Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = exogenous phytohormones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4453 KiB  
Article
Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum
by Kefan Cao, Yingtong Mu, Sihai Lu and Yanyan Zhao
Genes 2025, 16(8), 878; https://doi.org/10.3390/genes16080878 - 26 Jul 2025
Viewed by 255
Abstract
Gibberellins (GAs) are essential phytohormones that regulate seed dormancy release and germination. Lomatogonium rotatum (L.) Fries ex Nym is a traditional medicinal plant whose seed germination is often hindered by physiological dormancy. In this study, we systematically investigated the effects of exogenous GA [...] Read more.
Gibberellins (GAs) are essential phytohormones that regulate seed dormancy release and germination. Lomatogonium rotatum (L.) Fries ex Nym is a traditional medicinal plant whose seed germination is often hindered by physiological dormancy. In this study, we systematically investigated the effects of exogenous GA3 on the seed germination of L. rotatum and elucidated the underlying molecular regulatory mechanisms via transcriptomic analysis. GA3 treatment (500 mg/L for 24 h) significantly improved the germination rate, vigor index, and other germination traits. RNA-seq analysis identified time-dependent transcriptional changes in GA3-treated seeds across three developmental stages (24 h, 72 h, and 96 h). KEGG enrichment and K-means clustering revealed dynamic actiSvation of hormonal signaling, secondary metabolism, and DNA replication pathways. WGCNA uncovered two hormone-responsive co-expression modules (Red and Lightcyan) corresponding to early and late stages of germination, respectively. Key genes related to ABA and GA biosynthesis and signal transduction showed phase-specific expression, highlighting the coordinated hormonal regulation during seed germination. Our findings provide new insights into the molecular basis of GA3-regulated seed germination and offer theoretical support for the cultivation and utilization of L. rotatum. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 349
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 4683 KiB  
Article
Abscisic Acid Enhances Ex Vitro Acclimatization Performance in Hop (Humulus lupulus L.)
by Luciana Di Sario, David Navarro-Payá, María F. Zubillaga, José Tomás Matus, Patricia A. Boeri and Gastón A. Pizzio
Int. J. Mol. Sci. 2025, 26(14), 6923; https://doi.org/10.3390/ijms26146923 - 18 Jul 2025
Viewed by 201
Abstract
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, [...] Read more.
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, such as hop. This highlights the urgent need to enhance crop resilience to adverse environmental conditions. The phytohormone abscisic acid (ABA) is a key regulator of plant responses to abiotic stress, yet the ABA signaling pathway remains poorly characterized in hop. Harnessing the publicly available hop genomics resources, we identified eight members of the PYRABACTIN RESISTANCE 1 LIKE ABA receptor family (HlPYLs). Phylogenetic and gene structure analyses classified these HlPYLs into the three canonical ABA receptor subfamilies. Furthermore, all eight HlPYLs are likely functional, as suggested by the protein sequence visual analysis. Expression profiling indicates that ABA perception in hop is primarily mediated by the HlPYL1-like and HlPYL8-like subfamilies, while the HlPYL4-like group appears to play a more limited role. Structure modeling and topology predictions of HlPYL1b and HlPYL2 provided insights into their potential functional mechanisms. To assess the physiological relevance of ABA signaling in hop, we evaluated the impact of exogenous ABA application during the ex vitro acclimatization phase. ABA-treated plants exhibited more robust growth, reduced stress symptoms, and improved acclimatization success. These effects were associated with reduced leaf transpiration and enhanced stomatal closure, consistent with ABA-mediated drought tolerance mechanisms. Altogether, this study provides the first comprehensive characterization of ABA receptor components in hop and demonstrates the practical utility of ABA in improving plant performance under ex vitro conditions. These findings lay the groundwork for further functional studies and highlight ABA signaling as a promising target for enhancing stress resilience in hop, with broader implications for sustainable agriculture in the face of climate change. Full article
(This article belongs to the Special Issue The Role of Phytohormones in Plant Biotic/Abiotic Stress Tolerance)
Show Figures

