Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. General Approach
2.2. Determination of the Performance Ratio
2.3. Case Study: Building 42
2.4. Input Data for System Loss Calculations
2.5. Temperature Loss Modelling
2.5.1. Ross Model
2.5.2. King Model
2.5.3. Faiman Model
2.5.4. PVsyst Variation in Faiman Model
2.5.5. Driesse’s Dynamic Approach
2.6. Angular Loss Modelling
2.6.1. Martín and Ruiz Model
2.6.2. ASHRAE Model
2.6.3. Sandia Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Symbols
TMY | typical meteorological year |
PV | photovoltaic, photovoltaics |
BIPV | building-integrated photovoltaic, building-integrated photovoltaics |
PR | performance ratio |
AOI | angle of incidence |
LID | light-induced degradation |
GIS | geographic information system |
NOCT | nominal operating cell temperature (K, °C) |
NOCTeff | effective nominal operating cell temperature (K, °C) |
NMOT | nominal module operating temperature (K, °C) |
Yf | net output energy of the PV system per unit of installed PV array power (kWh/kW) |
Yr | number of hours at the peak irradiance of 1 kWh/m2 (h or (kWh/m2)/(kW/m2)) |
Eout | output energy (kWh) |
P0 | nominal power (W) |
GSTC | irradiance at standard test conditions (W/m2) |
POA | plane-of-array |
GPOA | plane-of-array irradiance (kWh/m2) |
HPOA | plane-of-array irradiation (kWh/m2) |
STC | standard test conditions (1 kW/m2 irradiance, 25 °C cell temperature and AM1.5G solar spectrum) |
IAM | incidence angle modifier |
γ | PV temperature power loss coefficient (%/K, %/°C) |
Tc | cell temperature (K, °C) |
Tc,0 | cell temperature at standard test conditions (K, °C) |
Tm | module temperature (K, °C) |
Ta | ambient air temperature (K, °C) |
Ws | wind speed (m/s) |
a, b | empirical coefficients of SAM or King’s model [a dimensionless, b (m/s)−1] |
u0, u1 | empirical coefficients of Faiman’s model [u0 (W/m2C), u1 (W/m3sC)] |
α | optical absorption coefficient of solar irradiance |
ηm | PV efficiency related to the module area |
C | thermal capacitance (J/°C) |
τα | effective transmittance–absorptance product |
ηm | efficiency of the PV module |
B | direct irradiance (W/m2) |
D | diffuse irradiance on the horizontal plane (W/m2) |
A | ground-reflected albedo irradiance (W/m2) |
θ | angle of incidence (°) |
ar | angular losses coefficient |
β | tilt angle of the module (°) |
c1 | first fitting parameter of Martín and Ruiz model (4/3π) |
c2 | second fitting parameter of Martín and Ruiz model |
References
- Osseweijer, F.J.W.; Van Den Hurk, L.B.P.; Teunissen, E.J.H.M.; Van Sark, W.G.J.H.M. A Comparative Review of Building Integrated Photovoltaics Ecosystems in Selected European Countries. Renew. Sustain. Energy Rev. 2018, 90, 1027–1040. [Google Scholar] [CrossRef]
- Goncalves, J.; Van Hooff, T.; Saelens, D. Performance of BIPV Modules under Different Climatic Conditions. WEENTECH Proc. Energy 2019, 5, 107–115. [Google Scholar] [CrossRef]
- Marchwiński, J.; Milošević, V.; Stefańska, A.; Lucchi, E. Irradiation Analysis of Tensile Membrane Structures for Building-Integrated Photovoltaics. Energies 2023, 16, 5945. [Google Scholar] [CrossRef]
- Martín Chivelet, N.; Kapsis, C.; Frontini, F. BIPV Products. Chapter of the Book. In Building-Integrated Photovoltaics: A Technical Guidebook, 1st ed.; Routledge: New York, NY, USA, 2024; ISBN 978-1-003-43224-1. [Google Scholar]
