
Buildings 2025, 15(8), 1293; https://doi.org/10.3390/buildings15081293 - 15 Apr 2025
Viewed by 396
Abstract
Durable reinforced concrete is a fundamental requirement in a marine environment, but at the same time it must be sustainable, meaning its production emits the least amount of greenhouse gases. Hence, the importance of achieving optimal proportioning methods. This paper presents and discusses [...] Read more.
Durable reinforced concrete is a fundamental requirement in a marine environment, but at the same time it must be sustainable, meaning its production emits the least amount of greenhouse gases. Hence, the importance of achieving optimal proportioning methods. This paper presents and discusses the electrochemical differences in the passivity state of reinforced concrete specimens designed using two proportioning methods: M1 prioritizes the ultimate strength of the element, and M2 focuses on sustainability through optimized aggregate arrangement and reduced cement content. Small beams (150 mm × 150 mm × 300 mm) with varying cover thickness (15 mm, 20 mm, and 30 mm), with two water/cement ratios (0.45 and 0.65), all utilizing Portland composite cement (PCC 30R), were exposed in a tropical marine environment 50 m from the seashore in the north of the Yucatan Peninsula for 700 days (passive state). Corrosion rate, corrosion potential, resistivity, and internal conditions (relative humidity and temperature) were periodically measured. A key finding revealed that M2, despite its sustainable advantage, tends to depassivation before M1, at least during the two years of exposure and while in the passive state. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 33541 KiB  
Article
Alkali–Silica Reactivity Potential of Aggregates from Different Sources in Pakistan
by Muhammad Yousaf, Muhammad Shajih Zafar, Muhammad Usman, Muhammad Usama, Muhammad Usman Yousaf, Gianluca Scaccianoce, Laura Cirrincione and Marco Vocciante
Sustainability 2025, 17(7), 3203; https://doi.org/10.3390/su17073203 - 3 Apr 2025
Viewed by 1147
Abstract
This paper aims to support stakeholders in the sustainable construction sector by exploring the potential of unexamined aggregates from five distinct origins: the Jandol River, the Swat River, the Panjkorha River, the Kitkot Drain, and the Shavey Drain situated in Malakand division, North [...] Read more.
This paper aims to support stakeholders in the sustainable construction sector by exploring the potential of unexamined aggregates from five distinct origins: the Jandol River, the Swat River, the Panjkorha River, the Kitkot Drain, and the Shavey Drain situated in Malakand division, North Waziristan, Pakistan, concerning Alkali–Silica Reaction (ASR) prior to their incorporation into large-scale construction practices. Petrographic examination for the determination of the mineralogical composition of all collected aggregates revealed that aggregates stemming from the Swat River, Panjkorh River, Kitkot Drain, and Shavey Drain exhibited no reactive minerals. In contrast, those from the Jandol River showed reactive mineral content. Physical analysis of the aggregates revealed that Jandol River aggregates had superior resistance to impact, crushing, and abrasion, having values of 18.53%, 18.53%, and 20.10%, respectively. Moreover, the chemical analysis exhibited the highest silica content (SiO2) in Jandol River aggregates, i.e., 94.7%, respectively. Samples in the form of cubes, prisms, and mortar bars were prepared to study both the mechanical properties and the expansion tendencies of specimens prepared from different aggregate sources. Validation of the reactive nature of the Jandol River aggregates was corroborated by the expansion results obtained from the mortar bars and the reduction in compressive strength and flexure strength by 8.2% and 9.2%, respectively, after 90 days, higher than that of aggregates exposed to ASR sourced from the other four origins. It can be asserted that aggregates from the Jandol River source are more susceptible to ASR as compared to other aggregates. To mitigate the potential of ASR, various strategies, such as using low reactivity, natural, or processed aggregates; low alkali-containing cement; inducing pozzolanic substances in concrete; etc., are recommended. Simultaneously, an economic feasibility study and environmental assessments are recommended as future developments. Full article
Show Figures

