Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = exosomal miR92a

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10722 KB  
Article
Mesenchymal Stem Cell-Derived Exosomes miR-143-3p Attenuates Diabetic Kidney Disease by Enhancing Podocyte Autophagy via Bcl-2/Beclin1 Pathway
by Wenze Song, Jiao Wang, Lulu Guan, Yun Zou, Jiarong Liu, Wen Chen, Jixiong Xu and Wei Cai
Biomedicines 2026, 14(1), 184; https://doi.org/10.3390/biomedicines14010184 - 14 Jan 2026
Viewed by 304
Abstract
Objective: Diabetic kidney disease (DKD) is characterized by podocyte injury and impaired autophagy. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) exhibit therapeutic potential for DKD, yet their mechanisms remain unclear. This study investigated whether BMSC-Exos restore podocyte autophagy via the miR-143-3p/Bcl-2/Beclin1 axis [...] Read more.
Objective: Diabetic kidney disease (DKD) is characterized by podocyte injury and impaired autophagy. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) exhibit therapeutic potential for DKD, yet their mechanisms remain unclear. This study investigated whether BMSC-Exos restore podocyte autophagy via the miR-143-3p/Bcl-2/Beclin1 axis to delay DKD progression. Methods: A high-glucose (HG)-induced podocyte injury model was established using mouse podocytes (MPC5). Autophagy-related proteins (Beclin1, Bcl-2, LC3) and the injury marker desmin were analyzed by Western blot and immunofluorescence (IF). High-throughput sequencing identified BMSC-Exos-enriched miRNAs, with the miR-143-3p/Bcl-2 targeting relationship validated by dual-luciferase reporter assays. BMSCs transfected with miR-143-3p mimic or inhibitor were used to assess exosomes effects on autophagy and podocin expression. In vivo, DKD mice received tail vein injections of modified BMSC-Exos, followed by evaluation of physiological parameters, biochemical indices, and renal histopathology. Results: BMSC-Exos were successfully isolated and characterized. Fluorescence microscopy confirmed exosomes internalization by HG-treated MPC5 cells. BMSC-Exos upregulated Beclin1 and LC3-II while downregulating Bcl-2 and desmin, indicating enhanced autophagy. High-throughput sequencing revealed miR-143-3p enrichment in BMSC-Exos, and Bcl-2 was confirmed as a direct target of miR-143-3p. Exosomes from miR-143-3p mimic-transfected BMSCs further promoted autophagy and podocin expression. In DKD mice, BMSC-Exos reduced blood glucose, urinary albumin-to-creatinine ratio (UACR), and ameliorated renal damage, whereas miR-143-3p inhibition attenuated these effects. Conclusions: BMSC-Exos deliver miR-143-3p to target Bcl-2, thereby activating Beclin1-mediated autophagy and ameliorating DKD. This study elucidates a novel autophagy regulatory mechanism supporting BMSC-Exos as a cell-free therapy for DKD. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

20 pages, 5363 KB  
Article
Bovine Muscle Satellite Cell-Derived Exosomes Modulate Preadipocyte Adipogenesis via bta-miR-2904
by Mengxia Sun, Mengdi Chen, Yang Yi, Binru Li, Tianyu Zhang, Ziqi Liu, Wenyu Jiao, Tianqi Si, Yunkai He and Guangjun Xia
Animals 2026, 16(2), 218; https://doi.org/10.3390/ani16020218 - 12 Jan 2026
Viewed by 158
Abstract
Intramuscular fat (IMF) significantly impacts meat quality. Exosomes have attracted increasing attention for their regulatory roles in muscle-adipose tissue crosstalk; however, their precise mechanisms remain largely unclear. Based on this, this study aimed to establish a muscle-adipose co-culture system to better simulate the [...] Read more.
Intramuscular fat (IMF) significantly impacts meat quality. Exosomes have attracted increasing attention for their regulatory roles in muscle-adipose tissue crosstalk; however, their precise mechanisms remain largely unclear. Based on this, this study aimed to establish a muscle-adipose co-culture system to better simulate the in vivo physiological environment. Using exosomal miRNAs as molecular links, we investigated how bovine muscle satellite cells influence lipid accumulation and adipogenesis in preadipocytes. We established a co-culture system of bovine muscle satellite cells and preadipocytes and found that co-culture significantly inhibited lipid droplet accumulation and adipogenesis in preadipocytes. Therefore, we hypothesized that exosomes derived from bovine muscle satellite cells regulate the adipogenic differentiation of bovine preadipocytes through intercellular communication and that specific exosomal miRNAs play pivotal roles in this regulatory process. We successfully isolated and identified muscle-derived (Mu-EXO), adipose-derived (Ad-EXO), and co-culture exosomes (Co-EXO). High-throughput sequencing revealed the differential expression profiles of miRNAs. Notably, the bovine-specific miRNA bta-miR-2904, annotated in miRBase v22 with limited cross-species conservation, was significantly enriched in Mu-EXO and Co-EXO compared with Ad-EXO. Further functional experiments demonstrated that overexpression of bta-miR-2904 markedly inhibited lipid droplet accumulation, triglyceride content, and the expression of adipogenesis-related genes in preadipocytes; inhibition had opposite effects. Our results demonstrate that bovine muscle-derived exosomal miR-2904 inhibits lipid accumulation and adipogenesis in preadipocytes. These results establish a theoretical basis for understanding skeletal muscle-adipose crosstalk and offer a novel molecular target for regulating intramuscular fat deposition in beef cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

