Photocatalytic Optimization of ATiO3 Codoped with Se/Zr: A DFT Study for Hydrogen Production
Abstract
1. Introduction
2. Computational Methodology
3. Results and Discussions
3.1. Structural Properties
- -
- Individual codoping: initially, Zr and Se were each introduced separately into the structure;
- -
- Simultaneous codoping: the supercell was then simultaneously codoped with two Se and two Zr atoms to examine their combined effects on the structure and electronic characteristics.
3.2. Formation Energy (Ef)
3.3. Electronic Properties
3.4. Optical Properties
3.5. Energy Bands and Water Fractionation
- -
- Mechanism of water fractionation
- -
- Water oxidation reaction:
- -
- Reduction of protons to hydrogen:
- -
- Global water splitting reaction:
3.6. Influence of pH on Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koufi, A.; Ziat, Y.; Belkhanchi, H.; Miri, M.; Lakouari, N.; Baghli, F.Z. A computational study of the structural and thermal conduct of MgCrH3 and MgFeH3 perovskite-type hydrides: FP-LAPW and BoltzTraP insight. E3S Web of Conferences. EDP Sci. 2024, 582, 02003. [Google Scholar] [CrossRef]
- Raihan, A.; Rahman, J.; Tanchangtya, T.; Ridwan, M.; Islam, S. An overview of the recent development and prospects of renewable energy in Italy. Renew. Sustain. Energy 2024, 2, 0008. [Google Scholar] [CrossRef]
- Laghlimi, C.; Moutcine, A.; Ziat, Y.; Belkhanchi, H.; Koufi, A.; Bouyassan, S. Hydrogen, Chronology and Electrochemical Production. Sol. Energy Sustain. Dev. 2024, 14(SI_MSMS2E), 22–37. [Google Scholar] [CrossRef]
- Adanma, U.M.; Ogunbiyi, E.O. Assessing the economic and environmental impacts of renewable energy adoption across different global regions. Eng. Sci. Technol. J. 2024, 5, 1767–1793. [Google Scholar] [CrossRef]
- Bentour, H.; El Yadari, M.; El Kenz, A.; Benyoussef, A. DFT study of electronic and optical properties of (S–Mn) co-doped SrTiO3 for enhanced photocatalytic hydrogen production. Solid State Commun. 2020, 312, 113893. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Sapkota, K.P.; Lee, I.; Shrestha, S.; Islam, A.; Hanif, A.; Akter, J.; Hahn, J.R. Coherent CuO-ZnO nanobullets maneuvered for photocatalytic hydrogen generation and degradation, of a persistent water pollutant under visible-light illumination. J. Environ. Chem. Eng. 2021, 9, 106497. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Luo, W.; Wang, J.; Zhang, M.; Zhu, Y. Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. J. Photochem. Photobiol. C Photochem. Rev. 2016, 28, 87–115. [Google Scholar] [CrossRef]
- Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768–10777. [Google Scholar] [CrossRef]
- Mezzat, F.; Zaari, H.; El Kenz, A.; Benyoussef, A. Effect of metal and non metal doping of TiO2 on photocatalytic activities: Ab initio calculations. Opt. Quantum Electron. 2021, 53, 86. [Google Scholar] [CrossRef]
- Orangi, N.; Farrokhpour, H. Mono-doped (X= S2−, Se2−, and Te2−) and co-doped (Zr4+-X) TiO2 monolayer nanosheet for water splitting: DFT modeling. J. Iran. Chem. Soc. 2024, 21, 2643–2657. [Google Scholar] [CrossRef]
- Gurkan, Y.Y.; Kasapbasi, E.; Turkten, N.; Cinar, Z. Influence of Se/N codoping on the structural, optical, electronic and photocatalytic properties of TiO2. Molecules 2017, 22, 414. [Google Scholar] [CrossRef]
- Koufi, A.; Ziat, Y.; Belkhanchi, H. Study of the Gravimetric, Electronic and Thermoelectric Properties of XAlH3 (X = Be, Na, K) as hydrogen storage perovskite using DFT and the BoltzTrap Software Package. Sol. Energy Sustain. Dev. 2024, 14(SI_MSMS2E), 53–66. [Google Scholar] [CrossRef]
