Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = explantation findings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11006 KiB  
Article
Supervised Machine-Based Learning and Computational Analysis to Reveal Unique Molecular Signatures Associated with Wound Healing and Fibrotic Outcomes to Lens Injury
by Catherine Lalman, Kylie R. Stabler, Yimin Yang and Janice L. Walker
Int. J. Mol. Sci. 2025, 26(15), 7422; https://doi.org/10.3390/ijms26157422 - 1 Aug 2025
Viewed by 114
Abstract
Posterior capsule opacification (PCO), a frequent complication of cataract surgery, arises from dysregulated wound healing and fibrotic transformation of residual lens epithelial cells. While transcriptomic and machine learning (ML) approaches have elucidated fibrosis-related pathways in other tissues, the molecular divergence between regenerative and [...] Read more.
Posterior capsule opacification (PCO), a frequent complication of cataract surgery, arises from dysregulated wound healing and fibrotic transformation of residual lens epithelial cells. While transcriptomic and machine learning (ML) approaches have elucidated fibrosis-related pathways in other tissues, the molecular divergence between regenerative and fibrotic outcomes in the lens remains unclear. Here, we used an ex vivo chick lens injury model to simulate post-surgical conditions, collecting RNA from lenses undergoing either regenerative wound healing or fibrosis between days 1–3 post-injury. Bulk RNA sequencing data were normalized, log-transformed, and subjected to univariate filtering prior to training LASSO, SVM, and RF ML models to identify discriminatory gene signatures. Each model was independently validated using a held-out test set. Distinct gene sets were identified, including fibrosis-associated genes (VGLL3, CEBPD, MXRA7, LMNA, gga-miR-143, RF00072) and wound-healing-associated genes (HS3ST2, ID1), with several achieving perfect classification. Gene Set Enrichment Analysis revealed divergent pathway activation, including extracellular matrix remodeling, DNA replication, and spliceosome associated with fibrosis. RT-PCR in independent explants confirmed key differential expression levels. These findings demonstrate the utility of supervised ML for discovering lens-specific fibrotic and regenerative gene features and nominate biomarkers for targeted intervention to mitigate PCO. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 395
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

11 pages, 1250 KiB  
Article
Optimizing Multivariable Logistic Regression for Identifying Perioperative Risk Factors for Deep Brain Stimulator Explantation: A Pilot Study
by Peyton J. Murin, Anagha S. Prabhune and Yuri Chaves Martins
Clin. Pract. 2025, 15(7), 132; https://doi.org/10.3390/clinpract15070132 - 17 Jul 2025
Viewed by 286
Abstract
Background/Objectives: Deep brain stimulation (DBS) is an effective surgical treatment for Parkinson’s Disease (PD) and other movement disorders. Despite its benefits, DBS explantation occurs in 5.6% of cases, with costs exceeding USD 22,000 per implant. Traditional statistical methods have struggled to identify [...] Read more.
Background/Objectives: Deep brain stimulation (DBS) is an effective surgical treatment for Parkinson’s Disease (PD) and other movement disorders. Despite its benefits, DBS explantation occurs in 5.6% of cases, with costs exceeding USD 22,000 per implant. Traditional statistical methods have struggled to identify reliable risk factors for explantation. We hypothesized that supervised machine learning would more effectively capture complex interactions among perioperative factors, enabling the identification of novel risk factors. Methods: The Medical Informatics Operating Room Vitals and Events Repository was queried for patients with DBS, adequate clinical data, and at least two years of follow-up (n = 38). Fisher’s exact test assessed demographic and medical history variables. Data were analyzed using Anaconda Version 2.3.1. with pandas, numpy, sklearn, sklearn-extra, matplotlin. pyplot, and seaborn. Recursive feature elimination with cross-validation (RFECV) optimized factor selection was used. A multivariate logistic regression model was trained and evaluated using precision, recall, F1-score, and area under the curve (AUC). Results: Fisher’s exact test identified chronic pain (p = 0.0108) and tobacco use (p = 0.0026) as risk factors. RFECV selected 24 optimal features. The logistic regression model demonstrated strong performance (precision: 0.89, recall: 0.86, F1-score: 0.86, AUC: 1.0). Significant risk factors included tobacco use (OR: 3.64; CI: 3.60–3.68), primary PD (OR: 2.01; CI: 1.99–2.02), ASA score (OR: 1.91; CI: 1.90–1.92), chronic pain (OR: 1.82; CI: 1.80–1.85), and diabetes (OR: 1.63; CI: 1.62–1.65). Conclusions: Our study suggests that supervised machine learning can identify risk factors for early DBS explantation. Larger studies are needed to validate our findings. Full article
Show Figures