21 pages, 3577 KB  
Article
Differential Circulating miRNA Responses to PM Exposure in Healthy and Diabetes Mellitus Patients: Implications for Lung Cancer Susceptibility
by Moe Thi Thi Han, Nichakorn Satitpornbunpot, Naoomi Tominaga, Saranta Freeouf, Khanittha Punturee, Chidchamai Kewchareonwong, Busayamas Chewaskulyong, Ganjana Lertmemongkolchai and Ratchada Cressey
Int. J. Mol. Sci. 2026, 27(2), 613; https://doi.org/10.3390/ijms27020613 - 7 Jan 2026
Viewed by 146
Abstract
Seasonal biomass-burning haze in Northern Thailand produces sharp fluctuations in ambient fine particulate matter (PM), posing heightened health risks, particularly for individuals with diabetes mellitus (DM). To identify PM-responsive biomarkers and assess whether metabolic status modifies these responses, we first performed small RNA [...] Read more.
Seasonal biomass-burning haze in Northern Thailand produces sharp fluctuations in ambient fine particulate matter (PM), posing heightened health risks, particularly for individuals with diabetes mellitus (DM). To identify PM-responsive biomarkers and assess whether metabolic status modifies these responses, we first performed small RNA sequencing in a discovery cohort using plasma samples collected during low- and high-PM periods. Thirteen circulating microRNAs (miRNAs) were differentially expressed, including reduced miR-542-3p and elevated miR-29a-3p, novelmiR-203, and novelmiR-754, with predicted targets enriched in immune and endoplasmic-reticulum stress pathways. These four miRNAs were quantified by RT-qPCR in a longitudinal cohort of adults with (n = 28) and without DM (n = 29) sampled at three PM-defined timepoints across one full haze cycle. In non-DM individuals, miR-542-3p decreased at peak exposure while miR-29a-3p and novelmiR-203 increased, with values returning toward baseline at re-exposure. DM participants showed altered baseline levels and attenuated or reversed seasonal changes. Plasma IL-8 rose markedly at peak PM in both groups, mirroring exosome concentration increases measured by NTA, indicating a transient systemic inflammatory response. In an independent clinical cohort, only miR-542-3p differed significantly between lung-cancer patients and healthy controls. These findings indicate that PM exposure reconfigures circulating miRNA, exosomal, and cytokine profiles, and that DM modifies these responses, highlighting miR-542-3p and miR-29a-3p as environmentally responsive and disease-relevant biomarker candidates. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

23 pages, 610 KB  
Review
Optimizing Extracellular Vesicles for Cardiac Repair Post-Myocardial Infarction: Approaches and Challenges
by Yanling Huang, Han Li, Jinjie Xiong, Xvehua Wang, Jiaxi Lv, Ni Xiong, Qianyi Liu, Lihui Yin, Zhaohui Wang and Yan Wang
Biomolecules 2026, 16(1), 58; https://doi.org/10.3390/biom16010058 - 30 Dec 2025
Viewed by 401
Abstract
Ischemic heart disease remains the leading cause of cardiovascular mortality worldwide. In myocardial infarction (MI), extracellular vesicles (EVs)—particularly small EVs (sEVs)—transport therapeutic cargo such as miR-21-5p, which suppresses apoptosis, and other proteins, lipids, and RNAs that can modulate cell death, inflammation, angiogenesis, and [...] Read more.
Ischemic heart disease remains the leading cause of cardiovascular mortality worldwide. In myocardial infarction (MI), extracellular vesicles (EVs)—particularly small EVs (sEVs)—transport therapeutic cargo such as miR-21-5p, which suppresses apoptosis, and other proteins, lipids, and RNAs that can modulate cell death, inflammation, angiogenesis, and remodeling. This review synthesizes recent mechanistic and preclinical evidence on native and engineered EVs for post-MI repair, mapping therapeutic entry points across the MI timeline (acute injury, inflammation, and healing) and comparing EV sources (stem-cell and non-stem-cell), administration routes, and dosing strategies. We highlight engineering approaches—including surface ligands for cardiac homing, rational cargo loading to enhance potency, and biomaterial depots to prolong myocardial residence—that aim to improve tropism, durability, and efficacy. Manufacturing and analytical considerations are discussed in the context of contemporary guidance, with emphasis on identity, purity, and potency assays, as well as safety, immunogenicity, and pharmacology relevant to cardiac populations. Across small- and large-animal models, EV-based interventions have been associated with reduced infarct/scar burden, enhanced vascularization, and improved ventricular function, with representative preclinical studies reporting approximately 25–45% relative reductions in infarct size in rodent and porcine MI models, despite substantial heterogeneity in EV sources, formulations, and outcome reporting that limits cross-study comparability. We conclude that achieving clinical translation will require standardized cardiac-targeting strategies, validated good manufacturing practice (GMP)-compatible manufacturing platforms, and harmonized potency assays, alongside rigorous, head-to-head preclinical designs, to advance EV-based cardiorepair toward clinical testing. Full article
(This article belongs to the Special Issue Advances in Nano-Based Drug Delivery: Unveiling the Next Frontier)
Show Figures

