Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = exploitable groundwater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9017 KB  
Article
Research on the Influence of Groundwater Level Dynamic Rising Process on Buildings Based on Numerical Simulation
by Hongzhao Li, Mingxu Gu, Ming Zhang, Baiheng Ma, Xiaolong Zhu, Liangyu Gu, Jiaoyang Tai and Lili Chen
Water 2025, 17(20), 3014; https://doi.org/10.3390/w17203014 - 20 Oct 2025
Abstract
In the North China region, measures such as restricting groundwater extraction and promoting cross-basin water diversion have effectively alleviated the problem of excessive groundwater exploitation. Nevertheless, the continuous rise in groundwater levels may alter the mechanical properties of foundation soil layers, potentially leading [...] Read more.
In the North China region, measures such as restricting groundwater extraction and promoting cross-basin water diversion have effectively alleviated the problem of excessive groundwater exploitation. Nevertheless, the continuous rise in groundwater levels may alter the mechanical properties of foundation soil layers, potentially leading to geotechnical hazards such as foundation instability and the uneven settlement of structures. This study employs FLAC3D software to simulate the displacement, deformation, and stress–strain behavior of buildings and their surrounding strata during the dynamic recovery of groundwater levels, aiming to assess the impact of this process on structural integrity. Research findings indicate that the maximum building settlement within the study area reaches 54.8 mm, with a maximum inter-column differential settlement of 8.9 mm and a peak settlement rate of 0.16 mm/day. In regions where differential settlement aligns with the interface between the floor slab and walls, tensile stress concentrations are observed. The maximum tensile stress in these zones increases progressively from 1.8 MPa to 2.19 MPa, suggesting a potential risk of tensile cracking in the concrete structures. The influence of groundwater level recovery on buildings exhibits distinct phase characteristics, and the response mechanisms of different lithological strata vary significantly. Therefore, particular attention should be given to the physical properties and mechanical behavior of strata that are highly sensitive to variations in moisture content. These findings hold significant reference value for the sustainable development and utilization of underground space in the North China region. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

15 pages, 4740 KB  
Article
Electrical Resistivity Tomography and 3D Modeling for Groundwater Salinity Assessment in Volcanic Islands: A Case Study in Los Cristianos (Tenerife, Spain)
by Pedro Carrasco-García, José Luis Herrero-Pacheco, Javier Carrasco-García and Daniel Porras-Sanchiz
Appl. Sci. 2025, 15(20), 11215; https://doi.org/10.3390/app152011215 - 20 Oct 2025
Viewed by 34
Abstract
Groundwater management in volcanic islands represents a complex challenge due to the scarcity of surface resources, the strong heterogeneity of volcanic terrains, and the constant threat of marine intrusion. In Tenerife (Canary Islands, Spain), current regulations establish that only saline or brackish waters [...] Read more.
Groundwater management in volcanic islands represents a complex challenge due to the scarcity of surface resources, the strong heterogeneity of volcanic terrains, and the constant threat of marine intrusion. In Tenerife (Canary Islands, Spain), current regulations establish that only saline or brackish waters are permitted for exploitation, to be subsequently desalinated through reverse osmosis for urban and touristic supply. In this context, it is essential to develop geophysical methodologies capable of accurately characterizing subsurface salinity and optimizing the location of new boreholes. The present study applies Electrical Resistivity Tomography (ERT) profiles in the Los Cristianos area (Arona, Tenerife), later integrated into a three-dimensional model using Oasis Montaj software Version 2025.1. The results allow for the differentiation of four geoelectrical domains. The 3D modeling enabled a detailed characterization of the conductive domain, delineating the geometry of the marine intrusion. The findings confirm that the combination of ERT and 3D modeling constitutes an effective, replicable, and economically efficient methodology for precisely locating saline horizons and selecting the most suitable drilling sites, thereby providing an objective basis for the sustainable management of water resources in volcanic islands. Full article
Show Figures