- Bhalla, A.S.; Guo, R.; Roy, R. The perovskite structure—A review of its role in ceramic science and technology. Mater. Res. Innov. 2000, 4, 3–26. [Google Scholar] [CrossRef]
- Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, E. Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review. Appl. Catal. B Environ. 2016, 186, 97–126. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Liang, J.; Luo, Y.; Chen, G.; Shi, X.; Sun, X. A-site perovskite oxides: An emerging functional material for electrocatalysis and photocatalysis. J. Mater. Chem. A 2021, 9, 6650–6670. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Do, H.H.; Van Nguyen, T.; Singh, P.; Raizada, P.; Sharma, A.; Sana, S.S.; Grace, A.N.; Shokouhimehr, N.; Ahn, S.H.; et al. Perovskite oxide-based photocatalysts for solar-driven hydrogen production: Progress and perspectives. Sol. Energy 2020, 211, 584–599. [Google Scholar] [CrossRef]
- Thinley, T.; Dominic, A.; Divya, V.; Anilkumar, K.M.; Shivaraju, H.P. Titanium-based perovskite and its interfaces for photocatalytic attributed water splitting-hydrogen evaluation applications. Nano-Struct. Nano-Objects 2023, 35, 101022. [Google Scholar] [CrossRef]
- Lu, L.; Ni, S.; Liu, G.; Xu, X. Structural dependence of photocatalytic hydrogen production over La/Cr co-doped perovskite compound ATiO3 (A= Ca, Sr and Ba). Int. J. Hydrogen Energy 2017, 42, 23539–23547. [Google Scholar]
- Xie, P.; Yang, F.; Li, R.; Ai, C.; Lin, C.; Lin, S. Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis. Int. J. Hydrogen Energy 2019, 44, 11695–11704. [Google Scholar] [CrossRef]
- Salem, F.Z.; Ahmed, M.A.; Sadek, M.A.; Elmahgary, M.G. Novel hydrogen-doped SrSnO3 perovskite with excellent optoelectronic properties as a potential photocatalyst for water splitting. Int. J. Hydrogen Energy 2022, 47, 18321–18333. [Google Scholar] [CrossRef]
- Zou, J.P.; Zhang, L.Z.; Luo, S.L.; Leng, L.H.; Luo, X.B.; Zhang, M.J.; Luo, Y.; Guo, G.C. Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water, without cocatalysts loading. Int. J. Hydrogen Energy 2012, 37, 17068–17077. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Fo, Y.; Lyu, Y.; Zhou, X. Theoretical insights into the origin of highly efficient photocatalyst NiO/NaTaO3 for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 19357–19369. [Google Scholar] [CrossRef]
- Jawad, M.A.; Gillani, S.S.A. A DFT investigation of Li substitution in CsCaY3 (YF, Cl, Br) having admirable optoelectronic characteristics as a viable candidate for photocatalytic water splitting. Int. J. Hydrogen Energy 2024, 87, 848–866. [Google Scholar] [CrossRef]
- Bouzaid, A.; Ziat, Y.; Belkhanchi, H. Photovoltaic potential of doped MgTiO3 (F, Br, I): Prediction of optoelectronic and catalytic within ab initio approach. J. Phys. Chem. Solids 2025, 201, 112648. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627. [Google Scholar] [CrossRef]
- Saddique, Z.; Imran, M.; Javaid, A.; Kanwal, F.; Latif, S.; dos Santos, J.C.S.; Boczkaj, G. Bismuth-based nanomaterials-assisted photocatalytic water splitting for sustainable hydrogen production. Int. J. Hydrogen Energy 2024, 52, 594–611. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Ueda, K.; Orita, M.; Moon, S.C.; Kajihara, K.; Hirano, M.; Hosono, H. Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation. Mater. Res. Bull. 2002, 37, 2401–2406. [Google Scholar] [CrossRef]