Figure 1

16 pages, 3017 KB  
Article
Nobiletin Attenuates Adipogenesis and Promotes Browning in 3T3-L1 Adipocytes Through Exosomal miRNA-Mediated AMPK Activation
by Shweta Chauhan, Hana Baek, Varun Jaiswal, Miey Park and Hae-Jeung Lee
Curr. Issues Mol. Biol. 2026, 48(1), 36; https://doi.org/10.3390/cimb48010036 - 26 Dec 2025
Viewed by 332
Abstract
Nobiletin, a citrus-derived polymethoxylated flavone, has been reported to exert anti-obesity effects, but its molecular mechanisms remain poorly understood. This study aimed to investigate whether nobiletin suppresses adipogenesis and promotes browning in 3T3-L1 adipocytes by modulating exosomal microRNAs (miRNAs) and AMPK signaling. To [...] Read more.
Nobiletin, a citrus-derived polymethoxylated flavone, has been reported to exert anti-obesity effects, but its molecular mechanisms remain poorly understood. This study aimed to investigate whether nobiletin suppresses adipogenesis and promotes browning in 3T3-L1 adipocytes by modulating exosomal microRNAs (miRNAs) and AMPK signaling. To this end, we treated 3T3-L1 adipocytes with various concentrations of nobiletin and evaluated gene and protein expression by RT-qPCR and Western blotting. Nobiletin significantly reduced intracellular lipid accumulation at 50 μM (p < 0.001) and downregulated key adipogenic transcription factors, PPARγ, C/EBPα, and SREBP-1c, and suppressed the lipogenic enzyme FAS, while activating the AMPK/ACC signaling pathway. Concomitantly, it enhanced the expression of thermogenic markers UCP-1, PRDM16, and PGC-1α, indicating a metabolic shift toward energy expenditure. Exosomal RNA-seq revealed 10 differentially expressed miRNAs, of which miR-181d-5p (3.1-fold) and miR-221-3p (2.4-fold) were upregulated, whereas miR-205-5p (−2.9-fold), miR-331-3p (−3.2-fold), miR-130b-3p (−2.6-fold), miR-143-5p (−2.9-fold), miR-183-3p (−2.8-fold), miR-196b-5p (−2.4-fold), miR-26b-3p (−2.2-fold), and miR-378d (−2.7-fold) were verified by RT-qPCR after nobiletin treatment (50 μM). These miRNAs are functionally associated with adipogenic and thermogenic pathways, supporting a regulatory role of the exosomal miRNA network in nobiletin’s action. Collectively, our results identify a novel exosome–miRNA–AMPK axis underlying the anti-adipogenic and browning-inducing activities of nobiletin, highlighting its potential as a therapeutic phytochemical for obesity prevention. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 596 KB  
Brief Report
Expression of Serum and Exosomal microRNA-34a in Subjects with Increased Fat Mass
by Jacqueline Alejandra Noboa-Velástegui, Rodolfo Iván Valdez-Vega, Jorge Castro-Albarran, Perla Monserrat Madrigal-Ruiz, Ana Lilia Fletes-Rayas, Sandra Luz Ruiz-Quezada, Martha Eloisa Ramos-Márquez, José de Jesús López-Jiménez, Iñaki Álvarez and Rosa Elena Navarro-Hernández
Int. J. Mol. Sci. 2026, 27(1), 270; https://doi.org/10.3390/ijms27010270 - 26 Dec 2025
Viewed by 395
Abstract
Extracellular vesicles (EVs), particularly exosomes, are key mediators of intercellular communication, transporting biomolecules such as nucleic acids, lipids, and proteins that influence immune and metabolic pathways. In adipose tissue (AT), adipocyte-derived EVs (AdEVs) play a crucial role in maintaining metabolic homeostasis and have [...] Read more.
Extracellular vesicles (EVs), particularly exosomes, are key mediators of intercellular communication, transporting biomolecules such as nucleic acids, lipids, and proteins that influence immune and metabolic pathways. In adipose tissue (AT), adipocyte-derived EVs (AdEVs) play a crucial role in maintaining metabolic homeostasis and have been implicated in obesity-related dysfunction. Among their bioactive cargo, microRNAs regulate post-transcriptional gene expression and participate in immunometabolic regulation. This study aimed to determine whether miR-34a expression in serum and circulating EVs varies according to body fat percentage, to explore its potential utility as a non-invasive biomarker of AT dysfunction. A total of 142 adults (mean age 36 ± 11 years) were classified by body fat percentage (≥25% in men, ≥35% in women). Exosomes were isolated (Invitrogen®) and characterized by cryo-TEM, and miR-34a expression was quantified by qRT-PCR. miR-34a expression correlated negatively with Total Cholesterol, Triglycerides, LDLc/HDLc, TG/HDLc, BMI, C3, CRP, fasting insulin, HOMA-IR, HOMA-B, Body adiposity, Chemerin, CCL2, AdipoQT, and AdipoQ-H, but positively with HDLc and QUICKI. Notably, LDLc, sdLDLc, sdLDLc/LDLc, TC/HDLc, and fasting glucose showed opposite correlation patterns between serum and exosomes. Overall, serum miR-34a levels were higher than in exosomes, suggesting its potential as a biomarker of metabolic dysfunction and insulin resistance. Full article
Show Figures