Figure 1

16 pages, 3493 KiB  
Article
Molecular Mechanisms of Aminoglycoside-Induced Ototoxicity in Murine Auditory Cells: Implications for Otoprotective Drug Development
by Cheng-Yu Hsieh, Jia-Ni Lin, Yi-Fan Chou, Chuan-Jen Hsu, Peir-Rong Chen, Yu-Hsuan Wen, Chen-Chi Wu and Chuan-Hung Sun
Int. J. Mol. Sci. 2025, 26(14), 6720; https://doi.org/10.3390/ijms26146720 - 13 Jul 2025
Viewed by 328
Abstract
Aminoglycoside antibiotics are critical in clinical use for treating severe infections, but they can occasionally cause irreversible sensorineural hearing loss. To establish a rational pathway for otoprotectant discovery, we provide an integrated, three-tier methodology—comprising cell-model selection, transcriptomic analysis, and a gentamicin–Texas Red (GTTR) [...] Read more.
Aminoglycoside antibiotics are critical in clinical use for treating severe infections, but they can occasionally cause irreversible sensorineural hearing loss. To establish a rational pathway for otoprotectant discovery, we provide an integrated, three-tier methodology—comprising cell-model selection, transcriptomic analysis, and a gentamicin–Texas Red (GTTR) uptake assay—to guide the development of otoprotective strategies. We first utilized two murine auditory cell lines—UB/OC-2 and HEI-OC1. We focused on TMC1 and OCT2 and further explored the underlying mechanisms of ototoxicity. UB/OC-2 exhibited a higher sensitivity to gentamicin, which correlated with elevated OCT2 expression confirmed via RT-PCR and Western blot. Transcriptomic analysis revealed upregulation of PI3K-Akt, calcium, and GPCR-related stress pathways in gentamicin-treated HEI-OC1 cells. Protein-level analysis further confirmed that gentamicin suppressed phosphorylated Akt while upregulating ER stress markers (GRP78, CHOP) and apoptotic proteins (cleaved caspase 3, PARP). Co-treatment with PI3K inhibitors (LY294002, wortmannin) further suppressed Akt phosphorylation, supporting the role of PI3K-Akt signaling in auditory cells. To visualize drug entry, we used GTTR to evaluate its applicability as a fluorescence-based uptake assay in these cell lines, which were previously employed mainly in cochlear explants. Sodium thiosulfate (STS) and N-acetylcysteine (NAC) significantly decreased GTTR uptake, suggesting a protective effect against gentamicin-induced hair cell damage. In conclusion, our findings showed a complex ototoxic cascade involving OCT2- and TMC1-mediated drug uptake, calcium imbalance, ER stress, and disruption of PI3K-Akt survival signaling. We believe that UB/OC-2 cells serve as a practical in vitro model for mechanistic investigations and screening of otoprotective compounds. Additionally, GTTR may be a simple, effective method for evaluating protective interventions in auditory cell lines. Overall, this study provides molecular-level insights into aminoglycoside-induced ototoxicity and introduces a platform for protective strategies. Full article
(This article belongs to the Special Issue Hearing Loss: Molecular Biological Insights)
Show Figures