Figure 1

26 pages, 9429 KB  
Article
Groundwater Vulnerability Assessment in the Huangshui River Basin Under Representative Environmental Change
by Tao Ma, Kexin Zhou, Jing Wu, Ziqi Wang, Shengnan Li and Yudong Lu
Water 2025, 17(19), 2911; https://doi.org/10.3390/w17192911 - 9 Oct 2025
Viewed by 277
Abstract
The Huangshui River Basin is located in the transition zone between the Loess Plateau and the Qinghai–Tibet Plateau, characterized by a fragile hydrological and ecological environment. Groundwater serves as a vital water source for local economic development and human livelihood. With the acceleration [...] Read more.
The Huangshui River Basin is located in the transition zone between the Loess Plateau and the Qinghai–Tibet Plateau, characterized by a fragile hydrological and ecological environment. Groundwater serves as a vital water source for local economic development and human livelihood. With the acceleration of urbanisation and climate change, groundwater resources face challenges such as pollution and over-exploitation. This study employs an improved DRASTIC model, tailored to the characteristics of the groundwater system in the Huangshui River Valley of the upper Yellow River, to integrate groundwater resources, groundwater environment, and ecological environment systems. Improving the DRASTIC model for groundwater vulnerability assessment. A two-tiered evaluation system with nine indicator parameters was proposed, including six groundwater quality vulnerability indicators and five groundwater quantity vulnerability indicators. Fuzzy analytic hierarchy process and entropy weight method were used to determine the weights, and Geographic Information System (GIS) spatial analysis was employed to evaluate groundwater vulnerability in the Huangshui River basin in 2006 and 2021. The results indicate that the proportion of areas with high groundwater quality vulnerability increased from 10.7% in 2006 to 31.57% in 2021, while the proportion of areas with high groundwater quantity vulnerability decreased from 22.33% to 14.02%. Overall, groundwater quality vulnerability in the Huangshui River basin is increasing, while groundwater quantity vulnerability is decreasing. Based on the evaluation results of water quality and quantity vulnerability, protection zoning maps for water quality and quantity were compiled, and preventive measures and recommendations for water quality and quantity protection zones were proposed. Human activities have a significant impact on groundwater vulnerability, with land use types and groundwater extraction coefficients having the highest weights. This study provides a scientific basis for the protection and sustainable use of groundwater in the Huangshui River basin. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

23 pages, 3374 KB  
Article
Simulation of Land Subsidence Caused by Coal Mining at the Lupeni Mining Exploitation Using COMSOL Multiphysics
by Andreea Cristina Tataru, Dorin Tataru, Florin Dumitru Popescu, Andrei Andras and Ildiko Brinas
Appl. Sci. 2025, 15(19), 10651; https://doi.org/10.3390/app151910651 - 1 Oct 2025
Viewed by 426
Abstract
Because of its specific nature, mining activity causes numerous negative impacts on the environment, both during the exploitation phase and after it has ended. An important source of income in the Jiu Valley is represented by the Lupeni Mining Exploitation. Like any mining [...] Read more.
Because of its specific nature, mining activity causes numerous negative impacts on the environment, both during the exploitation phase and after it has ended. An important source of income in the Jiu Valley is represented by the Lupeni Mining Exploitation. Like any mining activity, coal exploitation causes various negative effects on the environment. The subsidence phenomenon represents a significant issue associated with coal mining in the Jiu Valley. Underground extraction of mineral deposits induces displacement of the overburden strata. Such displacements result in ground subsidence and modifications of the surface topography. The larger the voids created following the exploitation of useful mineral deposits, the more they affect the surface of the land above the exploitation through sinking, displacement, deformation, and even cracks. Secondary deformations refer to post-mining surface movements induced by delayed rock mass adjustment, manifesting as ground collapse, localized subsoil failure, or uplift driven by groundwater rebound after drainage cessation. In this paper, we aim to study the subsidence phenomenon produced by coal mining at the Lupeni Mining Exploitation using the COMSOL simulation software and applying the Barcelona Basic Model (BBM) and Modified Cam-Clay (MCC) models. Following the simulation, the behavior of the rocks could be observed in order to improve prediction accuracy to support sustainable land management in post-mining areas. Full article
Show Figures