Figure 1

19 pages, 2879 KiB  
Article
Metabolomic Insights into Sexual Multi-Morphism of Sinomenine Accumulation in Sinomenium acutum
by Yanxian Luo, Wen Xu, Yanling Fan, Xinyu Ma, Qian Deng, Meng Li and Wei Sun
Plants 2025, 14(12), 1885; https://doi.org/10.3390/plants14121885 - 19 Jun 2025
Viewed by 420
Abstract
Sinomenium acutum is the main raw material for sinomenine. Empirical evidence indicates a marked disparity in sinomenine content among S. acutum plants with different genders, resulting in varying medicinal potential of the processing products. However, the mechanism underlying gender-determined differences in sinomenine accumulation [...] Read more.
Sinomenium acutum is the main raw material for sinomenine. Empirical evidence indicates a marked disparity in sinomenine content among S. acutum plants with different genders, resulting in varying medicinal potential of the processing products. However, the mechanism underlying gender-determined differences in sinomenine accumulation is still elusive. In this study, untargeted metabolomics was performed among female, male, and undifferentiated S. acutum plants. In total, 1213 metabolites were identified, and most of them vary in the roots but not in the leaves among the different genders. Integrated correlation analysis on the DAMs (differentially accumulated metabolites) enriched in the isoquinoline alkaloid biosynthesis pathway suggests coclaurine as an intermediate determining gender-dependent sinomenine variation. Furthermore, hormonal profiling revealed 34 endogenous phytohormones exhibiting significant gender-based discrepancy in the roots. Among these, ABA (abscisic acid) and 5-DS (5-deoxystrigol) show significant positive correlation with sinomenine content. Then, exogenous ABA with gradient concentration was applied on S. acutum plants, and the sinomenine content in the roots increased from 31% to 166% under treatment. Our findings demonstrate that coclaurine might serve as a pivotal intermediate during sinomenine biosynthesis in S. acutum. Meanwhile, it is speculated that ABA is a key factor regulating different sinomenine accumulation, which provide a potential method to improve the yield of sinomenine. Full article
(This article belongs to the Special Issue Applications of Omics and Bioinformatics in Medicinal Plants)
Show Figures

Figure 1

18 pages, 2076 KiB  
Article
Effect of Exogenous Plant Growth Regulators on Antioxidant Defense in Zucchini Cotyledons Under Different Light Regimes
by Asya Petrova, Zornitsa Katerova, Iskren Sergiev and Dessislava Todorova
Agriculture 2025, 15(12), 1258; https://doi.org/10.3390/agriculture15121258 - 10 Jun 2025
Viewed by 1324
Abstract
Epigeal cotyledons with excised embryonic axes are often used as a model system to study the processes of cell division and expansion. These processes are regulated by diverse phytohormones and signaling molecules. Phytohormones modulate antioxidant defense systems and interact with reactive oxygen species [...] Read more.
Epigeal cotyledons with excised embryonic axes are often used as a model system to study the processes of cell division and expansion. These processes are regulated by diverse phytohormones and signaling molecules. Phytohormones modulate antioxidant defense systems and interact with reactive oxygen species (ROS) to synchronize normal plant cell growth. This study provides new information concerning alterations in enzymatic antioxidants linked to the production and scavenging of ROS in excised epigeal cotyledons of zucchini grown on solutions of methyl jasmonate (MeJA) and cytokinins (CKs)—N6-benzyl adenine and N1-(2-chloropyridin-4-yl)-N2-phenylurea—in the presence or absence of light under laboratory conditions. The cotyledon material was used to determine the dynamics of selected biochemical parameters starting from the 2nd to the 6th day of incubation. In general, our results revealed that exogenous MeJA caused a reduction in the content of hydrogen peroxide (H2O2) and free proline, as well as in the activity of superoxide dismutase (SOD), guaiacol peroxidase (POX) and catalase (CAT) in dark-grown cotyledons. Applied alone, both cytokinins increased most of the parameters studied, except proline and protein levels. However, when MeJA was combined with CKs, it acted in a diverse manner, ranging from antagonistic to synergistic depending on the cytokinin type, parameter measured and light regime. Similar alterations were also found in the levels of leaf pigments in the cotyledons grown under light conditions. In general, the changes in the antioxidant enzyme activities due to light were more intense than those observed in dark-grown cotyledons. The data obtained show, for the first time, the involvement of the hormonal interplay between MeJA and CKs on the biochemical changes in antioxidant defense during cotyledon growth under different light conditions. Full article
Show Figures