Figure 1

17 pages, 8305 KiB  
Article
Characterization and Analysis of the Role of Corazonin in Regulating Ovarian Development in the Mud Crab Scylla paramamosain
by Shiying Yang, Liangjie Liu, Yiwei Tang, An Liu and Haihui Ye
Fishes 2025, 10(7), 329; https://doi.org/10.3390/fishes10070329 - 4 Jul 2025
Viewed by 279
Abstract
Corazonin (Crz) is widely found in insects and crustaceans. In insects, Crz participates in the regulation of various physiological activities, including heartbeat, body color change, molting, and reproduction. However, the physiological effects of Crz in crustaceans remain largely unclear. In this study, the [...] Read more.
Corazonin (Crz) is widely found in insects and crustaceans. In insects, Crz participates in the regulation of various physiological activities, including heartbeat, body color change, molting, and reproduction. However, the physiological effects of Crz in crustaceans remain largely unclear. In this study, the cDNAs encoding Crz and its putative receptor were isolated from the mud crab Scylla paramamosain. Tissue distribution analysis revealed that Sp-Crz was predominantly expressed in neural tissues, while its receptor (Sp-CrzR) was widely expressed in S. paramamosain, with a high expression level in the Y-organ. During ovarian development, Sp-Crz expression in the eyestalk ganglion was upregulated at the early and late vitellogenic stages, whereas its expression level in the cerebral ganglion displayed an initial downregulation at the early stage, followed by a remarkable upregulation at the late vitellogenic stage. The expression level of Sp-CrzR mRNA in the ovary increased significantly at the late vitellogenic stage. However, an opposite expression pattern was observed in the hepatopancreas and Y-organ. The immunohistochemistry result showed that Sp-Crz was distributed in the cells of the lamina ganglionaris, the medulla interna, and the X-organ of the eyestalk ganglion. It was revealed that the level of Sp-Vg in the hepatopancreas was not affected by the addition of Sp-Crz in vitro. However, the expression of Sp-VgR in ovarian explants was significantly induced by 6 h treatment with Sp-Crz at a concentration of 1 nM. In addition, the level of Sp-VgR in the ovary was significantly upregulated by 12 h injection of Sp-Crz. After long-term administration of Sp-Crz, the expression of Sp-VgR in the ovary, the E2 content in hemolymph, the oocyte diameter, and the gonadosomatic index of S. paramamosain were significantly increased. In summary, these findings collectively indicate that the Sp-Crz signaling system participates in regulating the ovarian development of the mud crab. This study provides a new insight into the biological function of Crz during the ovarian development of the mud crab, which is of great significance for the sustainable development and utilization of mud crab resources. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

14 pages, 6659 KiB  
Article
The Development of a Micropropagation System for a Rare Variety of an Agricultural and Medicinal Elderberry Plant Sambucus nigra ‘Albida’
by Jiří Sedlák, Martin Mészáros, Matěj Semerák and Pavel Pech
Agronomy 2025, 15(7), 1588; https://doi.org/10.3390/agronomy15071588 - 29 Jun 2025
Viewed by 296
Abstract
Black elder (Sambucus nigra L.) is a temperate shrub with flowers and fruits that are edible after processing. This species is not yet widely known in the global agricultural sector, but its adaptability and drought tolerance may generate more interest in this [...] Read more.
Black elder (Sambucus nigra L.) is a temperate shrub with flowers and fruits that are edible after processing. This species is not yet widely known in the global agricultural sector, but its adaptability and drought tolerance may generate more interest in this crop. Our study aimed to find suitable micropropagation techniques for the black elder ‘Albida’ and compare suitable statistical methods for evaluating multiplication and rooting. For micropropagation, we tested the Murashige and Skoog (MS) growth medium with selected auxins and cytokinins. Five proliferation MS media containing 1, 2, and 4 mg/L BAP or 0.5 and 1 mg/L TDZ were tested. To induce root formation, three types of auxins were tested at a concentration of 1 mg/L in a 50% MS medium: IBA, IAA, and NAA. Data analysis was performed using different parametric and nonparametric tests to robustly capture the effects of treatments across varying distributional scenarios in developing explants subjected to the interactions of internal native and externally added plant growth regulators. The average multiplication rate ranged from 1.6 to 2.0 shoots per explant. High multiplication was recorded on the MS medium with 1 mg/L 6-benzylaminopurine. The root number per rooted explant was highly variable, ranging from 3.0 to 12.0 roots per explant. The highest average root number result was observed when 1 mg/L α-naphthalenacetic acid was used. All rooted plants were successfully acclimated to normal growing conditions. This in vitro propagation protocol allows for the production of hundreds to thousands of rooted plants from one initial explant within one year, enabling faster introduction to the agronomic sector. Full article
Show Figures