- Oliveira, L.H.; Savioli, J.; de Moura, A.P.; Nogueira, I.C.; Li, M.S.; Longo, E.; Varela, J.A.; Rosa, I.L. Investigation of structural and optical properties of CaTiO3 powders doped with Mg2+ and Eu3+ ions. J. Alloys Compd. 2015, 647, 265–275. [Google Scholar] [CrossRef]
- Ferri, E.A.V.; Sczancoski, J.C.; Cavalcante, L.S.; Paris, E.C.; Espinosa, J.W.M.; De Figueiredo, A.T.; Pizani, P.S.; Mastelaro, V.R.; Varela, J.A.; Longo, E. Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting. Mater. Chem. Phys. 2009, 117, 192–198. [Google Scholar] [CrossRef]
- De Haart, L.G.J.; De Vries, A.J.; Blasse, G. Photoelectrochemical properties of MgTiO3 and other titanates with the ilmenite structure. Mater. Res. Bull. 1984, 19, 817–824. [Google Scholar] [CrossRef]
- Lozano-Sánchez, L.M.; Méndez-Medrano, M.G.; Colbeau-Justin, C.; Rodríguez-López, J.L.; Hernández-Uresti, D.B.; Obregón, S. Long-lived photoinduced charge-carriers in Er3+ doped CaTiO3 for photocatalytic H2, production under UV irradiation. Catal. Commun. 2016, 84, 36–39. [Google Scholar] [CrossRef]
- Bouzaid, A.; Ziat, Y.; Belkhanchi, H. Prediction the effect of (S, Se, Te) doped MgTiO3 on optoelectronic, catalytic, and pH conduct as promised candidate photovoltaic device: Ab initio framework. Int. J. Hydrogen Energy 2025, 100, 20–32. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Jia, Y.; Yan, W.; Li, Q.; Zhou, J.; Wu, K. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study. Molecules 2023, 28, 7134. [Google Scholar] [CrossRef]
- Attou, L.; Al-Shami, A.; Boujemaâ, J.; Mounkachi, O.; Ez-Zahraouy, H. Predicting the structural, optoelectronic, dynamical stability and transport properties of Boron-doped CaTiO3: DFT based study. Phys. Scr. 2022, 97, 115808. [Google Scholar] [CrossRef]
- Zulfiqar, W.; Alay-e-Abbas, S.M. Improved thermodynamic stability and visible light absorption in Zr+ X codoped (X= S, Se and Te) BaTiO3 photocatalysts: A first-principles study. Mater. Today Commun. 2022, 32, 103867. [Google Scholar] [CrossRef]
- Hasan, M.; Hossain, A.A. Structural, electronic and optical properties of strontium and nickel co-doped BaTiO3: A DFT based study. Comput. Condens. Matter 2021, 28, e00578. [Google Scholar] [CrossRef]
- Zulfiqar, W.; Javed, F.; Abbas, G.; Larsson, J.A.; Alay-e-Abbas, S.M. Stabilizing the dopability of chalcogens in BaZrO3 through TiZr co-doping and its impact on the opto-electronic and photocatalytic properties: A meta-GGA level DFT study. Int. J. Hydrogen Energy 2024, 58, 409–415. [Google Scholar] [CrossRef]
- El Badraoui, A.; Dahbi, S.; Tahiri, N.; El Bounagui, O.; Ez-Zahraouy, H. A DFT study of electronic structure and optical properties of the pure, doped and co-doped CaZrO3 perovskite for photovoltaic applications. J. Korean Ceram. Soc. 2023, 60, 712–718. [Google Scholar] [CrossRef]
- Ait Brahim, I.; Bekkioui, N.; Tahiri, M.; Ez-Zahraouy, H. Doping effect of chalcogens on electronic and optical properties of perovskite LiNbO3 compound: Ab initio calculations. Chem. Phys. 2021, 550, 111320. [Google Scholar] [CrossRef]
- Liu, Y.L.; Yang, C.L.; Wang, M.S.; Ma, X.G.; Yi, Y.G. Te-doped perovskite NaTaO3 as a promising photocatalytic material for hydrogen production from water splitting driven by visible light. Mater. Res. Bull. 2018, 107, 125–131. [Google Scholar] [CrossRef]
- Li, H.; Shi, X.; Liu, X.; Li, X. Synthesis of novel, visible-light driven S, N-doped NaTaO3 catalysts with high photocatalytic activity. Appl. Surf. Sci. 2020, 508, 145306. [Google Scholar] [CrossRef]
