Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (250)

Search Parameters:
Keywords = exosome engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1642 KB  
Review
Controlling Biogenesis and Engineering of Exosomes to Inhibit Growth and Promote Death in Glioblastoma Multiforme
by Srikar Alapati and Swapan K. Ray
Brain Sci. 2026, 16(2), 130; https://doi.org/10.3390/brainsci16020130 - 25 Jan 2026
Abstract
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built [...] Read more.
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built up by the tumor cells. A growing body of research has identified exosomes as critical enablers of therapy resistance. These nanoscale vesicles enable GBM cells to disseminate oncogenic proteins, nucleic acids, and lipids that collectively promote angiogenesis, maintain autophagy under metabolic pressure, and suppress apoptosis. As interest grows in targeting tumor communication networks, exosome-based therapeutic strategies have emerged as promising avenues for improving therapeutic outcomes in GBM. This review integrates current insights into two complementary therapeutic strategies: inhibiting exosome biogenesis and secretion, and engineering exosomes as precision vehicles for the delivery of anti-tumor molecular cargo. Key molecular regulators of exosome formation—including the endosomal sorting complex required for transport (ESCRT) machinery, tumor susceptibility gene 101 (TSG101) protein, ceramide-driven pathways, and Rab GTPases—govern the sorting and release of factors that enhance GBM survival. Targeting these pathways through pharmacological or genetic means has shown promise in suppressing angiogenic signaling, disrupting autophagic flux via modulation of autophagy-related gene (ATG) proteins, and sensitizing tumor cells to apoptosis by destabilizing mitochondria and associated survival networks. In parallel, advances in exosome engineering—encompassing siRNA loading, miRNA enrichment, and small-molecule drug packaging—offer new routes for delivering therapeutic agents across the blood–brain barrier with high cellular specificity. Engineered exosomes carrying anti-angiogenic, autophagy-inhibiting, or pro-apoptotic molecules can reprogram the tumor microenvironment and activate both the intrinsic mitochondrial and extrinsic ligand-mediated apoptotic pathways. Collectively, current evidence underscores the potential of strategically modulating endogenous exosome biogenesis and harnessing exogenous engineered therapeutic exosomes to interrupt the angiogenic and autophagic circuits that underpin therapy resistance, ultimately leading to the induction of apoptotic cell death in GBM. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
32 pages, 2889 KB  
Review
Exosomes as Specific Vehicles for Delivery of Combination Therapies for Inhibiting Autophagy and Inducing Apoptosis in MYCN-Amplified Neuroblastoma Displaying Gut Dysbiosis: Current Challenges and Future Opportunities
by Kendall Leigh and Swapan K. Ray
Brain Sci. 2026, 16(2), 125; https://doi.org/10.3390/brainsci16020125 - 24 Jan 2026
Viewed by 53
Abstract
Neuroblastoma is a highly aggressive pediatric malignancy originating from neural crest progenitor cells, predominantly in the adrenal medulla. Amplification of the MYCN oncogene occurs in 20–30% of all neuroblastoma cases and approximately 50% of high-risk tumors, strongly correlating with poor prognosis, relapse, and [...] Read more.
Neuroblastoma is a highly aggressive pediatric malignancy originating from neural crest progenitor cells, predominantly in the adrenal medulla. Amplification of the MYCN oncogene occurs in 20–30% of all neuroblastoma cases and approximately 50% of high-risk tumors, strongly correlating with poor prognosis, relapse, and multidrug resistance. MYCN-driven oncogenesis promotes tumor progression by suppressing apoptotic signaling and enhancing survival pathways, including autophagy—a key mechanism underlying resistance to chemotherapy and immunotherapy. This review examines current therapeutic strategies and resistance mechanisms in MYCN-amplified neuroblastoma, while introducing emerging approaches utilizing exosomes as precision drug delivery systems. Exosomes, nanoscale extracellular vesicles secreted by the tumor cells, exhibit natural tropism and can be engineered to selectively target neuroblastoma-specific biomarkers such as glypican-2 (GPC2), which is highly expressed in MYCN-amplified tumors. Leveraging this property, neuroblastoma-derived exosomes can be purified, modified, and loaded with small interfering RNA (siRNA) to silence MYCN expression, combined with chloroquine—an FDA-approved autophagy inhibitor—to simultaneously inhibit autophagy and induce apoptotic signaling. This dual-targeted approach aims to overcome drug resistance, reduce off-target toxicity, and enhance therapeutic efficacy through exosome-mediated specificity. Furthermore, gut dysbiosis has emerged as a critical factor influencing tumor progression and diminishing treatment efficacy in MYCN-amplified neuroblastoma. We propose integrating microbiota-derived exosomes engineered to deliver anti-inflammatory microRNAs (miRNAs) to the gut mucosa, restoring eubiosis and potentiating systemic anti-tumor responses. Collectively, exosome-based strategies represent a paradigm shift in formulating combination therapies, offering a multifaceted approach to target MYCN amplification, inhibit autophagy, induce apoptosis, and modulate the tumor-microbiome axis. These innovations hold significant promise for improving clinical outcomes in high-risk MYCN-amplified neuroblastoma patients. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Graphical abstract

