UV-Assisted Charge Neutralization for Reliable XPS Measurements on Insulating Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. UV-Assisted Charge Neutralization
3.2. Effectiveness of UV-Assisted Neutralization
3.3. Neutralization Mechanisms of UV Light Irradiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
XPS | X-ray photoelectron spectroscopy |
UV | ultraviolet |
UPS | ultraviolet photoelectron spectroscopy |
BE | binding energy |
AdC | adventitious carbon |
UHV | ultra-high vacuum |
TOA | take-off angle |
PET | polyethylene terephthalate |
FWHM | full width at half maximum |
References
- Major, G.H.; Avval, T.G.; Moeini, B.; Pinto, G.; Shah, D.; Jain, V.; Carver, V.; Skinner, W.; Gengenbach, T.R.; Easton, C.D.; et al. Assessment of the frequency and nature of erroneous X-ray photoelectron spectroscopy analyses in the scientific literature. J. Vac. Sci. Technol. A 2020, 38, 061204. [Google Scholar] [CrossRef]
- Stevie, F.A.; Donley, C.L. Introduction to X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 063204. [Google Scholar] [CrossRef]
- Azoulay, J. Photoelectron spectroscopy principles and applications. Vacuum 1983, 33, 211–213. [Google Scholar] [CrossRef]
- Fadley, C.S. X-ray Photoelectron Spectroscopy: Progress and perspectives. J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 2–32. [Google Scholar] [CrossRef]
- Bagus, P.S.; Ilton, E.S.; Nelin, C.J. The interpretation of XPS spectra: Insights into materials properties. Surf. Sci. Rep. 2013, 68, 273–304. [Google Scholar] [CrossRef]
- Powell, C.J. Improvements in the reliability of X-ray photoelectron spectroscopy for surface analysis. J. Chem. Educ. 2004, 81, 1734–1750. [Google Scholar] [CrossRef]
- Tielsch, B.J.; Fulghum, J.E. Differential Charging in XPS. Part I: Demonstration of Lateral Charging in a Bulk Insulator Using Imaging XPS. Surf. Interface Anal. 1996, 24, 28–33. [Google Scholar] [CrossRef]
- Metson, J.B. Charge compensation and binding energy referencing in XPS analysis. Surf. Interface Anal. 2015, 27, 1069–1072. [Google Scholar] [CrossRef]
- Leisenberger, F.; Duschek, R.; Czaputa, R.; Netzer, F.P.; Beamson, G.; Matthew, J.A.D. A high resolution XPS study of a complex insulator: The case of porous silicon. Appl. Surf. Sci. 1997, 108, 273–281. [Google Scholar] [CrossRef]
- Yu, X.; Hantsche, H. Some aspects of the charging effect in monochromatized focused XPS. Fresenius J. Anal. Chem. 1993, 346, 233–236. [Google Scholar] [CrossRef]
- Huchital, D.A. Use of an Electron Flood Gun to Reduce Surface Charging in X-Ray Photoelectron Spectroscopy. Appl. Phys. Lett. 1972, 20, 158–159. [Google Scholar] [CrossRef]
- Larson, P.E.; Kelly, M.A. Surface charge neutralization of insulating samples in x-ray photoemission spectroscopy. J. Vac. Sci. Technol. A 1998, 16, 3483–3489. [Google Scholar] [CrossRef]
- Edwards, L.; Mack, P.; Morgan, D.J. Recent advances in dual mode charge compensation for XPS analysis. Surf. Interface Anal. 2019, 51, 925–933. [Google Scholar] [CrossRef]
- Edgell, M.J.; Paynter, R.W.; Castle, J.E. The use of an electron flood gun when adopting monochromatic AgLα radiation for the XPS analysis of insulators. Surf. Interface Anal. 1986, 8, 113–119. [Google Scholar] [CrossRef]
- Baer, D.R.; Artyushkova, K.; Cohen, H.; Easton, C.; Engelhard, M.; Gengenbach, T.; Greczynski, G.; Mack, P.; Morgan, D.; Roberts, A. XPS guide: Charge neutralization and binding energy referencing for insulating samples. J. Vac. Sci. Technol. A 2020, 38, 031204. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2019, 107, 100591. [Google Scholar] [CrossRef]
- Easton, C.D.; Kinnear, C.; Mcarthur, S.L. Practical guides for x-ray photoelectron spectroscopy: Analysis of polymers. J. Vac. Sci. Technol. A 2020, 38, 023207. [Google Scholar] [CrossRef]
- Jacquemin, M.; Genet, M.J.; Gaigneaux, E.M.; Debecker, D.P. Calibration of the X-Ray Photoelectron Spectroscopy Binding Energy Scale for the Characterization of Heterogeneous Catalysts: Is Everything Really under Control? Chemphyschem A Eur. J. Chem. Phys. Phys. Chem. 2013, 14, 3618–3626. [Google Scholar] [CrossRef]
- Barr, T.L.; Seal, S. Nature of the use of adventitious carbon as a binding energy standard. J. Vac. Sci. Technol. A 1995, 13, 1239–1246. [Google Scholar] [CrossRef]
- Johansson, G.; Hedman, J.; Berndtsson, A.; Klasson, M.; Nilsson, R. Calibration of electron spectra. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 295–317. [Google Scholar] [CrossRef]
- Bertóti, I. Characterization of nitride coatings by XPS. Surf. Coat. Technol. 2002, 151–152, 194–203. [Google Scholar] [CrossRef]
- Gross, T.; Ramm, M.; Sonntag, H.; Unger, W.; Weijers, H.M.; Adem, E.H. An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference. Surf. Interface Anal. 1992, 18, 59–64. [Google Scholar] [CrossRef]
- Pélisson-Schecker, A.; Hug, H.J.; Patscheider, J. Charge referencing issues in XPS of insulators as evidenced in the case of Al-Si-N thin films. Surf. Interface Anal. 2012, 44, 29–36. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Tai, L.; Lau, L.W.; Zhou, D. Mitigating surface charging in XPS using an in-situ sub-nanometer gold coating technique. Mater. Charact. 2023, 196, 112663. [Google Scholar] [CrossRef]
- ASTM E1523-15; Standard Guide to Charge Control and Charge Referencing Techniques in X-Ray Photoelectron Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2015.
