Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (457)

Search Parameters:
Keywords = expected irradiance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2731 KB  
Article
Suitability of Polyacrylamide-Based Dosimetric Gel for Proton and Carbon Ion Beam Geometric Characterization
by Riccardo Brambilla, Luca Trombetta, Gabriele Magugliani, Stefania Russo, Alessia Bazani, Eleonora Rossi, Eros Mossini, Elena Macerata, Francesco Galluccio, Mario Mariani and Mario Ciocca
Gels 2025, 11(10), 794; https://doi.org/10.3390/gels11100794 - 2 Oct 2025
Abstract
Experimental measurement of dose distributions is a pivotal step in the quality assurance of radiotherapy treatments, especially for those relying on high delivery accuracy such as hadron therapy. This study investigated the response of a polymer gel dosimeter to determine its suitability in [...] Read more.
Experimental measurement of dose distributions is a pivotal step in the quality assurance of radiotherapy treatments, especially for those relying on high delivery accuracy such as hadron therapy. This study investigated the response of a polymer gel dosimeter to determine its suitability in performing geometric beam characterizations for hadron therapy under high-quenching conditions. Different extraction energies of proton and carbon ion beams were considered. Gel dose–response linearity and long-term stability were confirmed through optical measurements. Gel phantoms were irradiated with pencil beams and analyzed via magnetic resonance imaging. A multi-echo T2-weighted sequence was used to reconstruct depth–dose profiles and transversal distributions acquired by the gels, which were benchmarked against reference data. As expected, a response-quenching effect in the Bragg peak region was noted. Nonetheless, the studied gel formulation proved reliable in acquiring the geometric characteristics of the beams, even without correcting for the quenching effect. Indeed, depth–dose distributions acquired by the gels showed an excellent agreement with measured particle range with respect to reference values, with mean discrepancies of 0.5 ± 0.2 mm. Single-spot transverse FWHM values at increasing depths also presented an average agreement within 1 mm with values determined with radiochromic films, thus supporting the excellent spatial resolving capabilities of the dosimetric gel. Full article
(This article belongs to the Special Issue Application of Gel Dosimetry)
Show Figures

Figure 1

22 pages, 6698 KB  
Article
Photocatalytic Optimization of ATiO3 Codoped with Se/Zr: A DFT Study for Hydrogen Production
by Abdellah Bouzaid, Younes Ziat and Hamza Belkhanchi
Materials 2025, 18(18), 4389; https://doi.org/10.3390/ma18184389 - 19 Sep 2025
Viewed by 220
Abstract
Recent advances in energy conversion technologies, especially solar-driven photocatalytic water splitting, are vital for satisfying the increasing global need for sustainable and clean energy. Perovskite oxides have attracted considerable attention among photocatalytic materials due to their tunable electronic structures, exceptional stability, and promise [...] Read more.
Recent advances in energy conversion technologies, especially solar-driven photocatalytic water splitting, are vital for satisfying the increasing global need for sustainable and clean energy. Perovskite oxides have attracted considerable attention among photocatalytic materials due to their tunable electronic structures, exceptional stability, and promise for effective hydrogen generation and environmental remediation. In this study, the optoelectronic and photocatalytic (PC) characteristics of ATiO3 (A = Ca, Mg) perovskites, undoped and codoped with Se and Zr, have been analyzed using ab initio simulations based on the density functional theory (DFT). The calculated formation energies for codoped systems range from −1.01 to −3.32 Ry/atom, confirming their thermodynamic stability. Furthermore, band structure calculations indicate that the undoped compounds CaTiO3 and MgTiO3 possess indirect band gaps of 2.766 eV and 2.926 eV, respectively. In contrast, codoping alters the electronic properties by changing the band gap from indirect to direct and reducing its energy, resulting in the direct band gap values 2.153 eV, 1.374 eV, 2.159 eV, and 1.726 eV for the compounds Ca8Ti7Zr1O23Se1, Ca8Ti6Zr2O22Se2, Mg8Ti7Zr1O23Se1, and Mg8Ti6Zr2O22Se2, respectively. Additionally, this codoping improves light absorption and optical conductivity in the visible and ultraviolet ranges. These enhancements become increasingly evident with elevated dopant concentrations, leading to intensified light–matter interactions. Analysis of the band edge potentials reveals that the Se-/Zr-codoped CaTiO3 compounds satisfy the necessary criteria for the photodissociation of water, conferring on them an ability to generate H2 and O2 under light irradiation. However, under different pH conditions, Se-/Zr-codoped MgTiO3 is expected to perform better at higher pH levels, while Se-/Zr-codoped CaTiO3 is more effective at lower pH levels. These findings highlight the promise of codoped materials for renewable energy applications, such as solar-driven hydrogen production and optoelectronic devices, with pH being a critical factor in enhancing their photocatalytic performance. Full article
Show Figures