17 pages, 829 KB  
Review
Spatiotemporal Regulation and Lineage Specification in Embryonic Endochondral Ossification
by Sixun Wu, Keita Kondo and Yuki Matsushita
Int. J. Mol. Sci. 2026, 27(2), 926; https://doi.org/10.3390/ijms27020926 - 16 Jan 2026
Viewed by 153
Abstract
Long bone formation in vertebrates proceeds via endochondral ossification, a sequential process that begins with mesenchymal condensation, advances through cartilage anlage formation, and culminates in its replacement by mineralized bone. Recent advances in inducible lineage tracing and single-cell genomics have revealed that, rather [...] Read more.
Long bone formation in vertebrates proceeds via endochondral ossification, a sequential process that begins with mesenchymal condensation, advances through cartilage anlage formation, and culminates in its replacement by mineralized bone. Recent advances in inducible lineage tracing and single-cell genomics have revealed that, rather than being a uniform event, mesenchymal condensation rapidly segregates into progenitor pools with distinct fates. Centrally located Sox9+/Fgfr3+ chondroprogenitors expand into the growth plate and metaphyseal stroma, peripheral Hes1+ boundary cells refine condensation via asymmetric division, and outer-layer Dlx5+ perichondrial cells generate the bone collar and cortical bone. Concurrently, dorsoventral polarity established by Wnt7a–Lmx1b and En1 ensures that dorsal progenitors retain positional identity throughout development. These lineage divergences integrate with signaling networks, including the Ihh–PTHrP, FGF, BMPs, and WNT/β-catenin networks, which impose temporal control over chondrocyte proliferation, hypertrophy, and vascular invasion. Perturbations in these programs, exemplified by mutations in Fgfr3, Sox9, and Dlx5, underlie region-specific skeletal dysplasias, such as achondroplasia, campomelic dysplasia, and split-hand/foot malformation, demonstrating the lasting impacts of embryonic patterning errors. Based on these insights, regenerative strategies are increasingly drawing upon developmental principles, with organoid cultures recapitulating ossification centers, biomimetic hydrogels engineered for spatiotemporal morphogen delivery, and stem cell- or exosome-based therapies harnessing developmental microRNA networks. By bridging developmental biology with biomaterials science, these approaches provide both a roadmap to unravel skeletal disorders and a blueprint for next-generation therapies to reconstruct functional bones with the precision of the embryonic blueprint. Full article
Show Figures

Figure 1

31 pages, 1515 KB  
Review
Regenerative Strategies for Androgenetic Alopecia: Evidence, Mechanisms, and Translational Pathways
by Rimma Laufer Britva and Amos Gilhar
Cosmetics 2026, 13(1), 19; https://doi.org/10.3390/cosmetics13010019 - 14 Jan 2026
Viewed by 565
Abstract
Hair loss disorders, particularly androgenetic alopecia (AGA), are common conditions that carry significant psychosocial impact. Current standard therapies, including minoxidil, finasteride, and hair transplantation, primarily slow progression or re-distribute existing follicles and do not regenerate lost follicular structures. In recent years, regenerative medicine [...] Read more.
Hair loss disorders, particularly androgenetic alopecia (AGA), are common conditions that carry significant psychosocial impact. Current standard therapies, including minoxidil, finasteride, and hair transplantation, primarily slow progression or re-distribute existing follicles and do not regenerate lost follicular structures. In recent years, regenerative medicine has been associated with a gradual shift toward approaches that aim to restore follicular function and architecture. Stem cell-derived conditioned media and exosomes have shown the ability to activate Wnt/β-catenin signaling, enhance angiogenesis, modulate inflammation, and promote dermal papilla cell survival, resulting in improved hair density and shaft thickness with favorable safety profiles. Autologous cell-based therapies, including adipose-derived stem cells and dermal sheath cup cells, have demonstrated the potential to rescue miniaturized follicles, although durability and standardization remain challenges. Adjunctive interventions such as microneedling and platelet-rich plasma (PRP) further augment follicular regeneration by inducing controlled micro-injury and releasing growth and neurotrophic factors. In parallel, machine learning-based diagnostic tools and deep hair phenotyping offer improved severity scoring, treatment monitoring, and personalized therapeutic planning, while robotic Follicular Unit Excision (FUE) platforms enhance surgical precision and graft preservation. Advances in tissue engineering and 3D follicle organoid culture suggest progress toward producing transplantable follicle units, though large-scale clinical translation is still in early development. Collectively, these emerging biological and technological strategies indicate movement beyond symptomatic management toward more targeted, multimodal approaches. Future progress will depend on standardized protocols, regulatory clarity, and long-term clinical trials to define which regenerative approaches can reliably achieve sustainable follicle renewal in routine cosmetic dermatology practice. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