Figure 1

19 pages, 2066 KiB  
Article
Resolvin D2 and Its Effects on the Intestinal Mucosa of Crohn’s Disease Patients: A Promising Immune Modulation Therapeutic Target
by Livia Bitencourt Pascoal, Bruno Lima Rodrigues, Guilherme Augusto da Silva Nogueira, Maria de Lourdes Setsuko Ayrizono, Priscilla de Sene Portel Oliveira, Licio Augusto Velloso and Raquel Franco Leal
Int. J. Mol. Sci. 2025, 26(13), 6003; https://doi.org/10.3390/ijms26136003 - 23 Jun 2025
Viewed by 384
Abstract
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract that severely impacts patients’ quality of life. Although current therapies have improved symptom management, they often fail to alter disease progression and are associated with immunosuppressive side effects. This study evaluated [...] Read more.
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract that severely impacts patients’ quality of life. Although current therapies have improved symptom management, they often fail to alter disease progression and are associated with immunosuppressive side effects. This study evaluated the immunomodulatory potential of resolvin D2 (RvD2), a pro-resolving lipid mediator, using a murine model of colitis and the ex vivo treatment of intestinal mucosal biopsies from CD patients, comparing its effects to those of conventional anti-TNFα therapy. To determine the optimal concentration of RvD2 for application in human tissue explant cultures, an initial in vitro assay was conducted using intestinal biopsies from mice with experimentally induced colitis. The explants were treated in vitro with varying concentrations of RvD2, and 0.1 μM emerged as an effective dose. This concentration significantly reduced the transcriptional levels of TNF-α (p = 0.004) and IL-6 (p = 0.026). Intestinal mucosal biopsies from fifteen patients with CD and seven control individuals were analyzed to validate RNA-sequencing data, which revealed dysregulation in the RvD2 biosynthetic and signaling pathways. The real-time PCR confirmed an increased expression of PLA2G7 (p = 0.02) and ALOX15 (p = 0.02), while the immunohistochemical analysis demonstrated the reduced expression of the RvD2 receptor GPR18 (p = 0.04) in intestinal tissues from CD patients. Subsequently, samples from eight patients with active Crohn’s disease, eight patients in remission, and six healthy controls were used for the serum analysis of RvD2 by ELISA, in vitro treatment of intestinal biopsies with RvD2 or anti-TNF, followed by transcriptional analysis, and a multiplex assay of the explant culture supernatants. The serum analysis demonstrated elevated RvD2 levels in CD patients both with active disease (p = 0.02) and in remission (p = 0.002) compared to healthy controls. The ex vivo treatment of intestinal biopsies with RvD2 decreased IL1β (p = 0.04) and TNFα (p = 0.02) transcriptional levels, comparable to anti-TNFα therapy. Additionally, multiplex cytokine profiling confirmed a reduction in pro-inflammatory cytokines, including IL-6 (p = 0.01), IL-21 (p = 0.04), and IL-22 (p = 0.009), in the supernatant of samples treated with RvD2. Altogether, these findings suggest that RvD2 promotes the resolution of inflammation in CD and supports its potential as a promising therapeutic strategy. Full article
(This article belongs to the Special Issue Inflammatory Bowel Disease: Molecular Insights—2nd Edition)
Show Figures