Figure 1

21 pages, 12217 KB  
Article
Low-Energy Nanoporous Silicon Processing Technology for Next-Generation Optoelectronic Devices
by Chao-Ching Chiang and Philip Nathaniel Immanuel
Coatings 2025, 15(9), 1090; https://doi.org/10.3390/coatings15091090 - 17 Sep 2025
Viewed by 337
Abstract
This study develops a low-energy, high-precision nanoporous silicon process technology combining electrochemical etching with multi-wavelength laser irradiation and ultrasonic vibration to precisely control the size, porosity, and distribution of the nanoporous silicon structure and examines its potential applications in next-generation optoelectronic devices. This [...] Read more.
This study develops a low-energy, high-precision nanoporous silicon process technology combining electrochemical etching with multi-wavelength laser irradiation and ultrasonic vibration to precisely control the size, porosity, and distribution of the nanoporous silicon structure and examines its potential applications in next-generation optoelectronic devices. This approach overcomes the challenges of poor pore uniformity and structural stability in conventional processes. The effects of different laser parameters, electrochemical conditions, and plasma bonding on the morphology are systematically analyzed. Additionally, the luminescence of the nanoporous silicon layer and its effectiveness in porous silicon diode devices were evaluated. Under 633 nm laser irradiation at 20 mW, the porosity reached 31.24%, exceeding that obtained with longer-wavelength lasers. The PS diode devices exhibited stable electroluminescence with a clear negative differential resistance (NDR) effect at 0~5.6 V. This technique is expected to significantly reduce energy consumption and simplify the manufacturing of silicon-based light-emitting devices. It also offers a scalable solution for next-generation silicon-based optoelectronic devices and advances the development of solid-state lighting and optoelectronics research. Full article
Show Figures

Graphical abstract

4 pages, 491 KB  
Abstract
Sub-Terahertz Wave Detection of Foreign Matter in Filling Containers
by Dai Otsuka and Tadao Tanabe
Proceedings 2025, 129(1), 23; https://doi.org/10.3390/proceedings2025129023 - 12 Sep 2025
Viewed by 141
Abstract
In recent years, electromagnetic waves (terahertz waves) with frequencies between 0.1 and 10 THz, which exist between radio waves and light waves, have attracted much attention. These electromagnetic waves have both the linearity of light waves and the transparency of radio waves and [...] Read more.
In recent years, electromagnetic waves (terahertz waves) with frequencies between 0.1 and 10 THz, which exist between radio waves and light waves, have attracted much attention. These electromagnetic waves have both the linearity of light waves and the transparency of radio waves and are expected to be applied to the field of human non-destructive testing. While it is known that terahertz waves can be used to detect foreign matter inside an object, we thought that by irradiating terahertz waves to the object to be measured from various directions, it would be possible to analyze the location and direction of contamination by comparing the scattering of the terahertz waves irradiated to the foreign matter. The samples were biomass resources in a jar with an opening of 53 mm and a diameter of 66.8 mm, and an aluminum plate 76 × 50 mm. When terahertz waves were irradiated from the side of the jar with the biomass resources in it, and the aluminum plate inserted, the transmission was higher when the metal plate was parallel to the light source and detector. This indicates that the transmission tendency of terahertz waves changes depending on the position and angle of the metal strip inside with respect to the direction of terahertz wave irradiation. This transmission tendency enables us to locate the position of a foreign object by irradiating terahertz waves from multiple directions, which is expected to be applied not only to the removal of foreign objects but also to various non-destructive inspections. Full article
Show Figures