- Wilson, H.R.; Frontini, F.; Bonomo, P.; Eder, G.C.; Babin, M.; Thorsteinsson, S.; Adami, J.; Maturi, L.; Yang, R.J.; Weerasinghe, N.; et al. Multi-Dimensional Evaluation of BIPV Installations: Development of a Tool to Assess the Performance as Building Component and Electricity Generator. Energy Build. 2024, 312, 114207. [Google Scholar] [CrossRef]
- Jing Yang, R.; Zhao, Y.; Dev Sureshkumar Jayakumari, S.; Schneider, A.; Prithivi Rajan, S.; Leloux, J.; Alamy, P.; Prasetyo Raharjo, G.; Rende, F.; Samarasinghalage, T.; et al. Digitalising BIPV Energy Simulation: A Cross Tool Investigation. Energy Build. 2024, 318, 114484. [Google Scholar] [CrossRef]
- Martín Chivelet, N.; Kapsis, C.; Frontini, F. Building-Integrated Photovoltaics: A Technical Guidebook, 1st ed.; Routledge: New York, NY, USA, 2024; ISBN 978-1-003-43224-1. [Google Scholar]
- Faes, A.; Virtuani, A.; Quest, H.; Maturi, L.; Scognamiglio, A.; Frontini, F.; Schlueter, A.; Martin-Chivelet, N.; Reinders, A.; Ballif, C. Building-Integrated Photovoltaics. Nat. Rev. Clean Technol. 2025, 1, 333–350. [Google Scholar] [CrossRef]
- European Commission. “Fit for 55” Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality 2021. Off. J. Eur. Union 2022, C 275, 101–107. [Google Scholar]
- International Energy Agency. International Energy Agency IEA PVPS Categorization of BIPV Applications 2021; International Energy Agency: Paris, France, 2021; Available online: https://iea-pvps.org/wp-content/uploads/2021/09/IEA-PVPS-T15-12_2021_BIPV-categorization_report.pdf (accessed on 27 January 2025).
- IEC 63092-1:2020; Photovoltaics in Buildings. Part 1: Requirements for Building-Integrated Photovoltaic Modules. International Standard/International Electrotechnical Commission; International Electrotechnical Commission: Geneva, Switzerland, 2020; ISBN 978-2-8322-8875-7.
- Martín-Chivelet, N.; Polo, J.; Sanz-Saiz, C.; Núñez Benítez, L.T.; Alonso-Abella, M.; Cuenca, J. Assessment of PV Module Temperature Models for Building-Integrated Photovoltaics (BIPV). Sustainability 2022, 14, 1500. [Google Scholar] [CrossRef]
- Lindig, S.; Deckx, J.; Herz, M.; Ascencio-Vasquez, J.; Theristis, M.; Herteleer, B.; Anderson, K. Best Practice Guidelines for the Use of Economic and Technical KPIs; Sandia National Laboratories: Albuquerque, NM, USA, 2024; SAND2024-16932R, 2516833.
- IEC 61724-1 ED2; Photovoltaic System Performance—Part 1 Monitoring 2021. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- Khalid, A.M.; Mitra, I.; Warmuth, W.; Schacht, V. Performance Ratio—Crucial Parameter for Grid Connected PV Plants. Renew. Sustain. Energy Rev. 2016, 65, 1139–1158. [Google Scholar] [CrossRef]
- Leloux, J.; Narvarte, L.; Trebosc, D. Review of the Performance of Residential PV Systems in Belgium. Renew. Sustain. Energy Rev. 2012, 16, 178–184. [Google Scholar] [CrossRef]
- Leloux, J.; Narvarte, L.; Trebosc, D. Review of the Performance of Residential PV Systems in France. Renew. Sustain. Energy Rev. 2012, 16, 1369–1376. [Google Scholar] [CrossRef]
- Lagarde, Q.; Beillard, B.; Mazen, S.; Denis, M.-S.; Leylavergne, J. Performance Ratio of Photovoltaic Installations in France: Comparison between Inverters and Micro-Inverters. J. King Saud Univ.—Eng. Sci. 2023, 35, 531–538. [Google Scholar] [CrossRef]
- International Energy Agency. IEA PVPS Task 13 Analysis of Long-Term Performance of PV Systems; International Energy Agency: Paris, France, 2014; Available online: https://iea-pvps.org/wp-content/uploads/2020/01/IEA_PVPS_T13_ST1_Final_02_2015-2.pdf (accessed on 22 January 2025).