Figure 1

16 pages, 1481 KiB  
Article
Cost-Effectiveness of Reinforced Recycled Aggregate Concrete Structures with Fly Ash and Basalt Fibres Under Corrosion: A Life Cycle Cost Analysis
by Abdelrahman Abushanab and Vanissorn Vimonsatit
Buildings 2025, 15(7), 1167; https://doi.org/10.3390/buildings15071167 - 2 Apr 2025
Viewed by 870
Abstract
Recent investigations have shown that the mechanical and durability properties of recycled aggregate concrete can be enhanced using fly ash (FA) and structural fibres. However, the financial viability of combining these products in concrete has not yet been evaluated. Therefore, this study assessed [...] Read more.
Recent investigations have shown that the mechanical and durability properties of recycled aggregate concrete can be enhanced using fly ash (FA) and structural fibres. However, the financial viability of combining these products in concrete has not yet been evaluated. Therefore, this study assessed the long-term cost-effectiveness of using recycled concrete aggregates (RCA), FA, and basalt fibres (BF) simultaneously in high-rise reinforced concrete buildings exposed to corrosive environments. A life cycle cost analysis was conducted using five variables, two design alternatives, and twelve design scenarios. The analysis followed ISO 15686–5:2017 using a discount rate of 0.5% and a construction-to-material cost ratio of 150%. The components considered in the life cycle cost model included materials, construction, maintenance, and disposal. The results demonstrated that employing RCA, FA, and BF in combination in concrete buildings located near the ocean achieved approximately 21% cost savings compared to buildings made with conventional materials over a lifespan of 50 years. The maintenance component exhibited the most significant cost savings, with an average reduction of about 76% in the maintenance costs for all buildings utilising RCA, FA, and BF. The sensitivity analysis revealed that the proposed building with RCA, FA, and BF remained more cost-effective than the conventional concrete building, even with an increasing RCA-to-natural-aggregate price ratio, construction-to-material cost ratio, and increasing the discount rate to 200%, 250%, and 10%, respectively. Full article
Show Figures

Figure 1

13 pages, 2078 KiB  
Article
Green Concrete Production Technology with the Addition of Recycled Ceramic Aggregate
by Natalia Gasik-Kowalska and Artur Koper
Sustainability 2025, 17(7), 3028; https://doi.org/10.3390/su17073028 - 28 Mar 2025
Cited by 1 | Viewed by 512
Abstract
Rational waste management is crucial for the effective implementation of the circular economy (CE) and the achievement of Sustainable Development Goals (SDGs). Ceramic waste, which takes thousands of years to decompose in the natural environment, can be recycled into construction materials. This approach [...] Read more.
Rational waste management is crucial for the effective implementation of the circular economy (CE) and the achievement of Sustainable Development Goals (SDGs). Ceramic waste, which takes thousands of years to decompose in the natural environment, can be recycled into construction materials. This approach offers dual environmental benefits: reducing ceramic waste disposal and minimizing the exploitation of natural aggregate deposits. This study examines the recycling of sanitary ceramic waste, including items such as washbasins, toilet bowls, urinals, bidets, and bathtubs, into alternative aggregates for concrete mixtures. After grinding and separating the ceramic cullet into specific fractions, it becomes a viable substitute for natural aggregates. Concrete samples were tested with varying water-cement ratios (0.3 and 0.4) and recycled ceramic aggregate contents (15%, 30%, and 45%). These results were compared to those of samples made solely with natural aggregates. The samples underwent compressive strength tests to determine concrete class and were exposed to elevated temperatures (150 °C, 300 °C, 550 °C, and 750 °C). Additional analyses measured the secant modulus of elasticity and selected aggregate properties. The findings demonstrate that high-quality concrete can be produced while promoting circular economy principles by reducing waste and preserving natural resources. Full article
Show Figures

Figure 1

Back to TopTop