- Lamhani, M.; Chchiyai, Z.; Elomrani, A.; Manoun, B.; Hasnaoui, A. Enhanced photocatalytic water splitting of SrTiO3 perovskite through cobalt doping: Experimental and theoretical DFT understanding. Inorg. Chem. 2023, 62, 13405–13418. [Google Scholar] [CrossRef]
- Tareq, S.; Almayyali, A.O.M.; Jappor, H.R. Prediction of two-dimensional AlBrSe monolayer as a highly efficient photocatalytic for water splitting. Surf. Interfaces 2022, 31, 102020. [Google Scholar] [CrossRef]
- Cohaila, A.B.Q.; Sacari, E.J.S.; Ramos, W.O.L.; Loza, H.B.C.; Calderón, R.M.T.; Salas, J.P.M.; Gómez, F.G.; Viswanathan, M.R.; Rajendran, S. Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO3/TiO2 Composite. Energies 2024, 17, 5830. [Google Scholar] [CrossRef]
- Das, T.K.; Ganguly, S.; Ghosh, S.; Remanan, S.; Ghosh, S.K.; Das, N.C. In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants. Colloid Interface Sci. Commun. 2019, 33, 100218. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar]
- Blaha, P.; Schwarz, K.; Madsen, G.K.; Kvasnicka, D.; Luitz, J. Wien2k. An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties; Vienna University Technology: Vienna, Austria, 2001; Volume 60. [Google Scholar]
- Kohn, W.; Sham, L. Density functional theory. In Conference Proceedings-Italian Physical Society. Ed. Compos. 1996, 49, 561–572. [Google Scholar]
- Madsen, G.K.; Blaha, P.; Schwarz, K.; Sjöstedt, E.; Nordström, L. Efficient linearization of the augmented plane-wave method. Phys. Rev. B 2001, 64, 195134. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Koller, D.; Tran, F.; Blaha, P. Improving the modified Becke-Johnson exchange potential. Phys. Rev. B—Condens. Matter Mater. Phys. 2012, 85, 155109. [Google Scholar] [CrossRef]
- Adewale, A.A.; Chik, A.; Adam, T.; Yusuff, O.K.; Ayinde, S.A.; Sanusi, Y.K. First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO3 (A= Be, Mg, Ca, Sr and Ba) perovskite oxide. Comput. Condens. Matter 2021, 28, e00562. [Google Scholar] [CrossRef]
- Nazir, S.; Mahmood, I.; Noor, N.A.; Laref, A.; Sajjad, M. Ab-initio simulations of MgTiO3 oxide at different pressure. High Energy Density Phys. 2019, 33, 100715. [Google Scholar] [CrossRef]
- Ali, R.; Yashima, M. Space group and crystal structure of the perovskite CaTiO3 from 296 to 1720 K. J. Solid State Chem. 2005, 178, 2867–2872. [Google Scholar] [CrossRef]
- Kennedy, B.J.; Howard, C.J.; Chakoumakos, B.C. Phase transitions in perovskite at elevated temperatures-a powder neutron diffraction study. J. Phys. Condens. Matter 1999, 11, 1479. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Mott, P.H.; Dorgan, J.R.; Roland, C.M. The bulk modulus and Poisson’s ratio of “incompressible” materials. J. Sound Vib. 2008, 312, 572–575. [Google Scholar] [CrossRef]
- Mahmood, Q.; Yaseen, M.; Haq, B.U.; Laref, A.; Nazir, A. The study of mechanical and thermoelectric behavior of MgXO3 (X= Si, Ge, Sn) for energy applications by DFT. Chem. Phys. 2019, 524, 106–112. [Google Scholar] [CrossRef]
- Fatihi, H.; Agouri, M.; Ouhenou, H.; Benaali, H.; Zaghrane, A.; Abbassi, A.; El Idrissi, M.; Taj, S. Enhancing Solar Cell Efficiency: A Comparative Study of Lead-Free Double Halide Perovskites, Rb2 CuAsBr6 and Rb2 TlAsBr6 using DFT and SLME Methods. J. Inorg. Organomet. Polym. Mater. 2024, 35, 964–977. [Google Scholar]
- Bouzaid, A.; Ziat, Y.; Belkhanchi, H.; Hamdani, H.; Koufi, A.; Miri, M.; Zarhri, Z.; Manaut, B. Ab initio study of the structural, electronic, and optical properties of MgTiO3 perovskite materials doped with N and P. E3S Web of Conferences. EDP Sci. 2024, 582, 02006. [Google Scholar] [CrossRef]