- Singh, D.; Gautam, A.K.; Chaudhary, R. Potential and Performance Estimation of Free-Standing and Building Integrated Photovoltaic Technologies for Different Climatic Zones of India. Energy Built Environ. 2022, 3, 40–55. [Google Scholar] [CrossRef]
- Aslam, A.; Ahmed, N.; Qureshi, S.A.; Assadi, M.; Ahmed, N. Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques. Energies 2022, 15, 7595. [Google Scholar] [CrossRef]
- Dondariya, C.; Porwal, D.; Awasthi, A.; Shukla, A.K.; Sudhakar, K.; Manohar, M.S.R.; Bhimte, A. Performance Simulation of Grid-Connected Rooftop Solar PV System for Small Households: A Case Study of Ujjain, India. Energy Rep. 2018, 4, 546–553. [Google Scholar] [CrossRef]
- Kumar, N.M.; Reddy, P.R.K.; Praveen, K. Optimal Energy Performance and Comparison of Open Rack and Roof Mount Mono C-Si Photovoltaic Systems. Energy Procedia 2017, 117, 136–144. [Google Scholar] [CrossRef]
- Thotakura, S.; Chandan Kondamudi, S.; Xavier, J.F.; Quanjin, M.; Reddy, G.R.; Gangwar, P.; Davuluri, S.L. Operational Performance of Megawatt-Scale Grid Integrated Rooftop Solar PV System in Tropical Wet and Dry Climates of India. Case Stud. Therm. Eng. 2020, 18, 100602. [Google Scholar] [CrossRef]
- Psomopoulos, C.S.; Ioannidis, G.C.; Kaminaris, S.D.; Mardikis, K.D.; Katsikas, N.G. A Comparative Evaluation of Photovoltaic Electricity Production Assessment Software (PVGIS, PVWatts and RETScreen). Environ. Process. 2015, 2, 175–189. [Google Scholar] [CrossRef]
- Martín, A.M.; Domínguez, J.; Amador, J. Applying LIDAR Datasets and GIS Based Model to Evaluate Solar Potential over Roofs: A Review. AIMS Energy 2015, 3, 326–343. [Google Scholar] [CrossRef]
- Polo, J.; Martín-Chivelet, N.; Sanz-Saiz, C. BIPV Modeling with Artificial Neural Networks: Towards a BIPV Digital Twin. Energies 2022, 15, 4173. [Google Scholar] [CrossRef]
- Alhmoud, L. Why Does the PV Solar Power Plant Operate Ineffectively? Energies 2023, 16, 4074. [Google Scholar] [CrossRef]
- Melo, E.G.; Almeida, M.P.; Zilles, R.; Grimoni, J.A.B. Using a Shading Matrix to Estimate the Shading Factor and the Irradiation in a Three-Dimensional Model of a Receiving Surface in an Urban Environment. Sol. Energy 2013, 92, 15–25. [Google Scholar] [CrossRef]
- Manni, M.; Nocente, A.; Kong, G.; Skeie, K.; Fan, H.; Lobaccaro, G. Solar Energy Digitalization at High Latitudes: A Model Chain Combining Solar Irradiation Models, a LiDAR Scanner, and High-Detail 3D Building Model. Front. Energy Res. 2022, 10, 1082092. [Google Scholar] [CrossRef]
- Lindberg, F.; Jonsson, P.; Honjo, T.; Wästberg, D. Solar Energy on Building Envelopes—3D Modelling in a 2D Environment. Sol. Energy 2015, 115, 369–378. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. Continuous Sky View Factor Maps from High Resolution Urban Digital Elevation Models. Clim. Res. 2010, 42, 177–183. [Google Scholar] [CrossRef]
- Walch, A.; Mohajeri, N.; Scartezzini, J.-L. A Critical Comparison of Methods to Estimate Solar Rooftop Photovoltaic Potential in Switzerland. J. Phys. Conf. Ser. 2019, 1343, 012035. [Google Scholar] [CrossRef]
- Verso, A.; Martin, A.; Amador, J.; Dominguez, J. GIS-Based Method to Evaluate the Photovoltaic Potential in the Urban Environments: The Particular Case of Miraflores de La Sierra. Sol. Energy 2015, 117, 236–245. [Google Scholar] [CrossRef]
- Jakica, N.; Ynag, R.J.; Eisenlohr, J. BIPV Design and Performance Modelling: Tools and Methods; International Energy Agency: Paris, France, 2019; Available online: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_15_R09_BIPV_Design_Tools_report.pdf (accessed on 22 January 2025).