Figure 1

14 pages, 3670 KB  
Article
Study on Natural Background Levels and Mechanisms of Groundwater Contamination in an Overexploited Aquifer Region: A Case Study of Xingtai City, North China Plain
by Qi Wang, Meili Wang, Yan Li, Binghao Guo, Hongchao Li, Yang Liu, Liya Zhao, Chunyang Ma and Ziting Yuan
Water 2025, 17(19), 2836; https://doi.org/10.3390/w17192836 - 27 Sep 2025
Cited by 1 | Viewed by 385
Abstract
This study investigates the groundwater over-exploitation zone in Xingtai City, North China Plain, to address two critical gaps in the current understanding of groundwater chemistry: the lack of established natural background levels (NBLs) and the ambiguous mechanisms of groundwater contamination. Sixty shallow-groundwater samples [...] Read more.
This study investigates the groundwater over-exploitation zone in Xingtai City, North China Plain, to address two critical gaps in the current understanding of groundwater chemistry: the lack of established natural background levels (NBLs) and the ambiguous mechanisms of groundwater contamination. Sixty shallow-groundwater samples were collected and analyzed using a combination of Piper diagrams, cumulative-probability statistics, contamination-index methods, and multivariate statistical techniques to determine NBLs and threshold values (TVs) for major chemical constituents and to clarify the contamination mechanisms. The results indicate that the groundwater is weakly alkaline, with the most prevalent water types being HCO3–Na and SO4·Cl–Na. The NBLs for Na+, Ca2+, Mg2+, Cl, SO42 and NO3 are 32.3 mg/L, 34.1 mg/L, 17.8 mg/L, 46.2 mg/L, 66.4 mg/L and 0.886 mg/L, respectively, and the corresponding TVs are 116 mg/L, 54.6 mg/L, 33.9 mg/L, 248 mg/L, 258 mg/L and 44.7 mg/L. Based on the TVs, 56.7% of the sampling sites are identified as anthropogenically contaminated. Principal component analysis reveals that groundwater over-extraction, industrial activities and water–rock interaction are the dominant drivers of groundwater contamination, whereas intensive abstraction, agricultural fertilization and domestic sewage discharge exert additional influence. The findings provide a scientific basis for pollution control and sustainable utilization of groundwater in over-exploited regions. Full article
Show Figures

Figure 1

39 pages, 10741 KB  
Article
Modeling the Dynamics of the Jebel Zaghouan Karst Aquifer Using Artificial Neural Networks: Toward Improved Management of Vulnerable Water Resources
by Emna Gargouri-Ellouze, Tegawende Arnaud Ouedraogo, Fairouz Slama, Jean-Denis Taupin, Nicolas Patris and Rachida Bouhlila
Hydrology 2025, 12(10), 250; https://doi.org/10.3390/hydrology12100250 - 26 Sep 2025
Viewed by 548
Abstract
Karst aquifers are critical yet vulnerable water resources in semi-arid Mediterranean regions, where structural complexity, nonlinearity, and delayed hydrological responses pose significant modeling challenges under increasing climatic and anthropogenic pressures. This study examines the Jebel Zaghouan aquifer in northeastern Tunisia, aiming to simulate [...] Read more.
Karst aquifers are critical yet vulnerable water resources in semi-arid Mediterranean regions, where structural complexity, nonlinearity, and delayed hydrological responses pose significant modeling challenges under increasing climatic and anthropogenic pressures. This study examines the Jebel Zaghouan aquifer in northeastern Tunisia, aiming to simulate its natural discharge dynamics prior to intensive exploitation (1915–1944). Given the fragmented nature of historical datasets, meteorological inputs (rainfall, temperature, and pressure) were reconstructed using a data recovery process combining linear interpolation and statistical distribution fitting. The hyperparameters of the artificial neural network (ANN) model were optimized through a Bayesian search. Three deep learning architectures—Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM)—were trained to model spring discharge. Model performance was evaluated using Kling–Gupta Efficiency (KGE′), Nash–Sutcliffe Efficiency (NSE), and R2 metrics. Hydrodynamic characterization revealed moderate variability and delayed discharge response, while isotopic analyses (δ18O, δ2H, 3H, 14C) confirmed a dual recharge regime from both modern and older waters. LSTM outperformed other models at the weekly scale (KGE′ = 0.62; NSE = 0.48; R2 = 0.68), effectively capturing memory effects. This study demonstrates the value of combining historical data rescue, ANN modeling, and hydrogeological insight to support sustainable groundwater management in data-scarce karst systems. Full article
Show Figures