- Mezzat, F.; Zaari, H.; El Kenz, A.; Benyoussef, A. Enhanced visible light photocatalytic activity of KTaO3 (Se, V): DFT investigation. Comput. Condens. Matter 2022, 30, e00648. [Google Scholar] [CrossRef]
- Resheed, U.; Alsuwian, T.; Imran, M.; Algadi, H.; Khera, E.A.; Khalil, R.A.; Mahata, C.; Hussain, F. Density functional theory insight into metal ions and vacancies for improved performance in storage devices. Int. J. Energy Res. 2021, 45, 10882–10894. [Google Scholar] [CrossRef]
- Zarhri, Z.; Cano, A.D.; Oubram, O.; Ziat, Y.; Bassam, A. Optical measurements and Burstein Moss effect in optical properties of Nb-doped BaSnO3 perovskite. Micro Nanostructures 2022, 166, 207223. [Google Scholar] [CrossRef]
- Mouhib, B.; Dahbi, S.; Douayar, A.; Tahiri, N.; El Bounagui, O.; Ez-Zahraouy, H. Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A= Ca, Ba, and Sr) materials for, eco-friendly solar cells. Micro Nanostructures 2022, 163, 107124. [Google Scholar] [CrossRef]
- Wang, L.; Yang, G.; Peng, S.; Wang, J.; Ji, D.; Yan, W.; Ramakrishna, S. Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. Int. J. Hydrogen Energy 2017, 42, 25882–25890. [Google Scholar]
- Balachandran, U.; Odekirk, B.; Eror, N.G. Electrical conductivity in calcium titanate. J. Solid State Chem. 1982, 41, 185–194. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, Y.; Jing, Y.; Yao, Y.; Ma, J.; Sun, J. Effect of non-metal elements (B, C, N, F, P, S) mono-doping as anions on electronic structure of SrTiO3. Comput. Mater. Sci. 2013, 79, 69–74. [Google Scholar]
- Kuzmenko, A.B. Kramers–Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 2005, 76, 083108. [Google Scholar]
- Ziat, Y.; Belkhanchi, H.; Zarhri, Z. DFT Analysis of Structural, Electrical, and Optical Properties of S, Si, and F-Doped GeO2 Rutile: Implications for UV-Transparent Conductors and Photodetection. Sol. Energy Sustain. Dev. 2025, 14, 74–89. [Google Scholar] [CrossRef]
- Okoye, C.M.I. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. J. Phys. Condens. Matter 2003, 15, 5945. [Google Scholar] [CrossRef]
- Ambrosch-Draxl, C.; Abt, R. The Calculation of Optical Properties Within WIEN97; ICTP Lecture Notes; ICTP: Trieste, Italy, 1998. [Google Scholar]
- Kumar, M.; Singh, R.P.; Kumar, A. Opto-electronic properties of HfO2: A first principle-based spin-polarized calculations. Optik 2021, 226, 165937. [Google Scholar] [CrossRef]
- Rohj, R.K.; Hossain, A.; Mahadevan, P.; Sarma, D.D. Band gap reduction in ferroelectric BaTiO3 through heterovalent Cu-Te co-doping for visible-light photocatalysis. Front. Chem. 2021, 9, 682979. [Google Scholar] [CrossRef]
- Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 2004, 108, 8992–8995. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Li, H.; Yin, S.; Sato, T. Preparation and photocatalytic activity of visible light-active sulfur and nitrogen co-doped SrTiO3. Solid State Sci. 2009, 11, 182–188. [Google Scholar] [CrossRef]
- Xie, W.; Li, R.; Xu, Q. Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 2018, 8, 8752. [Google Scholar] [CrossRef]
- Rockafellow, E.M.; Haywood, J.M.; Witte, T.; Houk, R.S.; Jenks, W.S. Selenium-modified TiO2 and its impact on photocatalysis. Langmuir 2010, 26, 19052–19059. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yu, K.; Lou, L.L.; Su, Z.; Liu, S. Theoretical and experimental study of La/Ni co-doped SrTiO3 photocatalyst. Mater. Sci. Eng. B 2010, 172, 136–141. [Google Scholar] [CrossRef]