- Barykina, E.; Hammer, A. Modeling of Photovoltaic Module Temperature Using Faiman Model: Sensitivity Analysis for Different Climates. Sol. Energy 2017, 146, 401–416. [Google Scholar] [CrossRef]
- Santiago, I.; Trillo-Montero, D.; Moreno-Garcia, I.M.; Pallarés-López, V.; Luna-Rodríguez, J.J. Modeling of Photovoltaic Cell Temperature Losses: A Review and a Practice Case in South Spain. Renew. Sustain. Energy Rev. 2018, 90, 70–89. [Google Scholar] [CrossRef]
- Sánchez-Palencia, P.; Martín-Chivelet, N.; Chenlo, F. Modeling Temperature and Thermal Transmittance of Building Integrated Photovoltaic Modules. Sol. Energy 2019, 184, 153–161. [Google Scholar] [CrossRef]
- Martín Chivelet, N.; Chenlo, F.; Mejuto, E.; Soriano, F.; Temprano, S.; Alonso-García, M.C. Validating an Angular of Incidence Losses Model with Different PV Technologies and Soiling Conditions. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 24–28 September 2012; pp. 3436–3438, 3p, 3172 kb. [Google Scholar] [CrossRef]
- Ebert, M.; Stascheit, H.; Hädrich, I.; Eitner, U. The Impact of Angular Dependent Loss Measurement on PV Module Energy Yield Prediction. In Proceedings of the 29th EU PVSEC, Amsterdam, The Netherlands, 22–26 September 2014. [Google Scholar]
- Plag, F.; Kröger, I.; Fey, T.; Witt, F.; Winter, S. Angular-dependent Spectral Responsivity—Traceable Measurements on Optical Losses in PV Devices. Prog. Photovolt. Res. Appl. 2017, 26, 565–578. [Google Scholar] [CrossRef]
- Ding, Y.; Young, M.; Zhao, Y.; Traverse, C.; Benard, A.; Lunt, R.R. Influence of Photovoltaic Angle-Dependence on Overall Power Output for Fixed Building Integrated Configurations. Sol. Energy Mater. Sol. Cells 2015, 132, 523–527. [Google Scholar] [CrossRef]
- Virtuani, A.; Strepparava, D. Modelling the Performance of Amorphous and Crystalline Silicon in Different Typologies of Building-Integrated Photovoltaic (BIPV) Conditions. Sol. Energy 2017, 146, 113–118. [Google Scholar] [CrossRef]
- Martín-Chivelet, N.; Gutiérrez, J.; Alonso-Abella, M.; Chenlo, F.; Cuenca, J. Building Retrofit with Photovoltaics: Construction and Performance of a BIPV Ventilated Façade. Energies 2018, 11, 1719. [Google Scholar] [CrossRef]
- IEC 60904-7; Photovoltaic Devices Part 7: Computation of the Spectral Mismatch Correction for Measurements of Photovoltaic Devices. International Electrotechnical Commission: Geneva, Switzerland, 2020.
- Dobos, A. PVWatts Version 5 Manual; National Renewable Energy Laboratory: Golden, CO, USA, 2014; p. NREL/TP-6A20-62641, 1158421.
- Huld, T.; Müller, R.; Gambardella, A. A New Solar Radiation Database for Estimating PV Performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Rigollier, C.; Lefèvre, M.; Wald, L. The Method Heliosat-2 for Deriving Shortwave Solar Radiation from Satellite Images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef]
- Psiloglou, B.E.; Kambezidis, H.D.; Kaskaoutis, D.G.; Karagiannis, D.; Polo, J.M. Comparison between MRM Simulations, CAMS and PVGIS Databases with Measured Solar Radiation Components at the Methoni Station, Greece. Renew. Energy 2020, 146, 1372–1391. [Google Scholar] [CrossRef]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martinez-de-Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of Global Horizontal Irradiance Estimates from ERA5 and COSMO-REA6 Reanalyses Using Ground and Satellite-Based Data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Lefèvre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. McClear: A New Model Estimating Downwelling Solar Radiation at Ground Level in Clear-Sky Conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. [Google Scholar] [CrossRef]