Figure 1

24 pages, 3607 KiB  
Article
Dynamics of Phytohormones in Persistent Versus Deciduous Calyx Development in Pear Revealed by Targeted Metabolomics
by Mingyang Yu, Feng Han, Nana Zhou, Lanfei Wang, Yang Li, Weifan Fan, Tianzheng Zhang and Jianping Bao
Horticulturae 2025, 11(6), 642; https://doi.org/10.3390/horticulturae11060642 - 6 Jun 2025
Viewed by 455
Abstract
To calyx persistence in Korla fragrant pear (Pyrus sinkiangensis) significantly impacts fruit marketability, with persistent calyx causing up to 40% reduction in premium-grade fruit yield. Investigating the hormonal mechanisms underlying calyx abscission and persistent in Korla Fragrant Pear, we performed comprehensive [...] Read more.
To calyx persistence in Korla fragrant pear (Pyrus sinkiangensis) significantly impacts fruit marketability, with persistent calyx causing up to 40% reduction in premium-grade fruit yield. Investigating the hormonal mechanisms underlying calyx abscission and persistent in Korla Fragrant Pear, we performed comprehensive phytohormone profiling using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS; EXIONLC system coupled with SCIEX 6500 QTRAP+). Flowers from first-position (persistent-calyx) and fourth-position (deciduous-calyx) inflorescences were collected at six developmental stages (0–10 days after flowering). Fourteen endogenous hormones—ACC, ME-IAA, IPA, TZR, SA, IAA, ICA, IP, tZ, DHJA, ABA, JA-ile, cZ, and JA—were identified in the calyx during the flowering stage. The calyx abscission rate was significantly higher in the fourth position (79%) compared to the first position (32%). ACC and ABA are closely linked to abscission, with increased ACC at 0 DAF signaling early abscission and ABA accumulation accelerating late abscission at 8 DAF. Auxin exhibited spatiotemporal specificity, peaking in first-order flowers at 4–6 DAF, potentially inhibiting abscission by maintaining cell activity. Cytokinins generally decreased, while jasmonates significantly increased during the fourth-position anthesis stage 8–10 DAF, suggesting a role in stress-related senescence. By systematic analysis of the flowers at the first order (persistent calyx) and the fourth order (deciduous calyx) from 0 to 10 days after anthesis, we found three key stages of hormone regulation: early prediction stage (0–2 DAF), ACC accumulation at the fourth order was significantly higher than that at the first order at 0 days after anthesis, ACC accumulation at the early stage predicted abscission; During the middle maintenance stage (4–6 DAF), the accumulation of cytokinin decreased significantly, while the accumulation of IAA increased significantly in the first position (persistent calyx); Execution Phase (8–10 DAF), ABA reached its peak at 8 DAF, coinciding with the final separation time. JA played an important role in the late stage. Gibberellin was undetected, implying a weak association with calyx abscission. Venn diagram identified N6-(delta 2-Isopentenyl)-adenine (IP) in first-position flowers, which may influence calyx persistence or abscission. These findings elucidate hormone interactions in calyx abscission, offering a theoretical basis for optimizing exogenous hormone application to enhance fruit quality. Full article
Show Figures