31 pages, 1879 KB  
Review
Stem Cell-Derived Exosomes for Diabetic Wound Healing: Mechanisms, Nano-Delivery Systems, and Translational Perspectives
by Sumsuddin Chowdhury, Aman Kumar, Preeti Patel, Balak Das Kurmi, Shweta Jain, Banty Kumar and Ankur Vaidya
J. Nanotheranostics 2026, 7(1), 1; https://doi.org/10.3390/jnt7010001 - 6 Jan 2026
Viewed by 471
Abstract
Diabetic wounds remain chronically non-healing due to impaired angiogenesis, persistent inflammation, and defective extracellular matrix remodelling. In recent years, stem cell-derived exosomes have emerged as a potent cell-free regenerative strategy capable of recapitulating the therapeutic benefits of mesenchymal stem cells while avoiding risks [...] Read more.
Diabetic wounds remain chronically non-healing due to impaired angiogenesis, persistent inflammation, and defective extracellular matrix remodelling. In recent years, stem cell-derived exosomes have emerged as a potent cell-free regenerative strategy capable of recapitulating the therapeutic benefits of mesenchymal stem cells while avoiding risks associated with direct cell transplantation. This review critically evaluates the preclinical evidence supporting the use of exosomes derived from adipose tissue, bone marrow, umbilical cord, and induced pluripotent stem cells for diabetic wound repair. These exosomes deliver bioactive cargos such as microRNAs, proteins, lipids, and cytokines that modulate key signalling pathways, including Phosphatidylinositol 3-kinase/Protein kinase (PI3K/Akt), Nuclear factor kappa B (NF-κB), Mitogen-activated protein kinase (MAPK), Transforming growth factor-beta (TGF-β/Smad), and Hypoxia inducible factor-1α/Vascular endothelial growth factor (HIF-1α/VEGF), thereby promoting angiogenesis, accelerating fibroblast and keratinocyte proliferation, facilitating re-epithelialization, and restoring immune balance through M2 macrophage polarization. A central focus of this review is the recent advances in exosome-based delivery systems, including hydrogels, microneedles, 3D scaffolds, and decellularized extracellular matrix composites, which significantly enhance exosome stability, retention, and targeted release at wound sites. Comparative insights between stem cell therapy and exosome therapy highlight the superior safety, scalability, and regulatory advantages of exosome-based approaches. We also summarize progress in exosome engineering, manufacturing, quality control, and ongoing clinical investigations, along with challenges related to standardization, dosage, and translational readiness. Collectively, this review provides a comprehensive mechanistic and translational framework that positions stem cell-derived exosomes as a next-generation, cell-free regenerative strategy with the potential to overcome current therapeutic limitations and redefine clinical management of diabetic wound healing. Full article
(This article belongs to the Special Issue Feature Review Papers in Nanotheranostics)
Show Figures