Graphical abstract

27 pages, 2408 KB  
Article
Analysis of the Environmental Compatibility of the Use of Porcelain Stoneware Tiles Manufactured with Waste Incineration Bottom Ash
by Luigi Acampora, Giulia Costa, Iason Verginelli, Francesco Lombardi, Claudia Mensi and Simone Malvezzi
Ceramics 2025, 8(3), 116; https://doi.org/10.3390/ceramics8030116 - 19 Sep 2025
Viewed by 386
Abstract
In line with circular economy principles and the reduction of primary material exploitation, waste-to-energy (WtE) by-products such as bottom ash (BA) are increasingly being used as raw materials in cement and ceramics manufacturing. However, it is critical to verify that the final product [...] Read more.
In line with circular economy principles and the reduction of primary material exploitation, waste-to-energy (WtE) by-products such as bottom ash (BA) are increasingly being used as raw materials in cement and ceramics manufacturing. However, it is critical to verify that the final product presents not only adequate technical properties but also that it does not pose negative impacts to the environment and human health during its use. This study investigates the environmental compatibility of the use of ceramic porcelain stoneware tiles manufactured with BA as partial replacement of traditional raw materials, with a particular focus on the leaching behavior of the tiles during their use, and also after crushing to simulate their characteristics at their end of life. To evaluate the latter aspect, compliance leaching tests were performed on crushed samples and compared with Italian End-of-Waste (EoW) thresholds for the use of construction and demolition waste as recycled aggregates. Whereas, to assess the environmental compatibility of the tiles during the utilization phase, a methodology based on the application of monolithic leaching tests to intact tiles, and the evaluation of the results through multi-scenario human health risk assessment and the analysis of the main mechanisms governing leaching at different stages, was employed. The results of the study indicate that the analyzed BA-based tiles showed no significant increase in the release of potential contaminants compared to traditional formulations and fully complied with End-of-Waste criteria. The results of the monolith tests used as input for site-specific risk assessment, simulating worst-case scenarios involving the potential contamination of the groundwater, indicated negligible risks to human health for both types of tiles, even considering very conservative assumptions. As for differences in the release mechanisms, tiles containing BA exhibited a shift toward depletion-controlled leaching and some differences in early element release compared to the ones with a traditional formulation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

25 pages, 1262 KB  
Article
Comprehensive Evaluation of Water Resource Carrying Capacity in Hebei Province Based on a Combined Weighting–TOPSIS Model
by Nianning Wang, Qichao Zhao, Lihua Yuan, Yaosen Chen, Ying Hong and Sijie Chen
Data 2025, 10(9), 143; https://doi.org/10.3390/data10090143 - 10 Sep 2025
Viewed by 440
Abstract
Water scarcity severely restricts the sustainable development of water-stressed regions like Hebei Province. A scientific assessment of water resource carrying capacity (WRCC) is essential. However, single-weighting methods often lead to biased results. To address this limitation, we propose a combined weighting model that [...] Read more.
Water scarcity severely restricts the sustainable development of water-stressed regions like Hebei Province. A scientific assessment of water resource carrying capacity (WRCC) is essential. However, single-weighting methods often lead to biased results. To address this limitation, we propose a combined weighting model that integrates the Entropy Weight Method (EWM), Projection Pursuit (PP), and CRITIC. To support this model, we developed a multi-dimensional, long-term WRCC evaluation dataset covering 11 prefecture-level cities in Hebei Province over 24 years (2000–2023). This approach simultaneously considers data dispersion, inter-indicator conflict, and structural features. It ensures that a more balanced weighting scheme is obtained. The traditional TOPSIS model was further improved through Grey Relational Analysis (GRA), which enhanced the discriminatory power and stability of WRCC assessment. The findings were as follows: (1) From 2000 to 2023, the WRCC in Hebei Province showed a fluctuating upward trend and a “high-north, low-south” spatial gradient. (2) Obstacle analysis revealed a vicious cycle of “resource scarcity–structural conflict–ecological deficit”. This cycle is caused by excessive exploitation of groundwater and low efficiency of industrial water use. The combined weighting–GRA–TOPSIS model offers a reliable WRCC diagnostic tool. The results indicate the core barriers to water use in Hebei and provide targeted policy ideas for sustainable development. Full article
Show Figures