Figure 1

15 pages, 3045 KiB  
Article
The Peptide-Encoding CLE25 Gene Modulates Drought Response in Cotton
by Dayong Zhang, Qingfeng Zhu, Pu Qin, Lu Yu, Weixi Li and Hao Sun
Agriculture 2025, 15(11), 1226; https://doi.org/10.3390/agriculture15111226 - 4 Jun 2025
Viewed by 526
Abstract
CLAVATA3 (CLV3)/endosperm surrounding region (CLE) peptides have been reportedly involved in plant growth and development, as well as responses to abiotic stresses. However, the stress resilience of most CLE genes in cotton remains largely unknown. Here, induced expression pattern analysis showed that GhCLE25 [...] Read more.
CLAVATA3 (CLV3)/endosperm surrounding region (CLE) peptides have been reportedly involved in plant growth and development, as well as responses to abiotic stresses. However, the stress resilience of most CLE genes in cotton remains largely unknown. Here, induced expression pattern analysis showed that GhCLE25 was obviously responsive to osmotic and salt treatments, indicating that GhCLE25 was involved in abiotic stress tolerance. Furthermore, silencing GhCLE25 or the exogenous application of CLE25p effectively led to reduced and enhanced drought tolerance, respectively, as indicated by the activities of the plants’ POD, SOD, CAT, and MDA contents, as well as their height and fresh weight. We found that the knockdown of GhCLE25 promoted seedling growth and development, with a higher plant height and fresh weight in GhCLE25-silenced plants in comparison to control plants. In addition, a comparative transcriptome analysis of TRV:00 versus TRV:GhCLE25 and Mock versus CLE25p revealed that the CLE25-mediated signaling pathway is mainly involved in defense response and phytohormone signaling. Collectively, these findings indicate diverse roles of CLE25 in regulating plant growth and response to environmental stimuli and highlight the potential utilization of CLE25 to improve drought stress in modern agriculture via CLE25p spraying. Full article
Show Figures

Figure 1

24 pages, 11957 KiB  
Article
DoDELLA-GAI2 Integrates Gibberellin and Ethylene Signaling to Regulate Chinese Yam (Dioscorea opposita) Tuber Development
by Mingran Ge, Yanfang Zhang, Yanping Xing, Linan Xing, Huiqin Miao and Xiuwen Huo
Biology 2025, 14(6), 635; https://doi.org/10.3390/biology14060635 - 30 May 2025
Viewed by 473
Abstract
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study [...] Read more.
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study investigated the regulatory role of GA and its crosstalk with other phytohormones during yam tuber growth through phenotypic, cytological, physiological, and transcriptomic as well as targeted phytohormone metabolomics analyses. The results reveal that exogenous GA promoted tuber enlargement increases vascular bundle and the number and diameter of sieve tubes, and alters the expression of GA anabolism genes and GA signal transduction pathways. Integrated transcriptome and targeted metabolomics analyses revealed coordinated changes in GA and ethylene (ETH) biosynthesis and signaling pathways during tuber development, particularly DELLA-GAI2 acting as a negative regulator of GA signaling. Overexpression of DoDELLA-GAI2 in transgenic tobacco significantly reduced GA level, starch, cytokinin (CTK), and ETH content, as well as aerenchyma tissue growth and parenchyma cell size. Exogenous GA and ethephon treatments increased GA, starch, CTK, and ETH content, and downregulated DoDELLA-GAI2 gene expression. The yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays confirmed a direct interaction between DoDELLA-GAI2 and DoMTCPB, an upstream gene-encoding key enzyme in ETH biosynthesis. DoDELLA-GAI2 acts as a negative regulator of ETH synthesis by interacting with DoMTCPB. GA-induced degradation of DoDELLA-GAI2 relieves this inhibition, promoting ETH production and contributing to tuber growth. Taken together, our findings reveal a novel mechanism based on DoDELLA-GAI2 integrating the GA and ETH signaling processes to regulate tuber development in D. opposita, offering a potential target for improving yam crop productivity. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