Graphical abstract

28 pages, 1526 KB  
Review
Applications of Exosomes in Female Medicine: A Systematic Review of Molecular Biology, Diagnostic and Therapeutic Perspectives
by Heidi Mariadas, Jie-Hong Chen and Kuo-Hu Chen
Int. J. Mol. Sci. 2026, 27(1), 504; https://doi.org/10.3390/ijms27010504 - 3 Jan 2026
Viewed by 611
Abstract
Exosomes are nanoscale extracellular vesicles that mediate intercellular communication by transporting microRNAs, proteins, and lipids. Generated through Endosomal Sorting Complex Required for Transport (ESCRT)-dependent mechanisms or ESCRT-independent pathways, exosomes are released when multivesicular bodies fuse with the plasma membrane. The ESCRT-dependent pathway involves [...] Read more.
Exosomes are nanoscale extracellular vesicles that mediate intercellular communication by transporting microRNAs, proteins, and lipids. Generated through Endosomal Sorting Complex Required for Transport (ESCRT)-dependent mechanisms or ESCRT-independent pathways, exosomes are released when multivesicular bodies fuse with the plasma membrane. The ESCRT-dependent pathway involves sequential protein complexes (ESCRT-0, I, II, III) that recognize and sort ubiquitinated cargo, induce membrane budding, and facilitate vesicle scission. In contrast, the ESCRT-independent pathway relies on membrane lipids such as ceramide and proteins like tetraspanins (CD9, CD63, CD81) to promote vesicle formation without ESCRT machinery. Furthermore, post-translational modifications, including ubiquitination, sumoylation, and phosphorylation, further serve as molecular switches, modulating the affinity of ESCRT complexes or cargo proteins for membrane domains and affecting ILV formation rates. In reproductive medicine, exosomes regulate oocyte maturation, embryo–endometrial crosstalk, placental development, and maternal–fetal communication. Altered exosomal signaling contributes to obstetric complications, including preeclampsia, gestational diabetes mellitus, and preterm birth, whereas distinct exosomal miRNA signatures serve as potential diagnostic biomarkers. In gynecology, dysregulated exosomes are implicated in endometriosis, polycystic ovary syndrome, premature ovarian insufficiency, and gynecological malignancies. In contrast, mesenchymal stem cell-derived exosomes show therapeutic promise in restoring ovarian function and enhancing fertility outcomes. The distinctive molecular profiles of circulating exosomes enable minimally invasive diagnosis, while their biocompatibility and ability to cross biological barriers position them as vehicles for targeted drug delivery. Characterization of accessible data provides non-invasive opportunities for disease monitoring. However, clinical translation faces challenges, including standardization of isolation protocols, establishment of reference ranges for biomarkers, and optimization of therapeutic dosing. This review summarizes exosome biogenesis, characterization methods, physiological functions, and clinical applications in obstetrics and gynecology, with an emphasis on their diagnostic and therapeutic potential. Future directions include large-scale biomarker validation studies, engineering approaches to enhance exosome targeting, and integration with precision medicine platforms to advance personalized reproductive healthcare. Full article
(This article belongs to the Special Issue Exosomes—3rd Edition)
Show Figures

Figure 1

27 pages, 1445 KB  
Review
Smart Healing for Wound Repair: Emerging Multifunctional Strategies in Personalized Regenerative Medicine and Their Relevance to Orthopedics
by Carla Renata Arciola, Veronica Panichi, Gloria Bua, Silvia Costantini, Giulia Bottau, Stefano Ravaioli, Eleonora Capponi and Davide Campoccia
Antibiotics 2026, 15(1), 36; https://doi.org/10.3390/antibiotics15010036 - 1 Jan 2026
Viewed by 667
Abstract
To address the challenges in wound healing, clinical management increasingly demands targeted, adaptive, responsive, and patient-centered strategies. This is especially true for wounds characterized by delayed healing and a high risk of infection. Advances in regenerative medicine and biomaterial technologies are fostering the [...] Read more.
To address the challenges in wound healing, clinical management increasingly demands targeted, adaptive, responsive, and patient-centered strategies. This is especially true for wounds characterized by delayed healing and a high risk of infection. Advances in regenerative medicine and biomaterial technologies are fostering the development of multifunctional approaches that integrate tissue regeneration, antibacterial/antibiofilm activity, immunomodulation, and real-time monitoring. This paper surveys emerging platforms, including both natural and synthetic scaffolds, hydrogels enriched with platelet-derived growth factors, glycosaminoglycan mimetics, bioactive peptides (such as GHK-Cu and antimicrobial peptides), nanoscaffolds, and stimuli-responsive systems. The paper also explores cutting-edge technologies such as water-powered, electronics-free dressings that deliver localized electrical stimulation; biodegradable bioelectric sutures that produce self-sustained mechano-electrical signals; and sensory bandages that monitor pH, moisture, temperature, and bacterial contamination in real-time while enabling on-demand drug release with pro-regenerative, antibacterial, and other therapeutic functionalities. Further therapeutic approaches include natural matrices, exosomes, gene editing, 3D bioprinting, and AI-assisted design. Particular attention is paid to orthopedic applications and orthopedic implant infection. A brief section addresses the still unresolved challenge of articular cartilage regeneration. Interdisciplinary innovation, integrating insights from molecular biology through engineering, plays a central role in translating novel strategies into tailored, clinically effective wound management solutions. Full article
Show Figures