Figure 1

17 pages, 2954 KB  
Article
System Optimization and Primary Electrical Design of 50 MW Agrivoltaic Power Station: A Case Study in China
by Ruhan Li, Shan Gu, Yuxin Ye, Zhi Li, Lingmin Zhou and Cunyi Xu
Eng 2025, 6(9), 211; https://doi.org/10.3390/eng6090211 - 1 Sep 2025
Viewed by 484
Abstract
Agrivoltaic technology holds great significance for promoting the collaborative development of new energy industries and modern agriculture. A systematic optimization design and preliminary electrical scheme for a 50 MW agrivoltaic power station in Shaanxi Province, China, were studied in this work. A combination [...] Read more.
Agrivoltaic technology holds great significance for promoting the collaborative development of new energy industries and modern agriculture. A systematic optimization design and preliminary electrical scheme for a 50 MW agrivoltaic power station in Shaanxi Province, China, were studied in this work. A combination of checkerboard and long-row layouts was adopted, considering the influence of the shading rate on agricultural production and photovoltaic power generation. The checkerboard pattern features the highest system efficiency, the smallest irradiance loss, and a slight lead in power generation, with a moderate shading rate, when compared to the other patterns. The expected energy gain from the bifacial modules’ rear side in this specific setup is 7.6%. These layouts ensure the power generation efficiency of the photovoltaic power station, while minimizing the shading impact of shading on crop growth, thereby achieving efficient comprehensive utilization of agricultural greenhouses and solar power generation. The primary electrical system was designed, including the main wiring design, main transformer selection, and type selection of major electrical equipment. The research results provide a practical reference for the large-scale application of agrivoltaic power stations, which is beneficial to promoting the high-quality development of modern agriculture. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

13 pages, 1824 KB  
Article
Reactive Oxygen Species Yield near Gold Nanoparticles Under Ultrahigh-Dose-Rate Electron Beams: A Monte Carlo Study
by Chloe Doen Kim and James C. L. Chow
Nanomaterials 2025, 15(17), 1303; https://doi.org/10.3390/nano15171303 - 23 Aug 2025
Viewed by 1190
Abstract
Ultrahigh dose rate (UHDR) radiotherapy, also known as FLASH radiotherapy (FLASH-RT), has shown potential for increasing tumor control while sparing normal tissue. In parallel, gold nanoparticles (GNPs) have been extensively explored as radiosensitizers due to their high atomic number and ability to enhance [...] Read more.
Ultrahigh dose rate (UHDR) radiotherapy, also known as FLASH radiotherapy (FLASH-RT), has shown potential for increasing tumor control while sparing normal tissue. In parallel, gold nanoparticles (GNPs) have been extensively explored as radiosensitizers due to their high atomic number and ability to enhance the generation of reactive oxygen species (ROS) through water radiolysis. In this study, we investigate the synergistic effects of UHDR electron beams and GNP-mediated radiosensitization using Monte Carlo (MC) simulations based on the Geant4-DNA code. A spherical water phantom with embedded GNPs of varying sizes (5–100 nm) was irradiated using pulsed electron beams (100 keV and 1 MeV) at dose rates of 60, 100, and 150 Gy/s. The chemical yield of ROS near the GNPs was quantified and compared to an equivalent water nanoparticle model, and the yield enhancement factor (YEF) was used to evaluate radiosensitization. Results demonstrated that YEF increased with smaller GNP sizes and at lower UHDR, particularly for 1 MeV electrons. A maximum YEF of 1.25 was observed at 30 nm from the GNP surface for 5 nm particles at 60 Gy/s. The elevated ROS concentration near GNPs under FLASH conditions is expected to intensify DNA damage, especially double-strand breaks, due to increased hydroxyl radical interactions within nanometric distances of critical biomolecular targets. These findings highlight the significance of nanoparticle size and beam parameters in optimizing ROS production for FLASH-RT. The results provide a computational basis for future experimental investigations into the combined use of GNPs and UHDR beams in nanoparticle-enhanced radiotherapy. Full article
Show Figures

Graphical abstract

19 pages, 4270 KB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley III and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Viewed by 803
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