25 pages, 6497 KiB  
Article
Transcriptome and Physiological Analysis Reveals the Mechanism of Abscisic Acid in Regulating Cadmium Uptake and Accumulation in the Hyperaccumulator Phytolacca acinosa Roxb.
by Qin Xie, Wenting Xu, Qing Wang, Feihong Yao, Yachao Jiang, Haijia Cao and Wanhuang Lin
Plants 2025, 14(10), 1405; https://doi.org/10.3390/plants14101405 - 8 May 2025
Viewed by 564
Abstract
Cadmium (Cd) is an extremely toxic heavy metal that can move from the soil to plants and enter the human body via the food chain, causing severe health issues for humans. Phytoremediation uses hyperaccumulators to extract heavy metals from polluted soil. Phytohormones, wildly [...] Read more.
Cadmium (Cd) is an extremely toxic heavy metal that can move from the soil to plants and enter the human body via the food chain, causing severe health issues for humans. Phytoremediation uses hyperaccumulators to extract heavy metals from polluted soil. Phytohormones, wildly used plant growth regulators, have been explored to improve phytoremediation efficiency. Abscisic acid (ABA) is also an essential regulator of plant tolerance to biotic and abiotic stresses, including heavy metal-induced toxicity. Previous research has revealed that Phytolacca acinosa Roxb. (P. acinosa) has a strong ability to enrich Cd and can be used as a Cd hyperaccumulator. In this study, physiological and biochemical analysis revealed that under Cd stress, exogenous ABA application alleviated oxidative stress, increased the Cd2+ concentration in P. acinosa, especially in the roots, and changed the phytohormone concentration in P. acinosa. Transcriptome analysis was conducted to explore the molecular mechanisms by which ABA regulates Cd uptake and accumulation in P. acinosa, and to further understand the regulatory role of ABA. The results show that ABA treatment affected gene expression in P. acinosa roots under Cd stress. This study identified 5788 differentially expressed genes (DEGs) (2541 up-regulated and 3247 down-regulated). Moreover, 96 metal transport-related DEGs, 54 phytohormone-related DEGs, 89 cell wall-related DEGs, 113 metal chelation-related DEGs, and 102 defense system-related DEGs cooperated more closely under exogenous ABA application to regulate Cd uptake and accumulation in P. acinosa under Cd stress. These results may help to elucidate the mechanisms by which ABA regulates Cd uptake and accumulation in plants, and provide a reference for developing a phytohormone-based strengthening strategy to improve the phytoremediation ability of other hyperaccumulators or accumulator species. The key genes involved in ABA’s regulation of Cd uptake and accumulation in P. acinosa need to be further analyzed and functionally verified. This may expand our understanding of the molecular regulatory mechanisms underlying heavy metal uptake and accumulation in hyperaccumulators. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

20 pages, 7597 KiB  
Article
Auxin Dynamics and Transcriptome–Metabolome Integration Determine Graft Compatibility in Litchi (Litchi chinensis Sonn.)
by Zhe Chen, Tingting Yan, Mingchao Yang, Xianghe Wang, Biao Lai, Guolu He, Farhat Abbas and Fuchu Hu
Int. J. Mol. Sci. 2025, 26(9), 4231; https://doi.org/10.3390/ijms26094231 - 29 Apr 2025
Viewed by 525
Abstract
Grafting is a prevalent horticultural technique that enhances crop yields and stress resilience; nevertheless, compatibility issues frequently constrain its efficacy. This research examined the physiological, hormonal, and transcriptional factors regulating compatibility between the litchi (Litchi chinensis Sonn.) cultivars Feizixiao (FZX) and Ziniangxi (ZNX). [...] Read more.
Grafting is a prevalent horticultural technique that enhances crop yields and stress resilience; nevertheless, compatibility issues frequently constrain its efficacy. This research examined the physiological, hormonal, and transcriptional factors regulating compatibility between the litchi (Litchi chinensis Sonn.) cultivars Feizixiao (FZX) and Ziniangxi (ZNX). The anatomical and growth investigations demonstrated significant disparities between compatible (FZX as scion and ZNX as rootstock) and incompatible (ZNX as scion and FZX as rootstock) grafts, with the latter showing reduced levels of indole acetic acid (IAA). Exogenous 1-naphthalene acetic acid (NAA) application markedly improved the graft survival, shoot development, and hormonal synergy, whereas the auxin inhibitor tri-iodobenzoic acid (TIBA) diminished these parameters. The incompatible grafts showed downregulation of auxin transporter genes, including ATP-binding cassette (ABC) transporter, AUXIN1/LIKE AUX1 (AUX/LAX), and PIN-FORMED (PIN) genes, suggesting impaired vascular tissue growth. Metabolomic profiling revealed dynamic interactions between auxin, salicylic acid, and jasmonic acid, with NAA-treated grafts exhibiting enhanced levels of stress-responsive metabolites. Transcriptome sequencing identified differentially expressed genes (DEGs) linked to auxin signaling (ARF, GH3), seven additional phytohormones, secondary metabolism (terpenoids, anthocyanins, and phenylpropanoids), and ABC transporters. Gene ontology and KEGG analyses highlighted the significance of hormone interactions and the biosynthesis of secondary metabolites in successful grafting. qRT-PCR validation substantiated the veracity of the transcriptome data, emphasizing the significance of auxin transport and signaling in effective graft development. This study provides an in-depth review of the molecular and physiological factors influencing litchi grafting. These findings provide critical insights for enhancing graft success rates in agricultural operations via targeted hormonal and genetic approaches. Full article
(This article belongs to the Special Issue The Role of Cytokinins and Other Phytohormones in Plant Life)
Show Figures