Figure 1

43 pages, 7705 KB  
Review
From CAR-T Cells to Exosome-Based Immunotherapy: Exploring the Frontiers of Cell-Free Targeted Cancer Therapeutics
by Alexandru Tîrziu, Florina Maria Bojin, Oana Isabella Gavriliuc, Cosmin Ioan Faur and Virgil Păunescu
Cells 2026, 15(1), 70; https://doi.org/10.3390/cells15010070 - 31 Dec 2025
Viewed by 851
Abstract
Chimeric antigen receptor (CAR) cell therapies have revolutionized cancer immunotherapy by enabling targeted and potent antitumor immune responses. However, clinical challenges such as limited efficacy in solid tumors, severe toxicities including cytokine release syndrome (CRS), and manufacturing complexities restrict their broader use. Recently, [...] Read more.
Chimeric antigen receptor (CAR) cell therapies have revolutionized cancer immunotherapy by enabling targeted and potent antitumor immune responses. However, clinical challenges such as limited efficacy in solid tumors, severe toxicities including cytokine release syndrome (CRS), and manufacturing complexities restrict their broader use. Recently, CAR cell-derived exosomes (CAR-Exos) have emerged as promising cell-free therapeutic alternatives that retain the key antitumor functionalities of their parent cells while potentially overcoming the limitations of live cellular therapies. These nanoscale vesicles can deliver bioactive CAR molecules, cytotoxic proteins, and immunomodulatory cargo, enabling targeted tumor cell killing with reduced systemic toxicity and offering “off-the-shelf” applicability. This review comprehensively explores the biology, engineering, and therapeutic potential of CAR-Exos derived from T cells, natural killer (NK) cells, and other immune effectors. We discuss advances in isolation, characterization, and cargo profiling techniques, as well as preclinical and early clinical data supporting their application. Further, we address translational challenges including large-scale production, biodistribution, and immune evasion in tumor microenvironments. Combining cellular and exosomal CAR platforms holds promise to enhance efficacy and safety in cancer treatment, representing a frontier in targeted immunotherapy. Full article
Show Figures

Figure 1

23 pages, 610 KB  
Review
Optimizing Extracellular Vesicles for Cardiac Repair Post-Myocardial Infarction: Approaches and Challenges
by Yanling Huang, Han Li, Jinjie Xiong, Xvehua Wang, Jiaxi Lv, Ni Xiong, Qianyi Liu, Lihui Yin, Zhaohui Wang and Yan Wang
Biomolecules 2026, 16(1), 58; https://doi.org/10.3390/biom16010058 - 30 Dec 2025
Viewed by 404
Abstract
Ischemic heart disease remains the leading cause of cardiovascular mortality worldwide. In myocardial infarction (MI), extracellular vesicles (EVs)—particularly small EVs (sEVs)—transport therapeutic cargo such as miR-21-5p, which suppresses apoptosis, and other proteins, lipids, and RNAs that can modulate cell death, inflammation, angiogenesis, and [...] Read more.
Ischemic heart disease remains the leading cause of cardiovascular mortality worldwide. In myocardial infarction (MI), extracellular vesicles (EVs)—particularly small EVs (sEVs)—transport therapeutic cargo such as miR-21-5p, which suppresses apoptosis, and other proteins, lipids, and RNAs that can modulate cell death, inflammation, angiogenesis, and remodeling. This review synthesizes recent mechanistic and preclinical evidence on native and engineered EVs for post-MI repair, mapping therapeutic entry points across the MI timeline (acute injury, inflammation, and healing) and comparing EV sources (stem-cell and non-stem-cell), administration routes, and dosing strategies. We highlight engineering approaches—including surface ligands for cardiac homing, rational cargo loading to enhance potency, and biomaterial depots to prolong myocardial residence—that aim to improve tropism, durability, and efficacy. Manufacturing and analytical considerations are discussed in the context of contemporary guidance, with emphasis on identity, purity, and potency assays, as well as safety, immunogenicity, and pharmacology relevant to cardiac populations. Across small- and large-animal models, EV-based interventions have been associated with reduced infarct/scar burden, enhanced vascularization, and improved ventricular function, with representative preclinical studies reporting approximately 25–45% relative reductions in infarct size in rodent and porcine MI models, despite substantial heterogeneity in EV sources, formulations, and outcome reporting that limits cross-study comparability. We conclude that achieving clinical translation will require standardized cardiac-targeting strategies, validated good manufacturing practice (GMP)-compatible manufacturing platforms, and harmonized potency assays, alongside rigorous, head-to-head preclinical designs, to advance EV-based cardiorepair toward clinical testing. Full article
(This article belongs to the Special Issue Advances in Nano-Based Drug Delivery: Unveiling the Next Frontier)
Show Figures