8 pages, 543 KB  
Communication
Assessment of Tumor Relative Biological Effectiveness in Low-LET Proton Irradiation
by Ying-Chun Lin, Jiamin Mo and Yuan-Hao Lee
Biomedicines 2025, 13(8), 1823; https://doi.org/10.3390/biomedicines13081823 - 25 Jul 2025
Viewed by 420
Abstract
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative [...] Read more.
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative biological effectiveness) on many human cell lines, the incomplete cell killing due to low LET can result in tumor recurrence. Hence, this study aimed to assess the RBE on different cancer cell lines along low-LET proton SOBP. Methods: The clonogenicity of A549 and Panc-1 cells after irradiation was evaluated for investigating cell radiosensitivity in response to different types of radiation. The isoeffect doses of 6-MV photon and low-LET proton beams that resulted in equivalent cell surviving fractions at proton dose of 2 or 4 Gy were compared. Results: Ratios of α/β of A549 and Panc-1 cells from photon irradiation are 51.69 and −0.7747, respectively; RBE (2 Gy proton SOBP) on A549 and Panc-1 cells are 0.7403 ± 0.3324 and 1.0986 ± 0.3984, respectively. In addition, the change in RBE with proton LET was in a cell-specific and dose-dependent manner (LET-RBE linear correlations: A549 cells [r = 0.4673, p = 0.2430] vs. Panc-1 cells at 4 Gy [r = 0.7085, p = 0.0492]; Panc-1 cells at 2 Gy [r = −0.4123, p = 0.3100] vs. 4 Gy [r = 0.7085, p = 0.0492]). Conclusions: Compared with A549 cells, Panc-1 cells present greater resistance to low-LET proton beams. In addition, currently employed generic RBE value at 1.1 for proton therapy neglected the variation in cell-/tumor-specific radiobiological responses toward different dose levels of proton beams. Full article
(This article belongs to the Special Issue New Insights in Radiotherapy: Bridging Radiobiology and Oncology)
Show Figures

Figure 1

20 pages, 2263 KB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 363
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Graphical abstract

28 pages, 9146 KB  
Review
Nanoscale Porphyrin-Based Metal–Organic Frameworks for Enhanced Radiotherapy–Radiodynamic Therapy: A Comprehensive Review
by Bin Gong, Qiuyun Zhang, Yijie Qu, Xiaohua Zheng and Weiqi Wang
Pharmaceutics 2025, 17(7), 883; https://doi.org/10.3390/pharmaceutics17070883 - 4 Jul 2025
Cited by 1 | Viewed by 886
Abstract
The phototherapeutic applications of porphyrin-based nanoscale metal–organic frameworks (nMOFs) are limited by the poor penetration of conventional excitation light sources into biological tissues. Radiodynamic therapy (RDT), which directly excites photosensitizers using X-rays, can overcome the issue of tissue penetration. However, RDT faces the [...] Read more.
The phototherapeutic applications of porphyrin-based nanoscale metal–organic frameworks (nMOFs) are limited by the poor penetration of conventional excitation light sources into biological tissues. Radiodynamic therapy (RDT), which directly excites photosensitizers using X-rays, can overcome the issue of tissue penetration. However, RDT faces the problems of low energy conversion efficiency, requiring a relatively high radiation dose, and the potential to cause damage to normal tissues. Researchers have found that by using some metals with high atomic numbers (high Z) as X-ray scintillators and coordinating them with porphyrin photosensitizers to form MOF materials, the excellent antitumor effect of radiotherapy (RT) and RDT can be achieved under low-dose X-ray irradiation, which can not only effectively avoid the penetration limitations of light excitation methods but also eliminate the defect issues associated with directly using X-rays to excite photosensitizers. This review summarizes the relevant research work in recent years, in which researchers have used metal ions with high Z, such as Hf4+, Th4+, Ta5+, and Bi3+, in coordination with carboxyl porphyrins to form MOF materials for combined RT and RDT toward various cancer cells. This review compares the therapeutic effects and advantages of using different high-Z metals and introduces the application of the heavy atom effect. Furthermore, it explores the introduction of a chemodynamic therapy (CDT) mechanism through iron coordination at the porphyrin center, along with optimization strategies such as oxygen delivery using hemoglobin to enhance the efficacy of these MOFs as radiosensitizers. This review also summarizes the potential of these materials in preclinical applications and highlights the current challenges they face. It is expected that the summary and prospects outlined in this review can further promote preclinical biomedical research into and the development of porphyrin-based nMOFs. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