Figure 1

22 pages, 4630 KiB  
Article
In Vivo Comparative Study of Calcification in Diepoxy- and Glutaraldehyde-Treated Bovine Pericardial Conduits for RVOT Reconstruction
by Nataliya R. Nichay, Anna A. Dokuchaeva, Elena V. Kuznetsova, Irina Y. Zhuravleva, Yuriy Y. Kulyabin, Eugene V. Boyarkin, Oxana Y. Malakhova, Tatiana P. Timchenko, Yanina L. Rusakova and Alexander V. Bogachev-Prokophiev
Prosthesis 2025, 7(3), 67; https://doi.org/10.3390/prosthesis7030067 - 19 Jun 2025
Viewed by 371
Abstract
Background/Objectives: Bovine pericardial valve conduits (PVCs) are commonly used for right ventricular outflow tract reconstruction in both pediatric and adult patients. Calcification, particularly prevalent in children and young adults, is a leading cause of conduit failure and is affected by the chemical composition [...] Read more.
Background/Objectives: Bovine pericardial valve conduits (PVCs) are commonly used for right ventricular outflow tract reconstruction in both pediatric and adult patients. Calcification, particularly prevalent in children and young adults, is a leading cause of conduit failure and is affected by the chemical composition of the treated biomaterials. In this study, we aimed to compare the structural changes in diepoxy-treated (DE-PVCs) and glutaraldehyde-treated PVCs (GA-PVCs) and to identify factors contributing to tissue mineralization in a large animal model. Methods: Pulmonary artery replacement was performed in minipigs (33–88 kg) using twelve DE-PVCs and four GA-PVCs. After six months, the animals were euthanized, and the explanted PVCs underwent macroscopic and microscopic examination. Results: Large calcium deposits formed along conduit joining suture (CJS) lines in all PVCs, regardless of the cross-linking agent. Mineral clusters surrounded the multifilament braided thread, and its fibers were encrusted with hydroxyapatite crystals. In DE-PVCs, no mineralization occurred outside the suture lines, and they showed successful integration and graft vitalization with a uniform neointima and well-developed endothelial monolayer. GA-PVCs developed a rigid external capsule, foci of collagen fiber calcification within the walls, and neointimal hyperplasia with limited endothelial coverage. Conclusions: In PVCs, calcification predominantly occurs along the CJS lines, where the multifilament suture acts as a nucleation site for hydroxyapatite crystals. DE treatment prevents collagen mineralization, unlike GA, and offers better integration, reduced neointimal hyperplasia, and a well-developed endothelial layer. These findings suggest that DE-PVCs may be a superior option for pediatric cardiac surgery by reducing calcification and improving conduit durability. Overall, the results will help optimize PVC manufacturing strategies to lower the risk of conduit failure. Full article
(This article belongs to the Section Bioengineering and Biomaterials)
Show Figures

Figure 1

14 pages, 2221 KiB  
Article
Overexpression of Peony PoWOX1 Promotes Callus Induction and Root Development in Arabidopsis thaliana
by Xue Zhang, Tao Hu, Yanting Chang, Mengsi Xia, Yanjun Ma, Yayun Deng, Zehui Jiang and Wenbo Zhang
Plants 2025, 14(12), 1857; https://doi.org/10.3390/plants14121857 - 17 Jun 2025
Viewed by 538
Abstract
Plant-specific WUSCHEL (WUS)-related homeobox (WOX) family of transcription factors are involved in apical meristem maintenance, embryogenesis, lateral organ development, and hormone signaling. Among the members of this family, WOX1 is known to play essential roles in many species. However, the function of the [...] Read more.
Plant-specific WUSCHEL (WUS)-related homeobox (WOX) family of transcription factors are involved in apical meristem maintenance, embryogenesis, lateral organ development, and hormone signaling. Among the members of this family, WOX1 is known to play essential roles in many species. However, the function of the peony ‘Feng Dan’ (Paeonia ostii L.) WOX1 (PoWOX1) remains unknown. The initial bioinformatic analysis revealed that PoWOX1 belongs to the modern clade of the WOX gene family and has a highly conserved homeodomain (HD), the WUS motif, the STF-box, and the MAEWEST/WOX4-box. Subsequent heterologous overexpression in Arabidopsis thaliana revealed that PoWOX1 promotes root growth, early shoot initiation, and flowering. The root vascular tissues, especially the arrangement and size of xylem cells, were different between the PoWOX1-overexpressing transgenics and the wild-type plants, and the pericycle cells adjacent to the xylem divided more easily in the transgenics than in the wild type. Furthermore, under in vitro conditions, the transgenic leaf explants exhibited more callus induction and differentiation than the wild-type leaf explants. Thus, the study’s findings provide novel insights into the role of PoWOX1 in promoting root development and callus tissue induction and differentiation, serving as a reference for developing an efficient regeneration system for the peony. Full article
(This article belongs to the Special Issue Multifunctional Mediators in Plant Development and Stress Response)
Show Figures