Figure 1

13 pages, 1879 KB  
Article
Engineering Self-Assembled PEEK Scaffolds with Marine-Derived Exosomes and Bacteria-Targeting Aptamers for Enhanced Antibacterial Functions
by Chen Zhang, Jinchao You, Runyi Lin, Yuansong Ye, Chuchu Cheng, Haopeng Wang, Dejing Li, Junxiang Wang and Shan Chen
J. Funct. Biomater. 2026, 17(1), 23; https://doi.org/10.3390/jfb17010023 - 30 Dec 2025
Viewed by 423
Abstract
Repairing bone defects with implants is an important topic in the field of regenerative medicine, but bacterial infection presents a significant barrier in clinical practice. Therefore, bone implants with antibacterial functionality are currently in high demand. Fresh seaweed-derived exosomes (EXOs) exhibited promising antibacterial [...] Read more.
Repairing bone defects with implants is an important topic in the field of regenerative medicine, but bacterial infection presents a significant barrier in clinical practice. Therefore, bone implants with antibacterial functionality are currently in high demand. Fresh seaweed-derived exosomes (EXOs) exhibited promising antibacterial activity against bacteria, indicating their potential as natural antimicrobial agents. Moreover, equipping the exosomal lipid bilayer with bacteria-targeting aptamers (Apt), termed EXOs-Apt, enabled precise bacterial killing, thereby promoting more effective antibacterial functions. In our design, porous polyetheretherketone (PEEK) scaffolds were 3D-printed using the melt deposition manufacturing process. Subsequently, the scaffold surfaces were modified via dopamine self-polymerization, resulting in the formation of a polydopamine (PDA) coating. Then, EXOs-Apt was applied to functionalize PEEK scaffolds with antibacterial activity. Given that EXOs display bactericidal effects while Apt facilitates bacterial capture, we engineered a surface coating platform that incorporates both components to produce a multifunctional scaffold with synergistic antibacterial activity. The results showed that modifying EXOs-Apt on PEEK scaffolds significantly improved their antibacterial performance against Escherichia coli and Staphylococcus aureus. To our knowledge, this is the first study to use EXOs-Apt as antibacterial coatings modified on PEEK scaffolds. This study provides new strategies and ideas for the development of antibacterial PEEK orthopedic implants with promising clinical value for infection-resistant repair of bone defects. Full article
(This article belongs to the Section Antibacterial Biomaterials)
Show Figures

Figure 1

24 pages, 4823 KB  
Review
Exosome-Enhanced Sonodynamic Therapy in Cancer: Emerging Synergies and Modulation of the Tumor Microenvironment
by Giulia Chiabotto, Marzia Conte and Valentina Cauda
Cancers 2026, 18(1), 118; https://doi.org/10.3390/cancers18010118 - 30 Dec 2025
Viewed by 555
Abstract
The development of safer, more effective, and tumor-specific therapeutic strategies remains a major challenge in oncology. Conventional treatments such as chemotherapy and radiotherapy often cause severe side effects and are limited in their ability to target deep-seated or resistant tumors. In this context, [...] Read more.
The development of safer, more effective, and tumor-specific therapeutic strategies remains a major challenge in oncology. Conventional treatments such as chemotherapy and radiotherapy often cause severe side effects and are limited in their ability to target deep-seated or resistant tumors. In this context, sonodynamic therapy (SDT) has emerged as a promising, non-invasive option, harnessing low-intensity ultrasound to activate sonosensitizers deep within tissues and generate cytotoxic reactive oxygen species (ROS) that selectively induce cancer cell death. Interestingly, SDT can also be combined with other therapies to achieve synergistic effects. However, despite encouraging preclinical results, SDT clinical translation is hindered by the poor aqueous solubility, instability, and low tumor specificity of traditional sonosensitizers. To overcome these limitations, recent studies have focused on employing extracellular vesicles (EVs), especially exosomes, as natural, biomimetic nanocarriers for sonosensitizer delivery. EVs offer unique advantages, including high biocompatibility, low immunogenicity, and intrinsic tumor-targeting ability, which make them ideal platforms for improving the therapeutic precision of SDT. Although several delivery strategies have been proposed, a comprehensive and focused overview of approaches specifically designed to enhance SDT performance using EVs is currently lacking. This review summarizes recent advances in integrating EVs with SDT for cancer treatment. It discusses the mechanisms underlying SDT, the engineering strategies developed to enhance exosome functionality, and the synergistic effects achieved through this combination. Furthermore, this review emphasizes that EV-based SDT not only enhances tumor accumulation of the therapeutic nanoplatforms, but also actively remodels the tumor microenvironment by improving oxygen availability, reversing immunosuppressive conditions, and triggering durable antitumor responses. Finally, the review addresses the translational challenges and outlines the critical future directions required to advance this promising therapeutic approach toward clinical application. Full article
Show Figures