33 pages, 5307 KB  
Article
SiPM Developments for the Time-Of-Propagation Detector of the Belle II Experiment
by Flavio Dal Corso, Jakub Kandra, Roberto Stroili and Ezio Torassa
Sensors 2025, 25(13), 4018; https://doi.org/10.3390/s25134018 - 27 Jun 2025
Viewed by 412
Abstract
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 [...] Read more.
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 modules, each module contains a finely fused silica bar, coupled to microchannel plate photomultiplier tube (MCP-PMT) photo-detectors and readout by high-speed electronics. The MCP-PMT lifetime at the nominal collider luminosity is about one year, this is due to the high photon background degrading the quantum efficiency of the photocathode. An alternative to these MCP-PMTs is multi-pixel photon counters (MPPC), known as silicon photomultipliers (SiPM). The SiPMs, in comparison to MCP-PMTs, have a lower cost, higher photon detection efficiency and are unaffected by the presence of a magnetic field, but also have a higher dark count rate that rapidly increases with the integrated neutron flux. The dark count rate can be mitigated by annealing the damaged devices and/or operating them at low temperatures. We tested SiPMs, with different dimensions and pixel sizes from different producers, to study their time resolution (the main constraint that has to satisfy the photon detector) and to understand their behavior and tolerance to radiation. For these studies we irradiated the devices to radiation up to 5×10111 MeV neutrons equivalent (neq) per cm2 fluences; we also started studying the effect of annealing on dark count rates. We performed several measurements on these devices, on top of the dark count rate, at different conditions in terms of overvoltage and temperatures. These measurements are: IV-curves, amplitude spectra, time resolution. For the last two measurements we illuminated the devices with a picosecond pulsed laser at very low intensities (with a number of detected photons up to about twenty). We present results mainly on two types of SiPMs. A new SiPM prototype developed in collaboration with FBK with the aim of improving radiation hardness, is expected to be delivered in September 2025. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

11 pages, 5144 KB  
Article
UV-Assisted Charge Neutralization for Reliable XPS Measurements on Insulating Materials
by Lei Zhu and Xuefeng Xu
Materials 2025, 18(13), 3051; https://doi.org/10.3390/ma18133051 - 27 Jun 2025
Viewed by 420
Abstract
When analyzing insulator surfaces using X-ray photoelectron spectroscopy (XPS), spectral shifts and deformations often arise due to surface charging. Although neutralization techniques have been widely adopted to achieve reliable XPS measurements, their effectiveness remains limited, highlighting the need for innovative neutralization strategies. Here, [...] Read more.
When analyzing insulator surfaces using X-ray photoelectron spectroscopy (XPS), spectral shifts and deformations often arise due to surface charging. Although neutralization techniques have been widely adopted to achieve reliable XPS measurements, their effectiveness remains limited, highlighting the need for innovative neutralization strategies. Here, ultraviolet (UV) light irradiation was introduced into XPS measurements. Although it was still impossible to perfectly eliminate the charging effect, stable XPS spectra with reduced and consistent spectral shifts, as well as minimal deformation and broadening, were successfully obtained. Our findings demonstrate that UV light irradiation not only significantly mitigates the intensity of surface charging but also markedly enhances both its temporal stability and spatial uniformity during XPS measurements. Further investigation reveals that the suppression of charging is primarily attributed to the adsorption of UV-excited photoelectrons onto the X-ray-irradiated region. This innovative neutralization method, termed UV-assisted neutralization in this article, was found to be at least as effective as and even superior in maintaining sample integrity to the most commonly used dual-beam charge neutralization, and therefore is expected to become a promising alternative for addressing the charging issues in XPS measurements. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

14 pages, 2842 KB  
Article
Enhancing the Removal Efficiency of Rhodamine B by Loading Pd onto In2O3/BiVO4 Under Visible Light Irradiation
by Yuanchen Zhu, Shivam Parekh, Shiqian Li, Xiangchao Meng and Zisheng Zhang
Processes 2025, 13(7), 1983; https://doi.org/10.3390/pr13071983 - 23 Jun 2025
Viewed by 586
Abstract
A simple method for synthesizing novel Pd-In2O3/BiVO4 composites by using a hydrothermal technique is proposed. The synthesized samples showed a monoclinic phase and featured homogeneously dispersed Pd and BiVO4 dopants on In2O3, as [...] Read more.
A simple method for synthesizing novel Pd-In2O3/BiVO4 composites by using a hydrothermal technique is proposed. The synthesized samples showed a monoclinic phase and featured homogeneously dispersed Pd and BiVO4 dopants on In2O3, as confirmed by XRD, SEM, and XPS analyses. The Pd-In2O3/BiVO4 composite exhibited notable improvements, such as broadened visible-light absorption (up to 596.1 nm) and a narrowed band gap (2.08 eV vs. 2.82 eV for pure In2O3), a more compact and integrated morphology observed by SEM, which are expected to promote improved light harvesting and facilitate charge separation during photocatalysis. Under visible-light irradiation, the optimized 1 wt% Pd-In2O3/BiVO4 achieved 99% degradation of Rhodamine B (10 mg/L) within 40 min, while pure In2O3 showed less than 10% removal after 60 min—highlighting the strong synergistic effect of dual doping. Additionally, the composite demonstrated excellent stability and reusability over multiple cycles. A plausible photocatalytic mechanism for this process is proposed, providing insights into the design of efficient photocatalysts for wastewater treatment. Full article
Show Figures