- Li, Y.; Deng, B.; Wang, J.; Li, J.; Fan, J.; Han, J. Effects of Mo doping on the structure, adsorption performance, and photocatalytic activity of LaFeO3 nanoparticles: Experimental and DFT studies. Sep. Purif. Technol. 2024, 347, 127304. [Google Scholar] [CrossRef]
- Madoui, N.; Ksouri, A.; Rhimi, N.; Rahal, R.; Derradji, S.; Meklid, A.; Ounis, A.; Makhloufi, S.; Omari, M. Synthesis of novel (Cr, Cu)-doped BiFeO3 perovskite as a photocatalyst for Rhodamine B degradation under sunlight irradiation. React. Kinet. Mech. Catal. 2025, 138, 1113–1129. [Google Scholar]
- Abdel-Latif, I.A.; Al-Hajji, L.A.; Faisal, M.; Ismail, A.A. Doping strontium into neodymium manganites nanocomposites for enhanced visible light driven photocatalysis. Sci. Rep. 2019, 9, 13932. [Google Scholar] [CrossRef]
- Ragab, S.; Elkatory, M.R.; Hassaan, M.A.; El Nemr, A. Experimental, predictive and RSM studies of H2 production using Ag-La-CaTiO3 for water-splitting under visible light. Sci. Rep. 2024, 14, 1019. [Google Scholar]
- Sharma, P.; Katyal, S.C. Determination of optical parameters of a-(As2Se3) 90Ge10 thin film. J. Phys. D Appl. Phys. 2007, 40, 2115. [Google Scholar]
- Achqraoui, M.; Jebari, H.; Bekkioui, N.; Ez-Zahraouy, H. Tensile effect on photocatalytic and optoelectronic properties of MoS2 for hydrogen production: DFT study. Int. J. Hydrogen Energy 2024, 51, 623–632. [Google Scholar]
- Majji, M.; Abzal, S.M.; Jacob, N.; Maiti, P.; Choppella, S.; Ravva, M.K.; Maram, P.S.; Ghosh, S.; Dash, J.K.; Motapothula, M. Efficient photocatalytic green hydrogen production using crystalline elemental Boron nanostructures under visible light. Int. J. Hydrogen Energy 2024, 56, 338–347. [Google Scholar]
- Bentour, H.; Boujnah, M.; Houmad, M.; El Yadari, M.; Benyoussef, A.; El Kenz, A. DFT study of Se and Te doped SrTiO3 for enhanced visible-light driven phtocatalytic hydrogen production. Opt. Quantum Electron. 2021, 53, 589. [Google Scholar]
- Xing, J.; Fang, W.Q.; Zhao, H.J.; Yang, H.G. Inorganic photocatalysts for overall water splitting. Chem.–Asian J. 2012, 7, 642–657. [Google Scholar]
- Wang, G.Z.; Chen, H.; Luo, X.K.; Yuan, H.K.; Kuang, A.L. Bandgap engineering of SrTiO3/NaTaO3 heterojunction for visible light photocatalysis. Int. J. Quantum Chem. 2017, 117, e25424. [Google Scholar]
- Xu, Y.; Schoonen, M.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar]
- Zahan, M.S.; Munshi, M.R.; Rana, M.Z.; Al Masud, M. Theoretical insights on geometrical, mechanical, electronic, thermodynamic and photocatalytic characteristics of RaTiO3 compound: A DFT investigation. Comput. Condens. Matter 2023, 36, e00832. [Google Scholar]
- Bouzaid, A.; Ziat, Y.; Belkhanchi, H.; Fatihi, H. Boosting the photocatalytic hydrogen production via the S/Zr co-doping in a CaTiO3 perovskite: First-principles study of the optoelectronic, thermodynamic, and photocatalytic. Eur. Phys. J. B 2025, 98, 160. [Google Scholar]
- Bartolotti, L.J. Absolute electronegativities as determined from Kohn-Sham theory. In Electronegativity; Springer: Berlin/Heidelberg, Germany, 2005; pp. 27–40. [Google Scholar]
- Reunchan, P.; Boonchun, A.; Umezawa, N. Electronic properties of highly-active Ag3AO4 photocatalyst and its band gap modulation: An insight from hybrid-density functional calculations. Phys. Chem. Chem. Phys. 2016, 18, 23407–23411. [Google Scholar] [CrossRef] [PubMed]
- Bentour, H.; Belasfar, K.; Boujnah, M.; El Yadari, M.; Benyoussef, A.; El Kenz, A. DFT study of Se/Mn and Te/Mn codoped SrTiO3 for visible light-driven photocatlytic hydrogen production. Opt. Mater. 2022, 129, 112431. [Google Scholar] [CrossRef]