- Gschwind, B.; Wald, L.; Blanc, P.; Lefèvre, M.; Schroedter-Homscheidt, M.; Arola, A. Improving the McClear Model Estimating the Downwelling Solar Radiation at Ground Level in Cloud-Free Conditions—McClear-v3. Meteorol. Z. 2019, 28, 147–163. [Google Scholar] [CrossRef]
- Qu, Z.; Oumbe, A.; Blanc, P.; Espinar, B.; Gessel, G.; Gschwind, B.; Klüser, L.; Lefèvre, M.; Saboret, L.; Schroedter-Homscheidt, M.; et al. Fast Radiative Transfer Parameterisation for Assessing the Surface Solar Irradiance The Heliosat-4 Method. Meteorol. Z. 2016, 26, 33–57. [Google Scholar] [CrossRef]
- Yang, D.; Bright, J.M. Worldwide Validation of 8 Satellite-Derived and Reanalysis Solar Radiation Products: A Preliminary Evaluation and Overall Metrics for Hourly Data over 27 Years. Sol. Energy 2020, 210, 3–19. [Google Scholar] [CrossRef]
- Holmgren, F.W.; Hansen, W.C.; Mikofski, A.M. Pvlib Python: A Python Package for Modeling Solar Energy Systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Perez, R.; Stewart, R.; Arbogast, C.; Seals, R.; Scott, J. An Anisotropic Hourly Diffuse Radiation Model for Sloping Surfaces: Description, Performance Validation, Site Dependency Evaluation. Sol. Energy 1986, 36, 481–497. [Google Scholar] [CrossRef]
- Perez, R.; Seals, R.; Ineichen, P.; Stewart, R.; Menicucci, D. A New Simplified Version of the Perez Diffuse Irradiance Model for Tilted Surfaces. Sol. Energy 1987, 39, 221–231. [Google Scholar] [CrossRef]
- IEC 60891-3; Photovoltaic Devices—Procedures for Temperature and Irradiance Corrections to Measured I-V Characteristics. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- IEC 61853-2; Photovoltaic (PV) Module Performance Testing and Energy Rating—Part 2: Spectral Responsivity, Incidence Angle and Module Operating Temperature Measurements. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- Driesse, A.; Polo, J. PV Module Operating Temperature: Reliable Extraction of Model Parameters from Dynamic Field Data. In Proceedings of the EU PVSEC, Vienna, Austria, 23–27 September 2024. [Google Scholar]
- Ross, R.G. Interface Design Considerations for Terrestrial Solar Cell Modules. In Proceedings of the Photovoltaic Specialists Conference, Baton Rouge, LA, USA, 15–18 November 1976. [Google Scholar]
- IEC 61215-2; Crystalline Silicon Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval. International Electrotechnical Commission: Geneva, Switzerland, 2005.
- Gilman, P.; DiOrio, N.A.; Freeman, J.M.; Janzou, S.; Dobos, A.; Ryberg, D. SAM Photovoltaic Model Technical Reference 2016 Update; National Renewable Energy Laboratory: Golden, CO, USA, 2018; p. 1429291.
- King, D.; Kratochvil, J.; Boyson, W. Photovoltaic Array Performance Model; Sandia National Laboratories: Albuquerque, NM, USA, 2004; p. 919131.
- King, B.; Hansen, C.; Riley, D.; Robinson, C.; Pratt, L. Procedure to Determine Coefficients for the Sandia Array Performance Model (SAPM); Sandia National Laboratories: Albuquerque, NM, USA, 2016; p. 641116.