Figure 1

22 pages, 13562 KiB  
Article
Brassinosteroids Alleviate Ethylene-Induced Copper Oxide Nanoparticle Toxicity and Ultrastructural and Stomatal Damage in Rice Seedlings
by Wardah Azhar, Abdul Salam, Ali Raza Khan, Irshan Ahmad and Yinbo Gan
Agriculture 2025, 15(8), 907; https://doi.org/10.3390/agriculture15080907 - 21 Apr 2025
Cited by 1 | Viewed by 564
Abstract
Nanoparticle contamination has been associated with adverse impacts on crop productivity. Thus, effective approaches are necessary to ameliorate NP-induced phytotoxicity. The present study aimed to investigate the efficacy of brassinosteroids and ethylene in regulating CuO NPs toxicity in rice seedlings. Therefore, we comprehensively [...] Read more.
Nanoparticle contamination has been associated with adverse impacts on crop productivity. Thus, effective approaches are necessary to ameliorate NP-induced phytotoxicity. The present study aimed to investigate the efficacy of brassinosteroids and ethylene in regulating CuO NPs toxicity in rice seedlings. Therefore, we comprehensively evaluated the crosstalk of 24-Epibrassinolide and ethylene in regulating CuO NP-induced phytotoxicity at the physiological, cellular ultrastructural, and biochemical levels. The results of the study illustrated that exposure to CuO NPs at 450 mg/L displayed a significant decline in growth attributes and induced toxic effects in rice seedlings. Furthermore, the exogenous application of ethylene biosynthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 20 µM with 450 mg/L of CuO NPs significantly enhanced the reactive oxygen species (ROS) accumulation that led to the stimulation of ultrastructural and stomatal damage and reduced antioxidant enzyme activities (CAT and APX) in rice tissues. On the contrary, it was noticed that 24-Epibrassinolide (BR) at 0.01 µM improved plant biomass and growth, restored cellular ultrastructure, and enhanced antioxidant enzyme activities (CAT and APX) under exposure to 450 mg/L of CuO NPs. In addition, brassinosteroids reduced ROS accumulation and the toxic effects of 450 mg/L of CuO NPs on guard cells and the stomatal aperture of rice seedlings. Interestingly, when 0.01 µM of brassinosteroids, 20 µM of ACC, and 450 mg/L of CuO NPs were applied together, BRs and ethylene showed antagonistic crosstalk under CuO NP stress via partially reducing the ethylene-induced CuO NP toxicity on plant growth, cellular ultrastructure, stomatal aperture, and guard cell and antioxidant enzyme activities (CAT and APX) in rice seedlings. BR supplementation with ACC and CuO NPs notably diminished ACC-induced CuO NPs’ toxic effects on all of the mentioned attributes in rice seedlings. This study uncovered the interesting crosstalk of two main phytohormones under CuO NPs stress, providing basic knowledge to improve crop yield and productivity in CuO NPs-contaminated areas. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