Figure 1

14 pages, 4450 KiB  
Article
Somatostatin Receptor Scintigraphy in Autoimmune Syndrome Induced by Silicone Breast Implants: Pre- and Postexplantation Findings
by Luz Kelly Anzola, Sara Ramirez, Sergio Moreno, Camilo Vargas, Sebastian Rojas and José Nelson Rivera
J. Clin. Med. 2025, 14(12), 4141; https://doi.org/10.3390/jcm14124141 - 11 Jun 2025
Viewed by 409
Abstract
Background: Silicone breast implants have been linked to autoimmune/inflammatory syndrome induced by adjuvants (ASIA). This study evaluates the role of 99mTc-HYNIC-TOC somatostatin receptor scintigraphy in assessing somatostatin-mediated inflammation and the impact of explantation on inflammatory activity. Methods: Fifty patients with silicone breast [...] Read more.
Background: Silicone breast implants have been linked to autoimmune/inflammatory syndrome induced by adjuvants (ASIA). This study evaluates the role of 99mTc-HYNIC-TOC somatostatin receptor scintigraphy in assessing somatostatin-mediated inflammation and the impact of explantation on inflammatory activity. Methods: Fifty patients with silicone breast implants and symptoms suggestive of ASIA were evaluated. Pre- and postexplantation imaging was performed using 99mTc-HYNIC-TOC scintigraphy. Matthews correlation coefficients quantified associations between clinical symptoms and imaging findings, and autoantibody profiles were analysed. Results: Scintigraphy identified a significant uptake in organs associated with autoimmune symptoms, particularly joints and salivary glands. Strong correlations were found between imaging findings and symptoms, including knee pain (MCC = 0.81) and sicca syndrome (MCC = 0.96). Explantation resolved abnormal uptake in the surgical bed, though variable uptake persisted in other organs, reflecting systemic inflammatory heterogeneity. Autoantibody analysis revealed positivity in 66% of patients, with antinuclear antibodies being most frequent (30%). Conclusions: 99mTc-HYNIC-TOC scintigraphy effectively evaluates organ-specific inflammation in ASIA. Explantation reduces localized inflammation but does not consistently address systemic autoimmune responses. Larger prospective studies are needed to validate these findings and improve management strategies for ASIA. Full article
Show Figures

Figure 1

16 pages, 4557 KiB  
Article
A Fluid Dynamic In Vitro System to Study the Effect of Hyaluronic Acid Administration on Collagen Organization in Human Skin Explants
by Andrea Galvan, Maria Assunta Lacavalla, Federico Boschi, Barbara Cisterna, Edoardo Dalla Pozza, Enrico Vigato, Flavia Carton, Manuela Malatesta and Laura Calderan
Int. J. Mol. Sci. 2025, 26(11), 5397; https://doi.org/10.3390/ijms26115397 - 4 Jun 2025
Viewed by 541
Abstract
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of [...] Read more.
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of the ECM, in the regulation of tissue homeostasis, in the resistance to mechanical stimuli/forces, and in the modulation of tissue regeneration. For these reasons, HA is widely used in regenerative medicine and cosmetics. In this study we used an innovative fluid dynamic system to investigate the effects of a cross-linked macrostructural HA formulation on dermal collagen of healthy human skin explants. The good preservation of skin explants provided by the bioreactor allowed applying refined high-resolution microscopy techniques to analyze in situ the HA-induced modifications on the ECM collagen fibrils up to 48 h from the application on the skin surface. Results demonstrated that this HA formulation, commercially proposed for subcutaneous injection, may act on dermal ECM also when applied transcutaneously, improving ECM hydration and modifying the organization of the collagen fibrils. These findings, obtained by the original combination of explanted human skin use with an advanced culture system and multiscale imaging techniques, are consistent with the volumizing and anti-aging effect of HA. Full article
Show Figures