- ISO 19318:2004; Surface Chemical Analysis—Reporting of Methods Used for Charge Control and Charge Correction. ASTM International: West Conshohocken, PA, USA, 2004.
- Vallayer, B.; Saito, Y.; Treheux, D. In Proceedings of the 2nd International Conference Solid Dielectrics CSC2, Antibes, France, April 1995; Societe Franc¸aise du Vide: Paris, France, 1995; p. 589. [Google Scholar]
- Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 105, 155–185. [Google Scholar] [CrossRef]
- Gonska, H.; Freund, H.J.; Hohlneicher, G. On the importance of photoconduction in ESCA experiments. J. Electron Spectrosc. Relat. Phenom. 1977, 12, 435–441. [Google Scholar] [CrossRef]
- Ebel, M.F.; Ebel, H. About the charging effect in X-ray photoelectron spectrometry. J. Electron Spectrosc. Relat. Phenom. 1974, 3, 169–180. [Google Scholar] [CrossRef]
- Salaneck, W.R.; Zallen, R. Surface charging effects on valence band spectra in X-ray photoemission: Crystalline and Amorphous As2S3. Solid State Commun. 1976, 20, 793–797. [Google Scholar] [CrossRef]
- Arcos, T.; Müller, H.; Weinberger, C.; Grundmeier, G. UV-enhanced environmental charge compensation in near ambient pressure XPS. J. Electron Spectrosc. Relat. Phenom. 2023, 264, 147317. [Google Scholar] [CrossRef]
- Yu, X.; Hantsche, H. Pressure dependence of the charging effect in monochromatized small spot X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1990, 50, 19–29. [Google Scholar] [CrossRef]
- Modiba, F.; Arendse, C.J.; Oliphant, C.J.; Jordaan, W.A.; Mostert, L. Evolution of the chemical composition of Sn thin films heated during X-ray photoelectron spectroscopy. Surf. Interfaces 2019, 17, 100378. [Google Scholar] [CrossRef]
- Bryson, C.E. Surface potential control in XPS. Surf. Sci. 1987, 189, 50–58. [Google Scholar] [CrossRef]
- Tielsch, B.J.; Fulghum, J.E. Differential charging in XPS. Part III. A comparison of charging in thin polymer overlayers on conducting and non-conducting substrates. Surf. Interface Anal. 1997, 25, 904–912. [Google Scholar] [CrossRef]
- Steinberger, R.; Duchoslav, J.; Greunz, T.; Arndt, M.; Stifter, D. Investigation of the chemical stability of different Cr(VI) based compounds during regular X-ray photoelectron spectroscopy measurements. Corros. Sci. 2015, 90, 562–571. [Google Scholar] [CrossRef]
- Zhu, L.; Li, W.; Ma, L.; Xu, X.; Luo, J. Observations on valence-band electronic structure and surface states of bulk insulators based on fast stabilization process of sample charging in UPS. Laser Photonics Rev. 2024, 18, 202301069. [Google Scholar] [CrossRef]
- Salaneck, W.R. Classical ultraviolet photoelectron spectroscopy of polymers. J. Electron Spectrosc. Relat. Phenom. 2009, 174, 3–9. [Google Scholar] [CrossRef]
- Whitten, J.E. Ultraviolet photoelectron spectroscopy: Practical aspects and best practices. Appl. Surf. Sci. Adv. 2023, 13, 100384. [Google Scholar] [CrossRef]
- Beamson, G.; Clark, D.T.; Hayes, N.W.; Law, D.S.-L.; Siracusa, V.; Recca, A. High-resolution X-ray photoelectron spectroscopy of crystalline and amorphous poly (ethylene terephthalate): A study of biaxially oriented film, spin cast film and polymer melt. Polymer 1996, 37, 379–385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Xu, X. UV-Assisted Charge Neutralization for Reliable XPS Measurements on Insulating Materials. Materials 2025, 18, 3051. https://doi.org/10.3390/ma18133051
Zhu L, Xu X. UV-Assisted Charge Neutralization for Reliable XPS Measurements on Insulating Materials. Materials. 2025; 18(13):3051. https://doi.org/10.3390/ma18133051
Chicago/Turabian StyleZhu, Lei, and Xuefeng Xu. 2025. "UV-Assisted Charge Neutralization for Reliable XPS Measurements on Insulating Materials" Materials 18, no. 13: 3051. https://doi.org/10.3390/ma18133051
APA StyleZhu, L., & Xu, X. (2025). UV-Assisted Charge Neutralization for Reliable XPS Measurements on Insulating Materials. Materials, 18(13), 3051. https://doi.org/10.3390/ma18133051