Figure 1

23 pages, 3415 KB  
Article
Exosomal NAMPT from Engineered Mesenchymal Stem Cells Mitigates Aortic Stenosis via Metabolic and Anti-Inflammatory Pathways
by Dipan Kumar Kundu, Matthew Kiedrowski, James Gadd, Min Gao, Madeline Evan, Yang Wang, Liya Yin, Vahagn Ohanyan, William M. Chilian and Feng Dong
Int. J. Mol. Sci. 2026, 27(1), 256; https://doi.org/10.3390/ijms27010256 - 25 Dec 2025
Viewed by 531
Abstract
The aim of this study was to determine whether exosomes from Nicotinamide phosphoribosyltransferase (NAMPT)-overexpressing mesenchymal stem cells (MSC NAMPT-Exo) can attenuate aortic stenosis (AS) and explored the underlying mechanism. NAMPT expression was examined in EC CXCR4 KO (AS) mouse hearts. Six-week-old AS mice [...] Read more.
The aim of this study was to determine whether exosomes from Nicotinamide phosphoribosyltransferase (NAMPT)-overexpressing mesenchymal stem cells (MSC NAMPT-Exo) can attenuate aortic stenosis (AS) and explored the underlying mechanism. NAMPT expression was examined in EC CXCR4 KO (AS) mouse hearts. Six-week-old AS mice received weekly injections of NAMPT-Exo, MSC-Exo, or PBS for three weeks, followed by echocardiography and histological examination of the valves (H&E, Alizarin Red, immunofluorescence). Cardiac ECs from control, AS, and NAMPT-Exo-treated mice were analyzed for miRNA expression (miR-146a-3p/5p, miR-125b-5p, miR-142a-5p). NAMPT expression was decreased in AS hearts. Treatment with NAMPT-Exo reduced aortic valve peak velocity, valvular thickening, and microcalcifications, while improving ejection fraction, fractional shortening, and ventricular dimensions. AS endothelial cells showed elevated levels of miR-146a-3p, miR-146a-5p, and miR-142a-5p, NAMPT-Exo specifically normalized miR-146a-3p. Histology revealed EndMT in AS valves, which was diminished by NAMPT-Exo. In vitro, inhibiting miR-146a-3p suppressed TGF-β-induced EndMT. Our results demonstrate that NAMPT-enriched MSC-derived exosomes effectively slow the progression of AS. Additionally, our findings highlight miR-146a-3p as a key regulator of EndMT, suggesting it as a potential molecular target for future therapies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

16 pages, 5182 KB  
Article
Macrophage-Derived Exosomal MALAT1 Induced by Hyperglycemia Regulates Vascular Calcification Through miR-143-3p/MGP Axis in Cultured Vascular Smooth Muscle Cells and Diabetic Rat Carotid Artery
by Kou-Gi Shyu, Bao-Wei Wang, Wei-Jen Fang and Chun-Ming Pan
Cells 2025, 14(24), 1995; https://doi.org/10.3390/cells14241995 - 15 Dec 2025
Viewed by 397
Abstract
Metastasis-associated lung adenocarcinoma transcript 1(MALAT1) is associated with vascular calcification and diabetes-related complications. However, the effect of exosomal MALAT1 derived from macrophages induced by hyperglycemia on vascular calcification (VC) remains unclear. In this study, we investigated the effect of VC and its regulatory [...] Read more.
Metastasis-associated lung adenocarcinoma transcript 1(MALAT1) is associated with vascular calcification and diabetes-related complications. However, the effect of exosomal MALAT1 derived from macrophages induced by hyperglycemia on vascular calcification (VC) remains unclear. In this study, we investigated the effect of VC and its regulatory mechanisms in cultured vascular smooth muscle cells (VSMCs) and diabetic rats by exosomal MALAT1 derived from macrophages treated with high levels of glucose. Macrophages and VSMCs were cultured in 25 mM glucose. Macrophages exposed to high glucose exhibited increased expression of exosomal MALAT1. When transferred to VSMCs, exosomal MALAT1 significantly suppressed the expression of miR-143-3p while upregulating Matrix Gla protein (MGP, an inhibitor of VC) mRNA and protein levels. Interventions using MALAT1 siRNA or miR-143-3p mimics effectively reversed this effect. Both MALAT1 siRNA and overexpression of miR-143-3p significantly increased the calcium content in cultured VSMCs and in the carotid artery of diabetic rats following balloon injury. Balloon injury to the carotid artery in diabetic rats treated with macrophage-derived exosomes significantly increased the expression of MALAT1 and MGP while reducing the expression of miR-143-3p in the carotid artery. These findings demonstrate that macrophage-derived exosomal MALAT1 modulates VC via the MALAT1/miR-143-3p/MGP axis under hyperglycemic conditions. The results suggest that targeting exosomal MALAT1 may offer a novel and effective therapeutic approach for mitigating VC in metabolic disorders such as diabetes. Full article
Show Figures