- Goumri-Said, S.; Kanoun, M.B. Insight into the effect of anionic–anionic co-doping on BaTiO3 for visible light photocatalytic water splitting: A first-principles hybrid computational study. Catalysts 2022, 12, 1672. [Google Scholar]
- Tao, X.; Zhu, L.; Wang, X.; Chen, X.; Liu, X. Preparation of Zr/Y co-doped TiO2 photocatalyst and degradation performance of hydroquinone. Environ. Sci. Pollut. Res. 2022, 29, 40854–40864. [Google Scholar]
- Chen, G.; Wang, Y.; Zhang, J.; Wu, C.; Liang, H.; Yang, H. Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium. J. Nanosci. Nanotechnol. 2012, 12, 3799–3805. [Google Scholar]
- Le, K.H.; Pham, O.L.K.; Tran, T.T.; Le, V.M. Photocatalytic activities of sulfur doped SrTiO3 under simulated solar irradiation. Sci. Technol. Dev. J. 2016, 19, 176–184. [Google Scholar] [CrossRef]
- Huang, X.J.; Yan, X.; Wu, H.Y.; Fang, Y.; Min, Y.H.; Li, W.S.; Wang, S.Y.; Wu, Z.J. Preparation of Zr-doped CaTiO3 with enhanced charge separation efficiency and photocatalytic activity. Trans. Nonferrous Met. Soc. China 2016, 26, 464–471. [Google Scholar]
- Ribag, K.; Houmad, M.; Kaddar, Y.; El Kenz, A.; Benyoussef, A. Enhancing the hydrogen production of tetragonal silicon carbide (t-SiC) with biaxial tensile strain and pH. Mater. Sci. Eng. B 2025, 311, 117854. [Google Scholar]
- Gopinath, C.S.; Nalajala, N. A scalable and thin film approach for solar hydrogen generation: A review on enhanced photocatalytic water splitting. J. Mater. Chem. A 2021, 9, 1353–1371. [Google Scholar]
- Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy 2019, 44, 540–577. [Google Scholar] [CrossRef]
- Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Sol. Energy 2020, 211, 522–546. [Google Scholar]
- Habiba, M.; Abdelilah, B.; Abdelhafed, T.; Ennaoui, A.; Khadija, E.M.; Omar, M. Enhanced photocatalytic activity of phosphorene under different pH values using density functional theory (DFT). RSC Adv. 2021, 11, 16004–16014. [Google Scholar] [CrossRef] [PubMed]
Materials | Elements | RMT (a.u) |
---|---|---|
MgTiO3 | Mg | 2.5 |
Ti | 1.88 | |
O | 1.70 | |
CaTiO3 | Ca | 2.5 |
Ti | 1.92 | |
O | 1.74 | |
Mg | 2.42 | |
Ti | 1.80 | |
Zr | 1.89 | |
O | 1.72 | |
Se | 1.80 | |
Ca | 2.45 | |
Ti | 1.83 | |
Zr | 1.74 | |
O | 1.83 | |
Se | 1.72 |
Compounds | Lattice Constant (Å) | ||
---|---|---|---|
Our Work | Other Study | Experimental | |
CaTiO3 | 3.89 | 3.856 [56] 3.899 [37] | 3.8967 [58] 3.90 [59] |
MgTiO3 | 3.8425 | 3.81 [57] 3.814 [56] | - |
Compounds | Ef (Ry/Atom) |
---|---|
CaTiO3 | −0.25 |
MgTiO3 | −0.24 −0.23 [57] −0.25 [66] |
−3.32 | |
−3.32 | |
−2.4 | |
−1.01 |
Compounds | Eg (eV) |
---|---|
CaTiO3 | 2.766 |
MgTiO3 | 2.926 |
2.153 | |
1.374 | |
2.159 | |
1.726 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzaid, A.; Ziat, Y.; Belkhanchi, H. Photocatalytic Optimization of ATiO3 Codoped with Se/Zr: A DFT Study for Hydrogen Production. Materials 2025, 18, 4389. https://doi.org/10.3390/ma18184389
Bouzaid A, Ziat Y, Belkhanchi H. Photocatalytic Optimization of ATiO3 Codoped with Se/Zr: A DFT Study for Hydrogen Production. Materials. 2025; 18(18):4389. https://doi.org/10.3390/ma18184389
Chicago/Turabian StyleBouzaid, Abdellah, Younes Ziat, and Hamza Belkhanchi. 2025. "Photocatalytic Optimization of ATiO3 Codoped with Se/Zr: A DFT Study for Hydrogen Production" Materials 18, no. 18: 4389. https://doi.org/10.3390/ma18184389
APA StyleBouzaid, A., Ziat, Y., & Belkhanchi, H. (2025). Photocatalytic Optimization of ATiO3 Codoped with Se/Zr: A DFT Study for Hydrogen Production. Materials, 18(18), 4389. https://doi.org/10.3390/ma18184389