Figure 1

16 pages, 4224 KB  
Article
Zoning of the Territory of Southern Kazakhstan Based on the Conditions of Groundwater Availability for Watering Pasture Lands
by Vladimir Smolyar, Dinara Adenova, Timur Rakhimov, Rakhmatulla Ayazbayev, Gulnura Nyssanbayeva and Almagul Kerimkulova
Hydrology 2025, 12(9), 227; https://doi.org/10.3390/hydrology12090227 - 28 Aug 2025
Viewed by 1015
Abstract
In the arid and semi-arid climate of Southern Kazakhstan, groundwater is the primary and most resilient source of water for pasture irrigation. This study provides an integrated assessment of the predicted, natural, and operational groundwater resources across five administrative regions—Almaty, Zhetysu, Zhambyl, Kyzylorda, [...] Read more.
In the arid and semi-arid climate of Southern Kazakhstan, groundwater is the primary and most resilient source of water for pasture irrigation. This study provides an integrated assessment of the predicted, natural, and operational groundwater resources across five administrative regions—Almaty, Zhetysu, Zhambyl, Kyzylorda, and Turkestan—considering water quality (total dissolved solids, TDS), potential well yield, and aquifer depth. Hydrogeological maps at 1:200,000 and 1:1,000,000 scales, a regional well inventory, and GIS-based spatial analysis were combined to classify resource availability and identify surplus and deficit zones. Results show that 92.5% of predicted exploitable resources (totaling 1155.2 m3/s) have TDS ≤ 3 g/L, making them suitable for domestic and livestock use. Regional disparities are pronounced: Zhetysu, Almaty, and Zhambyl exhibit resource surpluses, Kyzylorda approaches balance, while Turkestan faces a marked deficit. The developed groundwater availability map integrates mineralization, well productivity, and recommended drilling depth, enabling the design of water intake systems without costly field exploration. This decision-support tool has practical value for optimizing water allocation, reducing operational costs, and improving the sustainability of pasture management under the constraints of limited surface water resources. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

16 pages, 6840 KB  
Article
Impact Assessment of Mining Dewatering on Vegetation Based on Satellite Image Analysis and the NDVI Index—A Case Study of a Chalk Mine
by Kamil Gromnicki and Krzysztof Chudy
Resources 2025, 14(9), 134; https://doi.org/10.3390/resources14090134 - 26 Aug 2025
Viewed by 1671
Abstract
The exploitation of mineral resources often necessitates groundwater drainage, which may impact surrounding ecosystems, particularly vegetation. In this study, the effects of passive drainage in the Kornica-Popówka chalk mine in eastern Poland were analyzed using Sentinel-2 satellite images and the NDVI vegetation index. [...] Read more.
The exploitation of mineral resources often necessitates groundwater drainage, which may impact surrounding ecosystems, particularly vegetation. In this study, the effects of passive drainage in the Kornica-Popówka chalk mine in eastern Poland were analyzed using Sentinel-2 satellite images and the NDVI vegetation index. Groundwater monitoring wells were used to delineate the extent of the depression cone, representing areas of potentially altered hydrological conditions. NDVI values were analyzed across multiple time points between 2023 and 2024 to assess the condition of vegetation both inside and outside the depression cone. The results indicate no significant difference in NDVI values during the 2023–2024 study period for this specific chalk mine case between areas affected and unaffected by the depression cone, suggesting that vegetation in this region is not experiencing stress due to lowered groundwater levels. This outcome highlights the influence of other environmental factors, such as rainfall and land use, and suggests that the local geological structure allows plants to maintain sufficient access to water despite hydrological alterations. This study confirms the utility of integrating remote sensing with hydrogeological data in environmental monitoring and underlines the need for continued observation to assess long-term trends in vegetation response to mining-related groundwater changes. Full article
Show Figures

Figure 1

19 pages, 9248 KB  
Article
Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
by Chenwei Tu, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong and Yuan Yao
Agriculture 2025, 15(15), 1704; https://doi.org/10.3390/agriculture15151704 - 7 Aug 2025
Viewed by 513
Abstract
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability [...] Read more.
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability and its interaction with surface water is essential for water–ecology–agriculture security in arid areas. This study evaluates the irrigation water quality and groundwater–surface water interaction influenced by agricultural activities in a typical arid plain region using hydrochemical and stable isotopic data from 51 water samples. The results reveal that the area of cultivated land increases by 658.9 km2 from 2000 to 2023, predominantly resulting from the conversion of bare land. Groundwater TDS (total dissolved solids) value exhibits significant spatial heterogeneity, ranging from 516 to 2684 mg/L. Cl, SO42−, and Na+ are the dominant ions in groundwater, with a widespread distribution of brackish water. Groundwater δ18O values range from −9.4‰ to −5.4‰, with the mean value close to surface water. In total, 86% of the surface water samples are good and suitable for agricultural irrigation, while 60% of shallow groundwater samples are marginally suitable or unsuitable for irrigation at present. Groundwater hydrochemistry is largely controlled by intensive evaporation, water–rock interaction, and agricultural activities (e.g., cultivated land expansion, irrigation, groundwater exploitation, and fertilizers). Agricultural activities could cause shallow groundwater salinization, even confined water deterioration, with an intense and frequent exchange between groundwater and surface water. In order to sustainably manage groundwater and maintain ecosystem stability in arid plain regions, controlling cultivated land area and irrigation water amount, enhancing water utilization efficiency, limiting groundwater exploitation, and fully utilizing floodwater resources would be the viable ways. The findings will help to deepen the understanding of the groundwater quality evolution mechanism in arid irrigated regions and also provide a scientific basis for agricultural water management in the context of extreme climatic events and anthropogenic activities. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