Graphical abstract

15 pages, 1036 KB  
Article
Sputum Exosomal microRNAs as Non-Invasive Biomarkers in COPD: A Cross-Sectional Study
by Ourania S. Kotsiou, Irene Tsilioni, Aikaterini Tsingene, Aikaterini Katsanaki, Nikolaos A. A. Balatsos, Erasmia Rouka, Zoe Daniil and Konstantinos I. Gourgoulianis
Biomedicines 2025, 13(12), 3027; https://doi.org/10.3390/biomedicines13123027 - 10 Dec 2025
Viewed by 366
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition marked by airway inflammation, airflow limitation, and structural remodeling. Exosomal microRNAs (exo-miRNAs) are stable, cell-free biomarkers reflecting airway molecular changes. While serum and BALF exosomal miRNAs have been examined, sputum-derived profiles remain underexplored. [...] Read more.
Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition marked by airway inflammation, airflow limitation, and structural remodeling. Exosomal microRNAs (exo-miRNAs) are stable, cell-free biomarkers reflecting airway molecular changes. While serum and BALF exosomal miRNAs have been examined, sputum-derived profiles remain underexplored. Methods: Induced sputum was collected from 20 clinically stable COPD patients and 10 age-matched healthy controls. Exosomes were isolated by polymer-based precipitation and verified by transmission electron microscopy and Western blotting for CD9 and CD81. Nine candidate miRNAs (miR-21, miR-155, miR-34a, miR-126, miR-210, miR-146a, miR-199a-5p, miR-223, miR-1246) were quantified by RT-qPCR. Group comparisons used the Mann–Whitney U test, correlations Pearson’s r, and diagnostic accuracy ROC analysis. Results: Sputum-derived exosomes displayed characteristic morphology and canonical protein markers. COPD patients showed significant dysregulation of exosomal miRNAs, including upregulation of miR-21 (fold change = 3.4; 95% CI: 0.12–0.64 vs. 0.18–0.22; p < 0.001) and miR-223 (fold change = 2.1; 95% CI: 0.00–3.79 vs. 0.86–1.22; p = 0.004), and downregulation of miR-155 (fold change = 0.35; 95% CI: 0.43–0.67 vs. 0.86–1.22; p = 0.002), miR-126 (fold change = 0.42; 95% CI: 0.30–0.39 vs. 0.80–1.42; p = 0.009), and miR-146a (fold change = 0.28; 95% CI: 0.49–1.12 vs. 0.87–1.35; p = 0.006). miR-21 correlated with symptom burden (CAT; r = 0.445; p = 0.049). Among individual biomarkers, miR-155 exhibited the best diagnostic performance for COPD detection (AUC = 0.730; 95% CI: 0.53–0.93), which further improved when combined with miR-126 and miR-146a (AUC = 0.841; 95% CI: 0.69–0.98). For disease stratification, miR-126 most effectively discriminated mild from moderate-to-severe COPD (AUC = 0.728; 95% CI: 0.50–0.96). These results indicate that sputum-derived exosomal miRNAs—particularly miR-155, miR-126, and miR-146a—may serve as promising non-invasive biomarkers for COPD diagnosis and clinical phenotyping. Conclusions: Sputum exosomal miRNAs reveal a distinct COPD-specific signature reflecting inflammation, impaired repair, and immune dysregulation. Composite panels incorporating miR-155, miR-126, and miR-146a enhance diagnostic accuracy and could be integrated into non-invasive workflows for COPD detection and staging. Full article
(This article belongs to the Special Issue Advanced Research in Pulmonary Pathophysiology)
Show Figures