- Faiman, D. Assessing the Outdoor Operating Temperature of Photovoltaic Modules. Prog. Photovolt. 2008, 16, 307–315. [Google Scholar] [CrossRef]
- Bae, J.-H.; Kim, D.-Y.; Shin, J.-W.; Lee, S.-E.; Kim, K.-C. Analysis on the Features of NOCT and NMOT Tests with Photovoltaic Module. IEEE Access 2020, 8, 151546–151554. [Google Scholar] [CrossRef]
- Herrmann, W.; Monokroussos, C.; Lee, K. Comparison of Different Approaches to Determine the Nominal PV Module Operating Temperature (NMOT). In Proceedings of the EU PVSEC, Lisbon, Portugal, 18–22 September 2021. [Google Scholar]
- Muller, M.; Marion, B.; Rodriguez, J. Evaluating the IEC 61215 Ed.3 NMOT Procedure against the Existing NOCT Procedure with PV Modules in a Side-by-Side Configuration. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; IEEE: Austin, TX, USA, 2012; pp. 000697–000702. [Google Scholar]
- Driesse, A.; Theristis, M.; Stein, J.S. PV Module Operating Temperature Model Equivalence and Parameter Translation. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 5 June 2022; IEEE: Philadelphia, PA, USA, 2022; pp. 0172–0177. [Google Scholar]
- Martin, N.; Ruiz, J.M. Calculation of the PV Modules Angular Losses under field Conditions by Means of an Analytical Model. Sol. Energy Mater. 2001, 70, 25–38. [Google Scholar] [CrossRef]
- Martin, N.; Ruiz, J.M. Corrigendum to “Calculation of the PV Modules Angular Losses under Field Conditions by Means of an Analytical Model” [Sol. Energy Mater. Sol. Cells 70 (1) (2001) 25–38]. Sol. Energy Mater. Sol. Cells 2013, 110, 154. [Google Scholar] [CrossRef]
- Souka, A.F.; Safwat, H.H. Determination of the Optimum Orientations for the Double-Exposure, Flat-Plate Collector and Its Reflectors. Sol. Energy 1966, 10, 170–174. [Google Scholar] [CrossRef]
- Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Kimber, A.; Mitchell, L.; et al. Performance Parameters for Grid-Connected PV Systems. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 16–20 May 2005; IEEE: Lake Buena Vista, FL, USA, 2005; pp. 1601–1606. [Google Scholar]
- Van Noord, M.; Landelius, T.; Andersson, S. Snow-Induced PV Loss Modeling Using Production-Data Inferred PV System Models. Energies 2021, 14, 1574. [Google Scholar] [CrossRef]
- Powers, L.; Newmiller, J.; Townsend, T. Measuring and Modeling the Effect of Snow on Photovoltaic System Performance. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010; IEEE: Honolulu, HI, USA, 2010; pp. 000973–000978. [Google Scholar]
- Marion, B.; Schaefer, R.; Caine, H.; Sanchez, G. Measured and Modeled Photovoltaic System Energy Losses from Snow for Colorado and Wisconsin Locations. Sol. Energy 2013, 97, 112–121. [Google Scholar] [CrossRef]
- Ryberg, D.S.; Freeman, J. Integration, Validation, and Application of a PV Snow Coverage Model in SAM; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2017.
- Kumar, N.M.; Gupta, R.P.; Mathew, M.; Jayakumar, A.; Singh, N.K. Performance, Energy Loss, and Degradation Prediction of Roof-Integrated Crystalline Solar PV System Installed in Northern India. Case Stud. Therm. Eng. 2019, 13, 100409. [Google Scholar] [CrossRef]
- Lillo-Sánchez, L.; López-Lara, G.; Vera-Medina, J.; Pérez-Aparicio, E.; Lillo-Bravo, I. Degradation Analysis of Photovoltaic Modules after Operating for 22 Years. A Case Study with Comparisons. Sol. Energy 2021, 222, 84–94. [Google Scholar] [CrossRef]
- Marcos-Castro, A.; Martín-Chivelet, N.; Polo, J. Enhanced GIS Methodology for Building-Integrated Photovoltaic Façade Potential Based on Free and Open-Source Tools and Information. Remote Sens. 2025, 17, 954. [Google Scholar] [CrossRef]
- Sanz-Saiz, C.; Polo, J.; Martín-Chivelet, N.; Alonso-García, M.D.C. Soiling Loss Characterization for Photovoltaics in Buildings: A Systematic Analysis for the Madrid Region. J. Clean. Prod. 2022, 332, 130041. [Google Scholar] [CrossRef]
- Sharma, S.; Raina, G.; Yadav, S.; Sinha, S. A Comparative Evaluation of Different PV Soiling Estimation Models Using Experimental Investigations. Energy Sustain. Dev. 2023, 73, 280–291. [Google Scholar] [CrossRef]