Figure 1

20 pages, 2074 KiB  
Article
Cannabidiol Mediates Beneficial Effects on the Microvasculature of Murine Hearts with Regard to Irradiation-Induced Inflammation and Early Signs of Fibrosis
by Lisa Bauer, Bayan Alkotub, Markus Ballmann, Khouloud Hachani, Mengyao Jin, Morteza Hasanzadeh Kafshgari, Gerhard Rammes, Alan Graham Pockley and Gabriele Multhoff
Radiation 2025, 5(2), 17; https://doi.org/10.3390/radiation5020017 - 21 May 2025
Viewed by 1250
Abstract
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a [...] Read more.
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a major driver of the development of RIHD, we investigated the potential of the anti-inflammatory agent cannabidiol (CBD) to attenuate irradiation-induced cardiovascular damage in vivo. Methods: Female C57BL/6 mice were given daily injections of CBD (i.p., 20 mg/kg body weight) for 4 weeks beginning either 2 weeks prior to 16 Gy irradiation of the heart or at the time of irradiation. Mice were sacrificed 30 min and 2, 4, and 10 weeks after irradiation to investigate the expression of inflammatory markers and stress proteins in primary cardiac endothelial cells (ECs). DNA double-strand breaks, immune cell infiltration, and signs of fibrosis were studied in explanted heart tissue. Results: We showed that the irradiation-induced upregulation of the inflammatory markers ICAM-1 and MCAM was only attenuated when treatment with CBD was started 2 weeks prior to irradiation but not when the CBD treatment was started concomitant with irradiation of the heart. The protective effect of CBD was associated with a decrease in irradiation-induced DNA damage and an increased expression of protective heat shock proteins (Hsp), such as Hsp32/Heme-oxygenase-1 (HO-1) and Hsp70, in the heart tissue. While the upregulation of the inflammatory markers ICAM-1 and MCAM, expression was prevented up to 10 weeks after irradiation by CBD pre-treatment, and the expression of VCAM-1, which started to increase 10 weeks after irradiation, was further upregulated in CBD pre-treated mice. Despite this finding, 10 weeks after heart irradiation, immune cell infiltration and fibrosis markers of the heart were significantly reduced in CBD pre-treated mice. Conclusion: CBD treatment before irradiation mediates beneficial effects on murine hearts of mice, resulting in a reduction of radiation-induced complications, such as vascular inflammation, immune cell infiltration, and fibrosis. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

16 pages, 2015 KiB  
Article
Somatic Embryogenesis and Genetic Transformation of Caragana intermedia
by Ju Tian, Jialei Zhu, Xiaohan Deng, Xu Zhu, Ruigang Wang and Guojing Li
Plants 2025, 14(10), 1545; https://doi.org/10.3390/plants14101545 - 21 May 2025
Viewed by 516
Abstract
Caragana intermedia is a perennial shrub species in the genus Caragana (Fabaceae), demonstrating remarkable stress resistance and adaptability. However, research on its somatic embryogenesis (SE) and genetic transformation techniques remains limited. In this study, we established an SE system by utilizing immature cotyledons [...] Read more.
Caragana intermedia is a perennial shrub species in the genus Caragana (Fabaceae), demonstrating remarkable stress resistance and adaptability. However, research on its somatic embryogenesis (SE) and genetic transformation techniques remains limited. In this study, we established an SE system by utilizing immature cotyledons isolated from young C. intermedia seeds. Our findings demonstrated that the immature cotyledons at 6–7 weeks after flowering (WAF) were the best explants for SE. The optimal embryo induction medium consisted of an MS basal medium supplemented with 5 mg/L α-naphthaleneacetic acid (NAA), 3 mg/L 6-benzylaminopurine (6-BA), 30 g/L sucrose, 7 g/L agar, and 500 mg/L hydrolyzed casein. Cotyledon-stage embryos germinated on a half-strength MS medium, exhibiting a 34.36% germination rate. Based on the SE system, we developed a preliminary genetic transformation system using the RUBY reporter gene, which successfully generated transgenic calli and cotyledon-stage embryos. The establishment of the SE system is expected to shorten breeding cycles, facilitate propagation of superior cultivars, and support large-scale industrial applications in C. intermedia. Furthermore, the stable transformation system provides a platform for molecular breeding and gene function verification. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 1445 KiB  
Article
Effects of Collagenase Preconditioning on Partially Incised Rat Tendon Treated with Light-Emitting Diodes and Platelet-Rich Plasma
by Jihad A. M. Alzyoud, Abd Al-Rahman Salem Al-Shudiefat, Heba A. Ali, Samya A. Omoush and Dalal A. O. Shuqair
Biomedicines 2025, 13(5), 1214; https://doi.org/10.3390/biomedicines13051214 - 16 May 2025
Viewed by 444
Abstract
Background: Tendinopathy is a challenging condition associated with high treatment costs, prolonged dysfunction, and lower quality of life. Current treatment strategies aim to accelerate healing by modulating the healing phases. Phototherapy and growth factor-based modalities have shown promising outcomes in promoting tendon healing. [...] Read more.
Background: Tendinopathy is a challenging condition associated with high treatment costs, prolonged dysfunction, and lower quality of life. Current treatment strategies aim to accelerate healing by modulating the healing phases. Phototherapy and growth factor-based modalities have shown promising outcomes in promoting tendon healing. A two-factor experimental design investigates the therapeutic efficacy of conditioning a partially tenotomized rat Achilles tendon model with low concentrations of collagenase, followed by platelet-rich plasma and/or light-emitting diode treatments. Methods: Forty-six adult male Wistar rats (284.8g ± 6.8) were randomly assigned to nine groups (G1 (n = 6), G2–G9; n = 5 per group) based on the treatment applied upon a partially incised rat’s hind-limb Achilles tendon model for three weeks. On day 21, blood samples were collected for hematological and biochemical analyses and tendon explants were harvested and subjected to histology. Results: Observational findings support the safety and validity of the model with insignificant weight gain. Hematological measures revealed no significant differences, except WBC, which was affected by phototherapy (p = 0.037). Blood biochemical measures of creatinine and AST levels were significantly affected by collagenase, while both treatments significantly influence CPK levels (p < 0.001). Histological scores revealed no significant main or interaction effect of both treatment modalities. Effect size estimates for biochemical variables were strong effects while hematological and histological variables demonstrated weak effects. Conclusions: Preconditioning a partially incised tendon with low collagenase and combined with PRP and/or LED therapy may offer therapeutic benefits by enhancing the remodeling phase of tendon repair. Study results validated the rat model, which could be a reliable model for future research to refine treatment as well as the investigational tools protocols. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