23 pages, 30771 KB  
Article
Spatiotemporal Characteristics of Ground Subsidence in Xiong’an New Area Revealed by a Combined Observation Framework Based on InSAR and GNSS Techniques
by Shaomin Liu and Mingzhou Bai
Remote Sens. 2025, 17(15), 2654; https://doi.org/10.3390/rs17152654 - 31 Jul 2025
Viewed by 824
Abstract
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns [...] Read more.
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns from 2017/05 to 2025/03. The key results show: (1) Three subsidence hotspots, namely northern Xiongxian (max. cumulative subsidence: 591 mm; 70 mm/yr), Luzhuang, and Liulizhuang, strongly correlate with geothermal wells and F4/F5 fault zones; (2) GNSS baseline analysis (e.g., XA01-XA02) reveals fissure-induced differential deformation (max. horizontal/vertical rates: 40.04 mm/yr and 19.8 mm/yr); and (3) InSAR–GNSS cross-validation confirms the high consistency of the results (Pearson’s correlation coefficient = 0.86). Subsidence in Xiongxian is driven by geothermal/industrial groundwater use, without any seasonal variations, while Anxin exhibits agricultural pumping-linked seasonal fluctuations. The use of rooftop GNSS stations reduces multipath effects and improves urban monitoring accuracy. The spatiotemporal heterogeneity stems from coupled resource exploitation and tectonic activity. We propose prioritizing rooftop GNSS deployments to enhance east–west deformation monitoring. This framework balances regional and local-scale precision, offering a replicable solution for geological risk assessments in emerging cities. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

27 pages, 8070 KB  
Article
Study on Solid-Liquid Two-Phase Flow and Wear Characteristics in Multistage Centrifugal Pumps Based on the Euler-Lagrange Approach
by Zhengyin Yang, Yandong Gu, Yingrui Zhang and Zhuoqing Yan
Water 2025, 17(15), 2271; https://doi.org/10.3390/w17152271 - 30 Jul 2025
Viewed by 836
Abstract
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To [...] Read more.
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To investigate the influence of solid-liquid two-phase flow on pump performance and wear, this study conducted numerical simulations of the solid-liquid two-phase flow within multistage centrifugal pumps based on the Euler–Lagrange approach and the Tabakoff wear model. The simulation results showed good agreement with experimental data. Under the design operating condition, compared to the clear water condition, the efficiency under the solid-liquid two-phase flow condition decreased by 1.64%, and the head coefficient decreased by 0.13. As the flow rate increases, particle momentum increases, the particle Stokes number increases, inertial forces are enhanced, and the coupling effect with the fluid weakens, leading to an increased impact intensity on flow passage components. This results in a gradual increase in the wear area of the impeller front shroud, back shroud, pressure side, and the peripheral casing. Under the same flow rate condition, when particles enter the pump chamber of a subsequent stage from a preceding stage, the fluid, after being rectified by the return guide vane, exhibits a more uniform flow pattern and reduced turbulence intensity. The particle Stokes number in the subsequent stage is smaller than that in the preceding stage, weakening inertial effects and enhancing the coupling effect with the fluid. This leads to a reduced impact intensity on flow passage components, resulting in a smaller wear area of these components in the subsequent stage compared to the preceding stage. This research offers critical theoretical foundations and practical guidelines for developing wear-resistant multistage centrifugal pumps in solid-liquid two-phase flow applications, with direct implications for extending service life and optimizing hydraulic performance. Full article
Show Figures