20 pages, 443 KiB  
Article
Agronomic and Metabolic Responses of Citrus clementina to Long-Term Irrigation with Saline Reclaimed Water as Abiotic Factor
by David Auñón-Calles, María Pinciroli, Emilio Nicolás, Angel Gil-Izquierdo, José Antonio Gabaldón, María Puerto Sánchez-Iglesias, Angel Antonio Carbonell-Barrachina, Federico Ferreres, Carlos J. García and Cristina Romero-Trigueros
Int. J. Mol. Sci. 2025, 26(7), 3450; https://doi.org/10.3390/ijms26073450 - 7 Apr 2025
Cited by 1 | Viewed by 429
Abstract
The Panel on Climate Change has predicted an intensification of drought and heat waves. The aim of this study was to determine the physiological response of mandarin trees in a semi-arid area to the effects of a long period of irrigation with saline [...] Read more.
The Panel on Climate Change has predicted an intensification of drought and heat waves. The aim of this study was to determine the physiological response of mandarin trees in a semi-arid area to the effects of a long period of irrigation with saline reclaimed water (RW) and freshwater (FW) in terms of leaf mineral constitution, free amino acids and phytohormone balance, and their influence on yield and fruit quality. Results showed that higher foliar levels of Cl, B, Li+, and Br were found in the RW treatment. In addition, fruit quality (juice content, soluble solid content, titratable acid, and maturity index) and yield (fruit weight and diameter) parameters and growth canopy were negatively affected by irrigation with RW. Regardless of the treatments, L-alanine (Ala) and proline were the most abundant amino acids, with Ala being described as a majority for the first time in the literature. Concretely, in FW, the total amino acid content was twice as high as the concentration in RW (51,359.46 and 23,833.31 ng g−1, respectively). The most abundant hormones were 1-Aminocyclopropane-1-carboxylic acid and trans-zeatin in both treatments. The saline stress response would be reflected in the higher concentration of salicylic and abscisic acids in the leaves of RW trees. In view of the high correlations found in a simplified correlation matrix of (i) Ala with the canopy growth and (ii) the salicylic acid (SA) with most of the evaluated agrometabolic parameters, it can be concluded that the exogenous application of the Ala and SA would increase tree size and could mitigate the effects of salt stress, respectively. However, these treatments could be completed with the external application of ACC since this phytohormone presents the lowest parameter during treatment with RW. Full article
Show Figures

Figure 1

16 pages, 2055 KiB  
Article
The Dynamic Changes in Biosynthesis and Spatiotemporal Distribution of Phytohormones Under Jasmonic Acid Treatment Provide Insights into Hormonal Regulation in Sinopodophyllum hexandrum
by Siyu Shen, Yuqing Wu, Yunfeng Luo, Yang Li, Wei Gao, Luqi Huang, Yating Hu, Kang Chen and Yuru Tong
Plants 2025, 14(7), 1001; https://doi.org/10.3390/plants14071001 - 22 Mar 2025
Viewed by 561
Abstract
Sinopodophyllum hexandrum (Royle) Ying, the only species of Sinopodophyllum in Berberidaceae, is an endangered traditional Tibetan medicine. The harsh plateau growth environment makes S. hexandrum tough to breed and meet the global demand for clinical medications such as podophyllotoxin (PTOX) and etoposide. [...] Read more.
Sinopodophyllum hexandrum (Royle) Ying, the only species of Sinopodophyllum in Berberidaceae, is an endangered traditional Tibetan medicine. The harsh plateau growth environment makes S. hexandrum tough to breed and meet the global demand for clinical medications such as podophyllotoxin (PTOX) and etoposide. Jasmonic acid (JA) is acknowledged as a key phytohormone that modulates stress responses by activating defense mechanisms and promoting the production of specialized metabolites, which offers valuable insights for developing varieties that are more resilient to stress or yield higher amounts of secondary metabolites. In this study, JA treatment was used as a simulated source of stress to investigate the spatiotemporal changes in phytohormones, such as JA, cis-(+)-12-oxo-10, 15(Z)-phytodienoic acid (cis-(+)-OPDA), and abscisic acid (ABA), and transcriptional regulation following hormonal regulation in intact plants. Some correlations through changes in phytohormone levels and the expression level of related signaling pathway genes were observed to confirm the overall regulatory effect after the JA treatment. Furthermore, the JA treatment caused the differential expression of various genes including transcription factors (TFs), of which the most typical one is myelocytomatosis oncogene like protein 2 (MYC2), ShMYC2_3. Therefore, we proposed that a plant hormone-mediated regulatory network exists endogenously in S. hexandrum, enabling it to respond to JA treatment. This study provides a new direction for the germplasm improvement and the sustainable utilization of S. hexandrum when facing exogenous stimulation. Full article
Show Figures