15 pages, 2090 KiB  
Article
Assessment of the Curative Anti-Glycation Properties of a Novel Injectable Formulation Combining Dual-Weight Hyaluronic Acid (Low- and Mid/High-Molecular Weight) with Trehalose on Human Skin Ex Vivo
by Robert Chmielewski, Agata Lebiedowska and Wioletta Barańska-Rybak
Int. J. Mol. Sci. 2025, 26(10), 4747; https://doi.org/10.3390/ijms26104747 - 15 May 2025
Viewed by 632
Abstract
Glycation influences skin aging through non-enzymatic reactions between reducing sugars and proteins, forming advanced glycation end-products (AGEs) that accelerate skin deterioration. This study evaluates the curative anti-glycation effects of an injectable formulation combining dual-molecular-weight hyaluronic acid (low and mid/high) with trehalose in methylglyoxal-induced [...] Read more.
Glycation influences skin aging through non-enzymatic reactions between reducing sugars and proteins, forming advanced glycation end-products (AGEs) that accelerate skin deterioration. This study evaluates the curative anti-glycation effects of an injectable formulation combining dual-molecular-weight hyaluronic acid (low and mid/high) with trehalose in methylglyoxal-induced glycation in human skin explants. Thirty-six human skin explants were allocated across five experimental groups in a 12-day study. Glycation was induced using methylglyoxal (500 μM) on days 1 and 4, followed by curative product administration on day 5. CML (Nε-(carboxymethyl)lysine) immunohistochemistry was performed to assess glycation levels in the reticular dermis at days 6, 8, and 12, with quantitative analysis conducted through standardized image analysis. The formulation significantly reduced CML formation by 60% on day 6 compared to untreated controls (p < 0.001). Under methylglyoxal-induced glycation stress the product showed sustained curative effects, with CML reductions of 69% on day 6 (p = 0.008), 68% on day 8 (p = 0.012), and 61% on day 12 (p = 0.033) compared to methylglyoxal treatment alone. Cell viability remained unaffected throughout the study period across all experimental conditions. The tested injectable formulation exhibits significant and sustained curative anti-glycation properties in human skin explants for 12 days, effectively counteracting methylglyoxal-induced glycation damage without affecting cell viability. These findings advance anti-aging skin interventions, offering a novel approach to address glycation-induced skin damage with potential applications in clinical dermatology and aesthetic medicine. Full article
(This article belongs to the Special Issue Molecular Mechanisms for Skin Protection and Aging)
Show Figures

Figure 1

Back to TopTop