Figure 1

38 pages, 1997 KB  
Review
The Redox–Adhesion–Exosome (RAX) Hub in Cancer: Lipid Peroxidation-Driven EMT Plasticity and Ferroptosis Defense with HNE/MDA Signaling and Lipidomic Perspectives
by Moon Nyeo Park, Jinwon Choi, Rosy Iara Maciel de Azambuja Ribeiro, Domenico V. Delfino, Seong-Gyu Ko and Bonglee Kim
Antioxidants 2025, 14(12), 1474; https://doi.org/10.3390/antiox14121474 - 8 Dec 2025
Viewed by 1029
Abstract
Cancer cell plasticity drives metastasis and therapy resistance through dynamic transitions between epithelial, mesenchymal, and neural crest stem-like (NCSC) states; however, a unifying mechanism that stabilizes these transitions remains undefined. To address this gap, we introduce a N-cadherin (CDH2)-centered redox–adhesion–exosome (RAX) hub that [...] Read more.
Cancer cell plasticity drives metastasis and therapy resistance through dynamic transitions between epithelial, mesenchymal, and neural crest stem-like (NCSC) states; however, a unifying mechanism that stabilizes these transitions remains undefined. To address this gap, we introduce a N-cadherin (CDH2)-centered redox–adhesion–exosome (RAX) hub that links oxidative signaling, adhesion dynamics, and exosome-mediated immune communication into a closed-loop framework. Within this network, reactive oxygen species (ROS) pulses license epithelial–mesenchymal transition (EMT), AXL–FAK/Src signaling consolidates mesenchymal adhesion, and selective exosomal cargoes—including miR-21, miR-200, miR-210, and PD-L1—propagate plasticity and immune evasion. Lipid peroxidation acts as a central checkpoint connecting ROS metabolism to PUFA membrane remodeling and ferroptosis vulnerability, buffered by NRF2–GPX4 and FSP1/DHODH axes, thereby converting transient oxidative pulses into persistent malignant states. Mechanistically, the RAX hub synthesizes findings from EMT/CSC biology, ferroptosis defenses, and exosome research into a self-reinforcing system that sustains tumor heterogeneity and stress resilience. Evidence from single-cell and spatial transcriptomics, intravital ROS imaging, and exosome cargo-selector studies supports the feasibility of this model. We further outline validation strategies employing HyPer–EMT–CDH2 tri-reporters, CRISPR perturbation of YBX1/ALIX cargo selectors, and spatial multi-omics in EMT-high tumors. Clinically, tumors enriched in EMT/NCSC programs—such as melanoma, neuroblastoma, small-cell lung cancer, pancreatic ductal adenocarcinoma, and triple-negative breast cancer (TNBC)—represent RAX-dependent contexts. These insights highlight biomarker-guided opportunities to target adhesion switches, ferroptosis defenses, and exosome biogenesis through lipid peroxidation-centered strategies using liquid-biopsy panels (exosomal CDH2, miR-200, miR-210) combined with organoid and xenograft models. By linking lipid peroxidation to ferroptosis defense and oxidative stress adaptation, the RAX hub aligns with the thematic focus of lipid metabolism and redox control in cancer progression. Collectively, the RAX framework may provide a conceptual basis for precision oncology by reframing metastasis and therapy resistance as emergent network properties. Full article
(This article belongs to the Special Issue Lipid Peroxidation and Cancer)
Show Figures

Figure 1

15 pages, 1117 KB  
Review
miRNA as a Prognostic Marker in Small Lung Cell Carcinoma
by Michał Bednarz, Aleksandra Osińska, Julia Durda, Milena Kędra, Michalina Boruch, Julia Gontarz, Alicja Petniak, Janusz Kocki and Paulina Gil-Kulik
Genes 2025, 16(12), 1465; https://doi.org/10.3390/genes16121465 - 8 Dec 2025
Viewed by 495
Abstract
Small-cell lung carcinoma (SCLC) is one of the most aggressive and therapeutically challenging malignancies. It is characterised by rapid progression, early metastasis and frequent relapse. Despite considerable advances in molecular oncology, effective biomarkers for prognosis and treatment response remain elusive. In this review, [...] Read more.
Small-cell lung carcinoma (SCLC) is one of the most aggressive and therapeutically challenging malignancies. It is characterised by rapid progression, early metastasis and frequent relapse. Despite considerable advances in molecular oncology, effective biomarkers for prognosis and treatment response remain elusive. In this review, we summarise and discuss recent evidence on microRNAs (miRNAs) as central regulators of SCLC biology and their potential clinical applications. A narrative review of the literature was conducted. Search of PubMed and Scopus databases identified 14 miRNAs, including miR-7-5p, miR-22-3p, miR-134, miR-181b, miR-200b, miR-335, miR-335-5p, miR-495, miR-24-3p, miR-30a-5p, miR-30a-3p, miR-100, miR-1 and miR-494, which are linked to tumour progression, therapy resistance and metastasis. These molecules influence several signalling cascades, including PI3K/Akt, Hippo, TGF-β, PARP1-mediated DNA repair and autophagy. Their abnormal expression correlates with patient outcome and may enable plasma- or exosome-based non-invasive monitoring. In particular, strategies that restore or inhibit miRNA activity using mimics or antagomiRs show promise in improving drug sensitivity and complementing current treatment options. Overall, emerging evidence supports the integration of miRNA profiling into precision oncology for SCLC, with the aim of refining diagnosis, risk assessment and therapeutic decision-making. Full article
(This article belongs to the Special Issue Function and Regulatory Mechanism of MicroRNAs in Cancers)
Show Figures