Figure 1

15 pages, 2004 KB  
Article
Impact of Aquifer Heterogeneity on the Migration and Natural Attenuation of Multicomponent Heavy Dense Nonaqueous Phase Liquids (DNAPLs) in a Retired Chemically Polluted Site
by Wenyi Xie, Mei Li, Dengdeng Jiang, Lingya Kong, Mengjie Wang, Shaopo Deng and Xuwei Li
Processes 2025, 13(8), 2338; https://doi.org/10.3390/pr13082338 - 23 Jul 2025
Viewed by 496
Abstract
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater [...] Read more.
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater transport model using TMVOC to systematically investigate the migration, diffusion, and natural attenuation processes of two typical DNAPLs—1,2-dichloroethane (DCE) and carbon tetrachloride (CTC)—under three scenarios: individual transport, mixed transport, and heterogeneous aquifer conditions, with a simulation period of 35 years. In individual transport scenarios, DCE and CTC showed distinct migration behaviors. DCE achieved a maximum vertical transport distance of 14.01 m and a downstream migration distance of 459.58 m, while CTC reached 13.57 m vertically and 453.51 m downstream. When transported as a mixture, their migration was inhibited: DCE’s vertical and downstream distances decreased to 13.76 m and 440.46 m, respectively; and CTC’s to 13.23 m and 420.32 m, likely due to mutual solvent effects that altered their physicochemical properties such as viscosity and solubility. Under natural attenuation conditions, both DNAPLs ceased downstream transport by the end of the 6th year. DCE concentrations dropped below its risk control value (0.81 mg/L) by the 14th year, and CTC (with a risk control value of 0.23 mg/L) by the 11th year. By the 10th year, DCE’s downstream plume had retreated to 48.65 m, and CTC’s to 0.95 m. In heterogeneous aquifers, vertical upward transport of DCE and CTC increased to 14.82 m and 14.22 m, respectively, due to the partial absence of low-conductivity silt layers, while their downstream distances decreased to 397.99 m and 354.11 m, constrained by low-permeability lenses in the migration path. These quantitative results clarify the dynamic differences in DNAPL transport under varying conditions, highlighting the impacts of multicomponent interactions, natural attenuation, and aquifer heterogeneity. They provide critical references for risk management, scientific determination of remediation depths, and safe exploitation of retired chemically polluted sites with similar hydrogeological characteristics. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

18 pages, 6088 KB  
Article
Hydrochemical Characteristics and Evolution of Underground Brine During Mining Process in Luobei Mining Area of Lop Nur, Northwestern China
by Xu Han, Yufei Deng, Hao Geng, Liangliang Zhao, Ji Zhang, Lingfen Wang, Lei Wang, Xiaohong Sun, Zihao Zhou, Meng Wang and Zhongjian Liu
Water 2025, 17(15), 2192; https://doi.org/10.3390/w17152192 - 23 Jul 2025
Viewed by 573
Abstract
Underground brine as a liquid mineral resource available for development and utilization has attracted widespread attention. However, how the mining process affects the hydrochemical characteristics and evolution of underground brine has yet to be fully understood. Herein, 207 underground brine samples were collected [...] Read more.
Underground brine as a liquid mineral resource available for development and utilization has attracted widespread attention. However, how the mining process affects the hydrochemical characteristics and evolution of underground brine has yet to be fully understood. Herein, 207 underground brine samples were collected from the Luobei mining area of the Lop Nur region during pre-exploitation (2006), exploitation (2019), and late exploitation (2023) to explore the dynamic change characteristics and evolution mechanisms of the underground brine hydrochemistry using the combination of statistical analysis, spatial interpolation, correlation analysis, and ion ratio analysis. The results indicated that Na+ and Cl were the dominant ionic components in the brine, and their concentrations remained relatively stable throughout the mining process. However, the content of Mg2+ increased gradually during the mining process (increased by 45.08% in the middle stage and 3.09% in the later stage). The elevation in Mg2+ concentration during the mining process could be attributed to the dissolution of Mg-bearing minerals, reverse cation exchange, and mixed recharge. This research furnishes a scientific foundation for a more in-depth comprehension of the disturbance mechanism of brine-mining activities on the groundwater chemical system in the mining area and for the sustainable exploitation of brine resources. Full article
Show Figures

Figure 1

Back to TopTop