Graphical abstract

23 pages, 3415 KB  
Article
Exosomal NAMPT from Engineered Mesenchymal Stem Cells Mitigates Aortic Stenosis via Metabolic and Anti-Inflammatory Pathways
by Dipan Kumar Kundu, Matthew Kiedrowski, James Gadd, Min Gao, Madeline Evan, Yang Wang, Liya Yin, Vahagn Ohanyan, William M. Chilian and Feng Dong
Int. J. Mol. Sci. 2026, 27(1), 256; https://doi.org/10.3390/ijms27010256 - 25 Dec 2025
Viewed by 539
Abstract
The aim of this study was to determine whether exosomes from Nicotinamide phosphoribosyltransferase (NAMPT)-overexpressing mesenchymal stem cells (MSC NAMPT-Exo) can attenuate aortic stenosis (AS) and explored the underlying mechanism. NAMPT expression was examined in EC CXCR4 KO (AS) mouse hearts. Six-week-old AS mice [...] Read more.
The aim of this study was to determine whether exosomes from Nicotinamide phosphoribosyltransferase (NAMPT)-overexpressing mesenchymal stem cells (MSC NAMPT-Exo) can attenuate aortic stenosis (AS) and explored the underlying mechanism. NAMPT expression was examined in EC CXCR4 KO (AS) mouse hearts. Six-week-old AS mice received weekly injections of NAMPT-Exo, MSC-Exo, or PBS for three weeks, followed by echocardiography and histological examination of the valves (H&E, Alizarin Red, immunofluorescence). Cardiac ECs from control, AS, and NAMPT-Exo-treated mice were analyzed for miRNA expression (miR-146a-3p/5p, miR-125b-5p, miR-142a-5p). NAMPT expression was decreased in AS hearts. Treatment with NAMPT-Exo reduced aortic valve peak velocity, valvular thickening, and microcalcifications, while improving ejection fraction, fractional shortening, and ventricular dimensions. AS endothelial cells showed elevated levels of miR-146a-3p, miR-146a-5p, and miR-142a-5p, NAMPT-Exo specifically normalized miR-146a-3p. Histology revealed EndMT in AS valves, which was diminished by NAMPT-Exo. In vitro, inhibiting miR-146a-3p suppressed TGF-β-induced EndMT. Our results demonstrate that NAMPT-enriched MSC-derived exosomes effectively slow the progression of AS. Additionally, our findings highlight miR-146a-3p as a key regulator of EndMT, suggesting it as a potential molecular target for future therapies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

27 pages, 1280 KB  
Review
Cyanobacteria-Derived Extracellular Vesicles: A Novel Frontier in Drug Delivery and Therapeutics
by Khalid A. Asseri, Krishnaraju Venkatesan, Yahya I. Asiri, Saud Alqahtani, Taha Alqahtani, Pooja Muralidharan, Shaimaa Elsayed Ramadan Genena, Durgaramani Sivadasan, Premalatha Paulsamy and Kumarappan Chidambaram
Int. J. Mol. Sci. 2026, 27(1), 4; https://doi.org/10.3390/ijms27010004 - 19 Dec 2025
Viewed by 546
Abstract
Cyanobacteria, known for their diverse and potent bioactive compounds, present a unique method for drug delivery via their extracellular vesicles (EVs), often described as exosome-like due to size and function but distinct in biogenesis. These naturally occurring vesicles, particularly those from cyanobacteria, are [...] Read more.
Cyanobacteria, known for their diverse and potent bioactive compounds, present a unique method for drug delivery via their extracellular vesicles (EVs), often described as exosome-like due to size and function but distinct in biogenesis. These naturally occurring vesicles, particularly those from cyanobacteria, are gaining attention as potential carriers for targeted drug delivery because of their biocompatibility, stability, and ability to encapsulate various bioactive compounds. However, cyanobacterial EVs remain underexplored as a dedicated nanocarrier platform, and their specific advantages and limitations relative to existing systems have not been systematically synthesized. This review explores the potential therapeutic uses of cyanobacterial EVs, emphasizing their roles in cancer treatment, antimicrobial therapies, neuroprotection, and immune modulation. We explore their biogenesis and structural features, comparing them to synthetic nanocarriers like polymeric nanoparticles and liposomes. The review also addresses the challenges of isolating and characterizing cyanobacterial EVs at scale and highlights the need for advancements in synthetic biology and genetic engineering to optimize their therapeutic potential. Despite these challenges, cyanobacterial EVs’ unique properties offer significant promise for advancing drug delivery systems and providing innovative solutions for treating complex diseases. Full article
(This article belongs to the Special Issue Recent Research of Natural Products from Microalgae and Cyanobacteria)
Show Figures