Figure 1

21 pages, 6280 KB  
Article
Bovine Adipocyte-Derived Exosomes Transport LncRNAs to Regulate Adipogenic Transdifferentiation of Bovine Muscle Satellite Cells
by Guangyao Meng, Jiasu Zhang, Zewen Wu, Jixuan Song, Qian Sun, Xinxin Zhang, Mengxia Sun, Yang Yi and Guangjun Xia
Animals 2025, 15(23), 3459; https://doi.org/10.3390/ani15233459 - 30 Nov 2025
Cited by 1 | Viewed by 397
Abstract
Intramuscular fat content is a key factor in determining the quality and value of beef. Intramuscular adipocytes and satellite cells can interact with each other, and both are the source cells for intramuscular fat formation. To better understand the mechanism of bovine adipocytes [...] Read more.
Intramuscular fat content is a key factor in determining the quality and value of beef. Intramuscular adipocytes and satellite cells can interact with each other, and both are the source cells for intramuscular fat formation. To better understand the mechanism of bovine adipocytes regulating adipogenic transdifferentiation of muscle satellite cells (MSCs), this study established a co-culture system of bovine adipocytes and bovine MSCs, identified and isolated exosomes secreted by bovine adipocytes, co-cultured exosomes with bovine MSCs, and performed lncRNA sequencing of exosomes. The results showed that lipid droplets appeared in bovine MSCs under the co-culture system, and the expression levels of the PPARγ and CEBPA, which were lipogenesis-related genes, were significantly elevated. In addition, this study identified 3425 lncRNAs in adipocyte-derived exosomes, and the target genes of these lncRNAs were significantly enriched in gene functions and pathways related to transcriptional regulation, cellular differentiation, lipogenesis, and metabolism. It is worth noting that lncRNA-DGAT2 (lncDGAT2) can competitively bind to bta-miR-2455, increase the expression of target gene DGAT2, and promote adipogenic transdifferentiation of MSCs. In summary, bovine adipocytes can regulate the adipogenic transdifferentiation of MSCs through exosomes and exosomal lncRNAs. This study provides new insights into the regulation mechanism of bovine intramuscular fat deposition. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

13 pages, 495 KB  
Review
Exosome-Derived microRNAs as Liquid-Biopsy Biomarkers in Laryngeal Squamous Cell Carcinoma: A Narrative Review and Evidence Map
by Crina Oana Pintea, Cristian Ion Mot, Islam Ragab, Şerban Talpoş, Karina-Cristina Marin, Nicolae Constantin Balica, Edward Seclaman, Kristine Guran and Delia Ioana Horhat
Biomedicines 2025, 13(12), 2929; https://doi.org/10.3390/biomedicines13122929 - 28 Nov 2025
Viewed by 530
Abstract
Exosome-derived microRNAs (miRNAs) have been proposed as minimally invasive biomarkers for laryngeal squamous- cell carcinoma (LSCC). Because oral and maxillofacial surgeons are integral to head-and-neck oncologic and reconstructive pathways, such liquid-biopsy signals could support perioperative decision-making (selection for organ-preserving surgery), margin surveillance, and [...] Read more.
Exosome-derived microRNAs (miRNAs) have been proposed as minimally invasive biomarkers for laryngeal squamous- cell carcinoma (LSCC). Because oral and maxillofacial surgeons are integral to head-and-neck oncologic and reconstructive pathways, such liquid-biopsy signals could support perioperative decision-making (selection for organ-preserving surgery), margin surveillance, and reconstructive planning. We conducted a preregistered, protocol-driven search of PubMed/MEDLINE, Web of Science, and Scopus from inception to 1 June 2025. Given the very small number of clinically comparable diagnostic studies, discordant index tests/thresholds, and high heterogeneity, we did not perform quantitative pooling or publication-bias testing. Instead, we undertook a narrative synthesis and constructed an evidence map; risk of bias tools (QUADAS-2; ROBINS-I) were applied descriptively to inform qualitative confidence. Nine studies were formally analysed based on eligibility to the study topic. Two serum-based case–control investigations (111 LSCC, 80 controls) reported areas under the ROC curve of 0.876 (miR-21 + HOTAIR) and 0.797 (miR-941), with corresponding sensitivities of 94% and 82%. Seven mechanistic papers showed that vesicular cargos—including miR-1246, circPVT1, and LINC02191—drive STAT3-dependent M2 polarisation, NOTCH1-mediated stemness, Rap1b-VEGFR2 angiogenesis, and glycolytic re-programming, producing 1.6–2.6-fold increases in invasion, tube formation, or xenograft growth. Only three studies fulfilled MISEV-2018 characterisation criteria, and none incorporated external validation. This narrative review and evidence map identifies promising but preliminary diagnostic signals and biologically plausible mechanisms for exosomal miRNAs in LSCC; however, the evidence is sparse, single-region, methodologically inconsistent, and at high risk of bias. Findings do not support clinical implementation at this stage. Priorities include harmonised EV workflows, prespecified thresholds, and prospective, multi-centre validation. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