Figure 1

28 pages, 1169 KiB  
Review
Phytohormonal Regulation of Abiotic Stress Tolerance, Leaf Senescence and Yield Response in Field Crops: A Comprehensive Review
by Anna Panozzo, Pranay Kumar Bolla, Giuseppe Barion, Alessandro Botton and Teofilo Vamerali
BioTech 2025, 14(1), 14; https://doi.org/10.3390/biotech14010014 - 27 Feb 2025
Cited by 4 | Viewed by 1656
Abstract
Field crops are expected to be increasingly threatened by climate change, which will negatively impact plant development, growth and yield. Phytohormones play a crucial role in regulating specific signalling pathways to induce rapid adaptive responses to environmental stresses. Exogenous phytohormone application alters hormonal [...] Read more.
Field crops are expected to be increasingly threatened by climate change, which will negatively impact plant development, growth and yield. Phytohormones play a crucial role in regulating specific signalling pathways to induce rapid adaptive responses to environmental stresses. Exogenous phytohormone application alters hormonal balance, thereby enhancing plant adaptation to adverse conditions. While several studies have advanced our understanding of the use of phytohormones in field crops, yield responses and species-specific application strategies remain inconsistent and rarely assessed under field conditions. The application of cytokinins (CKs), abscisic acid (ABA), and gibberellic acid (GA) has been shown to maintain prolonged photosynthetic activity, stabilize plasma membrane, and reduce lipid peroxidation and ion accumulation under salinity stress in wheat. Additionally, inhibitors of ethylene synthesis and receptors can mitigate stress symptoms under drought and heat stress, which typically accelerates senescence and shortens the grain-filling period in cereal crops. In this way, exogenous application of CKs, GA, and ethylene inhibitors can delay senescence by sustaining leaf photosynthetic activity and postponing nutrient remobilization. However, these benefits may not consistently translate into improvements in grain yield and quality. This review explores the molecular mechanisms of phytohormones in abiotic stress tolerance, delineates their specific functions and evaluates experimental findings from field applications. It also summarizes the potential of phytohormone applications in field crops, emphasizing the need for species-specific investigations on application timing and dosages under open-field conditions to optimize their agronomic potential. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

19 pages, 13218 KiB  
Article
Genome-Wide Identification Analysis of the 4-Coumarate: Coa Ligase (4CL) Gene Family in Brassica U’s Triangle Species and Its Potential Role in the Accumulation of Flavonoids in Brassica napus L.
by Mengzhen Zhang, Mengjiao Tian, Ziwuyun Weng, Yaping Yang, Nian Pan, Shulin Shen, Huiyan Zhao, Hai Du, Cunmin Qu and Nengwen Yin
Plants 2025, 14(5), 714; https://doi.org/10.3390/plants14050714 - 26 Feb 2025
Viewed by 843
Abstract
4-Coumarate: CoA ligase (4CL) is a key branch point enzyme at the end of the phenylpropanoid metabolic pathway. It regulates the synthesis of various metabolites and participates in plant growth and development by catalyzing the formation of CoA ester compounds. However, 4CL family [...] Read more.
4-Coumarate: CoA ligase (4CL) is a key branch point enzyme at the end of the phenylpropanoid metabolic pathway. It regulates the synthesis of various metabolites and participates in plant growth and development by catalyzing the formation of CoA ester compounds. However, 4CL family members have not been identified and analyzed among U’s triangle species in Brassica. In this study, 53 4CL genes were identified in Brassica U’s triangle species and divided into 4 groups (group I, II, III and IV) according to phylogenetic relationship. Based on phylogenetics, gene structure, conserved motifs, chromosome localization and collinearity analysis, 4CLs were relatively conserved in the evolution of Brassica U’s triangle species. The promoter region contains a large number of cis-acting elements, implying the functional diversity of 4CLs. Further combining transcriptome data and reverse transcription quantitative PCR (RT-qPCR), we found that Bna4CLs have tissue specificity and can not only respond to exogenous phytohormone changes but also regulate the flavonoid biosynthetic pathway in the yellow- and black-seeded B. napus. Our results complement the lack of research on the 4CL gene family in Brassica, clarify the sequence characteristics and functional diversity of these genes and lay a foundation for further exploration of 4CL genes in response to abiotic stress and regulation of seed coat flavonoid accumulation. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

Back to TopTop