Figure 1

23 pages, 2400 KB  
Review
Clinical Insights into Mesenchymal Stem Cell Applications for Spinal Cord Injury
by Matthew Shkap, Daria Namestnikova, Elvira Cherkashova, Daria Chudakova, Arthur Biktimirov, Konstantin Yarygin and Vladimir Baklaushev
Int. J. Mol. Sci. 2025, 26(24), 12139; https://doi.org/10.3390/ijms262412139 - 17 Dec 2025
Viewed by 967
Abstract
This review examines the safety and clinical efficacy of mesenchymal stem/stromal cells (MSCs)-based therapies in patients with spinal cord injury (SCI). The analysis covers 26 clinical studies conducted on patients with varying degrees of the post-SCI neurological deficit. The review highlights the methodology [...] Read more.
This review examines the safety and clinical efficacy of mesenchymal stem/stromal cells (MSCs)-based therapies in patients with spinal cord injury (SCI). The analysis covers 26 clinical studies conducted on patients with varying degrees of the post-SCI neurological deficit. The review highlights the methodology of trials, the source of MSCs, the dosage of cells administered, transplantation methods, patient inclusion criteria, and the methods of evaluating the effectiveness of the therapy. MSC transplantation in SCI was safe and feasible in all the studies summarized in our review. All studies conducted have demonstrated varying degrees of patient improvement and reduction in the severity of neurological deficits. However, further controlled randomized studies on larger numbers of patients are needed to better evaluate the therapeutic efficacy of MS transplantation. The prospects of the enhancement of the efficacy of the SCI cell therapy with MSCs, including their transplantation with other types of stem cells, administration of MSC-derived exosomes, genetic modification of MSCs, use of the MSC- and other-stem-cell-based tissue-engineered scaffolds, and combination of cell therapy with neuromodulation, are discussed. Full article
Show Figures

Figure 1

40 pages, 2651 KB  
Review
Redefining the Limits of Nanodevices-Based Drug Delivery Systems: Extracellular Vesicles
by Marina Lucia Díaz, Victoria Simón, Luciano Alejandro Benedini and Paula Verónica Messina
Pharmaceutics 2025, 17(12), 1617; https://doi.org/10.3390/pharmaceutics17121617 - 16 Dec 2025
Viewed by 641
Abstract
Extracellular vesicles (EVs) are naturally occurring cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. These nano-sized systems, which are derived from a wide range of cell types within an organism and are present in all body [...] Read more.
Extracellular vesicles (EVs) are naturally occurring cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. These nano-sized systems, which are derived from a wide range of cell types within an organism and are present in all body fluids. EVs play a crucial role both in health and disease, particularly in cancer and neurodegenerative disorders. Due to their particular structure, they can function as natural carriers for therapeutic agents and drugs, akin to synthetic liposomes. EVs exhibit numerous advantages over conventional synthetic nanocarriers and other lipid-based delivery systems, including their favorable biocompatibility, natural blood–brain barrier penetration, and capacity for gene delivery. However, EVs’ complex characterization and standardization, as well as being more expensive than other vesicular systems, are major drawbacks that need to be addressed before drug loading. The present review introduces the classification of EVs and their physiological roles, currently popular methods for isolating and purifying EVs, the main therapeutic approaches of EV-mediated drug delivery, and the functionalization of EVs as carriers. Consequently, it establishes novel pathways for advancing EV-based therapeutic methodologies across diverse medical disciplines. The study concludes with a discussion of the new challenges and future perspectives related to the clinical application of EVs. Full article
(This article belongs to the Special Issue Biomimetic Nanoparticles for Disease Treatment and Diagnosis)
Show Figures

Figure 1

Back to TopTop