- Martín, N.; Ruiz, J.M. A New Method for the Spectral Characterisation of PV Modules. Prog. Photovolt Res. Appl. 1999, 7, 299–310. [Google Scholar] [CrossRef]
- Dirnberger, D.; Blackburn, G.; Müller, B.; Reise, C. On the Impact of Solar Spectral Irradiance on the Yield of Different PV Technologies. Sol. Energy Mater. Sol. Cells 2015, 132, 431–442. [Google Scholar] [CrossRef]
- Caballero, J.A.; Fernandez, E.F.; Theristis, M.; Almonacid, F.; Nofuentes, G. Spectral Corrections Based on Air Mass, Aerosol Optical Depth, and Precipitable Water for PV Performance Modeling. IEEE J. Photovolt. 2018, 8, 552–558. [Google Scholar] [CrossRef]
- Lee, M.; Panchula, A. Spectral Correction for Photovoltaic Module Performance Based on Air Mass and Precipitable Water. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; IEEE: Portland, OR, USA, 2016; pp. 1351–1356. [Google Scholar]
- Lee, M.; Panchula, A.F. Variation in Spectral Correction of PV Module Performance Based on Different Precipitable Water Estimates. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; IEEE: Portland, OR, USA, 2016; pp. 2692–2697. [Google Scholar]
- Daxini, R.; Wu, Y. Review of Methods to Account for the Solar Spectral Influence on Photovoltaic Device Performance. Energy 2024, 286, 129461. [Google Scholar] [CrossRef]
- Polo, J.; Sanz-Saiz, C. Development of Spectral Mismatch Models for BIPV Applications in Building Façades. Renew. Energy 2025, 245, 122820. [Google Scholar] [CrossRef]
- Karalasingham, S.; Deo, R.C.; Raj, N.; Casillas-Perez, D.; Salcedo-Sanz, S. Generating High Spatial and Temporal Surface Albedo with Multispectral-Wavemix and Temporal-Shift Heatmaps. Remote Sens. 2025, 17, 461. [Google Scholar] [CrossRef]
- Sanz-Saiz, C.; Marcos, A.; Silva, J.P.; Polo, J. Modeling Spectral Effects of Colored BIPV Modules on Vertical Façades. Sustain. Energy Technol. Assess. 2025, 75, 104220. [Google Scholar] [CrossRef]
Temperature Model | Data Filtering Criteria | Fitted Parameters | MBE (°C) | RMSE (°C) | R2 | MBE (°C) | RMSE (°C) | R2 |
---|---|---|---|---|---|---|---|---|
2020 Minutely | 2020 Hourly | |||||||
Ross | GPOA > 400 W/m2 | NOCTeff = 53.3 °C | 0.3 | 4.1 | 0.72 | 1.2 | 2.3 | 0.97 |
Ross | moving average | NOCTeff = 55.3 °C | −0.6 | 2.6 | 0.96 | −0.6 | 2.2 | 0.97 |
King | GPOA > 400 W/m2 | a = −3.118 b = −0.042 | 0 | 3.8 | 0.76 | 1.2 | 2.1 | 0.98 |
King | moving average | a = −3.063 b = −0.048 | −0.7 | 2.4 | 0.97 | −0.7 | 2.0 | 0.98 |
Faiman | GPOA > 400 W/m2 | u0 = 22.75 u1 = 1.20 | 0.4 | 3.8 | 0.76 | 1.3 | 2.2 | 0.97 |
Faiman | moving average | u0 = 21.35 u1 = 1.13 | −0.7 | 2.4 | 0.97 | −0.7 | 2.0 | 0.98 |
PVsyst | GPOA > 400 W/m2 | u0 = 17.61 u1 = 0.93 | 0.4 | 3.8 | 0.76 | 1.3 | 2.2 | 0.97 |
PVsyst | moving average | u0 = 16.33 u1 = 0.86 | −0.7 | 2.4 | 0.97 | −0.7 | 2.0 | 0.98 |
Loss Type | Value |
---|---|
Grid availability | 0.03 |
Connections | 0.005 |
LID | 0.0145 |
Mismatch | 0.02 |
Rating | 0.01 |
Wiring | 0.02 |
Snow | 0 |
Ageing | 0 |
Shading | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos-Castro, A.; Sanz-Saiz, C.; Polo, J.; Martín-Chivelet, N. Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation. Appl. Sci. 2025, 15, 6579. https://doi.org/10.3390/app15126579
Marcos-Castro A, Sanz-Saiz C, Polo J, Martín-Chivelet N. Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation. Applied Sciences. 2025; 15(12):6579. https://doi.org/10.3390/app15126579
Chicago/Turabian StyleMarcos-Castro, Ana, Carlos Sanz-Saiz, Jesús Polo, and Nuria Martín-Chivelet. 2025. "Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation" Applied Sciences 15, no. 12: 6579. https://doi.org/10.3390/app15126579
APA StyleMarcos-Castro, A., Sanz-Saiz, C., Polo, J., & Martín-Chivelet, N. (2025). Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation. Applied Sciences, 15(12), 6579. https://doi.org/10.3390/app15126579