Figure 1

28 pages, 9836 KB  
Article
Cascaded H-Bridge Multilevel Converter Topology for a PV Connected to a Medium-Voltage Grid
by Hammad Alnuman, Essam Hussain, Mokhtar Aly, Emad M. Ahmed and Ahmed Alshahir
Machines 2025, 13(7), 540; https://doi.org/10.3390/machines13070540 - 21 Jun 2025
Viewed by 838
Abstract
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work [...] Read more.
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work at high voltage compared to other converter types, making them ideal for applications connected to medium-voltage grids whilst being compliant with grid codes and voltage ratings. Cascaded H-bridge multilevel converters (CHBs-MLC) are a type of MLC topology, and they does not need any capacitors or diodes for clamping like other MLC topologies. One of the problems in these types of converters involves the double-frequency harmonics in the DC linking voltage and power, which can increase the size of the capacitors and converters. The use of line frequency transformers for isolation is another factor that increases the system’s size. This paper proposes an isolated CHBs-MLC topology that effectively overcomes double-line frequency harmonics and offers isolation. In the proposed topology, each DC source (renewable energy source) supplies a three-phase load rather than a single-phase load that is seen in conventional MLCs. This is achieved by employing a multi-winding high-frequency transformer (HFT). The primary winding consists of a winding connected to the DC sources. The secondary windings consist of three windings, each supplying one phase of the load. This configuration reduces the DC voltage link ripples, thus improving the power quality. Photovoltaic (PV) renewable energy sources are considered as the DC sources. A case study of a 1.0 MW and 13.8 kV photovoltaic (PV) system is presented, considering two scenarios: variations in solar irradiation and 25% partial panel shedding. The simulations and design results show the benefits of the proposed topology, including a seven-fold reduction in capacitor volume, a 2.7-fold reduction in transformer core volume, a 50% decrease in the current THD, and a 30% reduction in the voltage THD compared to conventional MLCs. The main challenge of the proposed topology is the use of more switches compared to conventional MLCs. However, with advancing technology, the cost is expected to decrease over time. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

21 pages, 2175 KB  
Article
Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation
by Ana Marcos-Castro, Carlos Sanz-Saiz, Jesús Polo and Nuria Martín-Chivelet
Appl. Sci. 2025, 15(12), 6579; https://doi.org/10.3390/app15126579 - 11 Jun 2025
Viewed by 1265
Abstract
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical [...] Read more.
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical output according to the installed power and the solar irradiation, thus accounting for the power losses the PV system undergoes. Among the different parameters affecting PR, module temperature and the angle of incidence of irradiance are the most dependent on the BIPV application due to the varied module positioning. This paper assesses the suitability of several BIPV temperature models and determines the angular losses for any possible module positioning. The proposed methodology is easy to replicate and results in polar heatmap graphs to estimate PR at the desired location as a function of the tilt and azimuth angles of the modules. The calculations require irradiance, ambient temperature, and wind speed data, which can easily be obtained worldwide. Dynamic sky conditions are addressed through filters that smooth out quickly changing input data to avoid high and low peaks. The developed graphs are helpful in the decision-making process for BIPV designs by allowing the designer to estimate the expected PR of the BIPV system for any possible position of the modules on the building envelope, reducing the effect of uncertainties and resulting in more accurate and better predictions of the system’s output energy. The method applied to a BIPV façade in Madrid showed a deviation of less than 3% between the estimated and monitored PRs; the PR values ranged between 0.74 and 0.82, depending on the BIPV application and module position. Full article
(This article belongs to the Special Issue Advances in the Energy Efficiency and Thermal Comfort of Buildings)
Show Figures

Graphical abstract

Back to TopTop