13 pages, 2576 KB  
Brief Report
An Ovine Intestinal Organoid–Macrophage Co-Culture Model to Test the Effects of Ovine Colostrum Exosomes on Intestinal Barrier Function and Inflammation
by Mahsa Dehnavi, Giulio Galli, Carlos García-Estrada, Rafael Balaña-Fouce, F. Javier Giráldez, Mercedes Alonso, Nuria Santos, Fernando Rozada and Sonia Andrés
Int. J. Mol. Sci. 2025, 26(23), 11406; https://doi.org/10.3390/ijms262311406 - 25 Nov 2025
Viewed by 516
Abstract
Ovine colostrum exosomes obtained from nutritionally programmed dairy ewes (F0) may present modifications in microRNAs, thus having consequences for the intestinal barrier function and immunity parameters of lambs (F1). To test this hypothesis, colostrum exosomes from two ewe groups [F0-MET (nutritionally programmed ewes [...] Read more.
Ovine colostrum exosomes obtained from nutritionally programmed dairy ewes (F0) may present modifications in microRNAs, thus having consequences for the intestinal barrier function and immunity parameters of lambs (F1). To test this hypothesis, colostrum exosomes from two ewe groups [F0-MET (nutritionally programmed ewes being fed methionine during early life) and F0-CTRL (ewes not supplemented with methionine during early life)] were sequenced to compare differences in the miRNAome. In addition, these exosomes were added to an in vitro co-culture in a Transwell chamber system consisting of ovine duodenum intestinal organoids and macrophages to assess the expression of genes encoding tight junction proteins in organoids and immunity parameters in macrophages. Finally, the concentrations of cytokines (e.g., IL-12 and IL-6) were assessed by ELISA kits in the supernatants of the chamber containing macrophages. According to the miRNAome, the expression of two miRNAs (e.g., oar_miR_376c_3p and oar_miR_432) was reduced in the colostrum exosomes obtained from dairy ewes nutritionally programmed with dietary supplementation of methionine during early life (F0-MET ewes). These changes did not seem to modify the expression of intestinal barrier and immune response marker genes when these exosomes were added to a co-culture of ovine intestinal organoids and macrophages. However, the levels of IL-12 produced by macrophages were reduced (p < 0.05), which suggests the inhibition of inflammatory pathways. Further studies using ovine colostrum exosomes obtained from nutritionally programmed ewes will help to clarify their potential to improve the health of suckling lambs. Full article
Show Figures

Graphical abstract

31 pages, 4232 KB  
Systematic Review
Artificial Intelligence-Driven SELEX Design of Aptamer Panels for Urinary Multi-Biomarker Detection in Prostate Cancer: A Systematic and Bibliometric Review
by Ayoub Slalmi, Nabila Rabbah, Ilham Battas, Ikram Debbarh, Hicham Medromi and Abdelmjid Abourriche
Biomedicines 2025, 13(12), 2877; https://doi.org/10.3390/biomedicines13122877 - 25 Nov 2025
Viewed by 1114
Abstract
Background/Objectives: The limited specificity of prostate-specific antigen (PSA) drives unnecessary biopsies in prostate cancer (PCa). Urinary extracellular vesicles (uEVs) provide a non-invasive reservoir of tumor-derived nucleic acids and proteins. Aptamers selected by SELEX enable highly specific capture, and artificial intelligence (AI) can accelerate [...] Read more.
Background/Objectives: The limited specificity of prostate-specific antigen (PSA) drives unnecessary biopsies in prostate cancer (PCa). Urinary extracellular vesicles (uEVs) provide a non-invasive reservoir of tumor-derived nucleic acids and proteins. Aptamers selected by SELEX enable highly specific capture, and artificial intelligence (AI) can accelerate their optimization. This systematic review evaluated AI-assisted SELEX for urine-derived and exosome-enriched aptamer panels in PCa detection. Methods: Systematic searches of PubMed, Scopus, and Web of Science (1 January 2010–24 August 2025; no language restrictions) followed PRISMA 2020 and PRISMA-S. The protocol is registered on OSF (osf.io/b2y7u). After deduplication, 1348 records were screened; 129 studies met the eligibility criteria, including 34 (26.4%) integrating AI within SELEX or downstream refinement. Inclusion required at least one quantitative metric (dissociation constant Kd, SELEX cycles, limit of detection [LoD], sensitivity, specificity, or AUC). Risk of bias was appraised with QUADAS-2 (diagnostic accuracy studies) and PROBAST (prediction/machine learning models). Results: AI-assisted SELEX workflows reduced laboratory enrichment cycles from conventional 12–15 to 5–7 (≈40–55% relative reduction) and reported Kd values spanning low picomolar to upper nanomolar ranges; heterogeneity and inconsistent comparators precluded pooled estimates. Multiplex urinary panels (e.g., PCA3, TMPRSS2:ERG, miR-21, miR-375, EN2) yielded single-study AUCs between 0.70 and 0.92 with sensitivities up to 95% and specificities up to 88%; incomplete 2 × 2 contingency reporting prevented bivariate meta-analysis. LoD reporting was sparse and non-standardized despite several ultralow claims (attomolar to low femtomolar) on nanomaterial-enhanced platforms. Pre-analytical variability and absent threshold prespecification contributed to high or unclear risk (QUADAS-2). PROBAST frequently indicated high risk in participants and analysis domains. Across the included studies, lower Kd and reduced LoD improved analytical detectability; however, clinical specificity and AUC were predominantly shaped by pre-analytical control (matrix; post-DRE vs. spontaneous urine) and prespecified thresholds, so engineering gains did not consistently translate into higher diagnostic accuracy. Conclusions: AI-assisted SELEX is a promising strategy for accelerating high-affinity aptamer discovery and assembling multiplex urinary panels for PCa, but current evidence is early phase, heterogeneous, and largely single-center. Priorities include standardized uEV processing, complete 2 × 2 diagnostic reporting, multicenter external validation, calibration and decision impact analyses, and harmonized LoD and Kd reporting frameworks. Full article
Show Figures

Figure 1

Back to TopTop