Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,570)

Search Parameters:
Keywords = exhausted gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2672 KiB  
Article
Development Process of TGDI SI Engine Combustion Simulation Model Using Ethanol–Gasoline Blends as Fuel
by Bence Zsoldos, András L. Nagy and Máté Zöldy
Appl. Sci. 2025, 15(15), 8677; https://doi.org/10.3390/app15158677 (registering DOI) - 5 Aug 2025
Abstract
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its [...] Read more.
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its compatibility with gasoline, higher octane rating, and lower exhaust emissions compared to conventional gasoline. Additionally, ethanol can be derived from agricultural waste, further enhancing its sustainability. This study examines the impact of two ethanol–gasoline blends (E10, E20) on emissions and performance in a turbocharged gasoline direct injection (TGDI) spark-ignition (SI) engine. The investigation is conducted using three-dimensional computational fluid dynamics (3D CFD) simulations to minimize development time and costs. This paper details the model development process and presents the initial results. The boundary conditions for the simulations are derived from one-dimensional (1D) simulations, which have been validated against experimental data. Subsequently, the simulated performance and emissions results are compared with experimental measurements. The E10 simulations correlated well with experimental measurements, with the largest deviation in cylinder pressure being an RMSE of 1.42. In terms of emissions, HC was underpredicted, while CO was overpredicted compared to the experimental data. For E20, the IMEP was slightly higher at some operating points; however, the deviations were negligible. Regarding emissions, HC and CO emissions were higher with E20, whereas NOx and CO2 emissions were lower. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Viewed by 257
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

14 pages, 6012 KiB  
Article
Decoding the Primacy of Transportation Emissions of Formaldehyde Pollution in an Urban Atmosphere
by Shi-Qi Liu, Hao-Nan Ma, Meng-Xue Tang, Yu-Ming Shao, Ting-Ting Yao, Ling-Yan He and Xiao-Feng Huang
Toxics 2025, 13(8), 643; https://doi.org/10.3390/toxics13080643 - 30 Jul 2025
Viewed by 272
Abstract
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed [...] Read more.
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed year-long VOC measurements across three urban zones in Shenzhen, China. Photochemical age correction methods were implemented to develop the initial concentrations of VOCs before source apportionment; then Positive Matrix Factorization (PMF) modeling resolved six primary sources: solvent usage (28.6–47.9%), vehicle exhaust (24.2–31.2%), biogenic emission (13.8–18.1%), natural gas (8.5–16.3%), gasoline evaporation (3.2–8.9%), and biomass burning (0.3–2.4%). A machine learning (ML) framework incorporating Shapley Additive Explanations (SHAP) was subsequently applied to evaluate the influence of six emission sources on HCHO concentrations while accounting for reaction time adjustments. This machine learning-driven nonlinear analysis demonstrated that vehicle exhaust nearly always emerged as the primary anthropogenic contributor in diverse functional zones and different seasons, with gasoline evaporation as another key contributor, while the traditional reactivity metric method, ozone formation potential (OFP), tended to underestimate the role of the two sources. This study highlights the primacy of strengthening emission reduction of transportation sectors to mitigate HCHO pollution in megacities. Full article
Show Figures

Graphical abstract

23 pages, 5464 KiB  
Article
A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests
by Marcelina Sołtysik, Izabela Majchrzak-Kucęba and Dariusz Wawrzyńczak
Energies 2025, 18(15), 3965; https://doi.org/10.3390/en18153965 - 24 Jul 2025
Viewed by 302
Abstract
In the energy sector and in other types of industries (cement, iron/steel, chemical and petrochemical), highly roasted coffee ground residue can be used as a source material for producing bioadsorbents suitable for CO2 capture. In this study, a bioadsorbent was produced in [...] Read more.
In the energy sector and in other types of industries (cement, iron/steel, chemical and petrochemical), highly roasted coffee ground residue can be used as a source material for producing bioadsorbents suitable for CO2 capture. In this study, a bioadsorbent was produced in a two-step process involving biowaste carbonization and biocarbon activation within a KOH solution. The physicochemical properties of the bioadsorbent were assessed using LECO, TG, SEM, BET and FT-IR methods. Investigating the CO2, O2 and N2 equilibrium adsorption capacity using an IGA analyzer allowed us to calculate CO2 selectivity factors. We assessed the influence of exhaust gas carbon dioxide concentration (16%, 30%, 81.5% and 100% vol.) and adsorption step temperature (25 °C, 50 °C and 75 °C) on the CO2 adsorption capacity of the bioadsorbent. We also investigated its stability and regenerability in multi-step adsorption–desorption using a TG-Vacuum system, simulating the VSA process and applying different pressures in the regeneration step (30, 60 and 100 mbarabs). The tests conducted assessed the possibility of using a produced bioadsorbent for capturing CO2 using the VSA technique. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

17 pages, 3179 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 267
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

15 pages, 2689 KiB  
Article
The Influence of Variable Operating Conditions and Components on the Performance of Centrifugal Compressors in Natural Gas Storage Reservoirs
by Hua Chen, Gang Li, Shengping Wang, Ning Wang, Lifeng Zhou, Hao Zhou, Yukang Sun and Lijun Liu
Energies 2025, 18(15), 3930; https://doi.org/10.3390/en18153930 - 23 Jul 2025
Viewed by 219
Abstract
The inlet operating conditions of centrifugal compressors in natural gas storage reservoirs, as well as the natural gas composition, continuously vary over time, significantly impacting compressor performance. To analyze the influence of these factors on centrifugal compressors, a method for converting the performance [...] Read more.
The inlet operating conditions of centrifugal compressors in natural gas storage reservoirs, as well as the natural gas composition, continuously vary over time, significantly impacting compressor performance. To analyze the influence of these factors on centrifugal compressors, a method for converting the performance curves of centrifugal compressors under actual operating conditions has been established. This performance conversion process is implemented through a custom-developed program, which incorporates the polytropic index and exhaust temperature calculations. Verification results show that the conversion error of this method is within 2%. Based on the proposed performance prediction method for non-similar operating conditions, the effects of varying inlet temperatures, pressures, and natural gas compositions on compressor performance are investigated. It is observed that an increase in inlet temperature results in a decrease in compressor power and pressure ratio; an increase in inlet pressure leads to higher power consumption, while the pressure ratio varies with the flow rate at the operating point; and as the average molar mass of natural gas decreases, both the pressure ratio and power exhibit a certain degree of reduction. Full article
Show Figures

Figure 1

20 pages, 695 KiB  
Article
Deep Hybrid Model for Fault Diagnosis of Ship’s Main Engine
by Se-Ha Kim, Tae-Gyeong Kim, Junseok Lee, Hyoung-Kyu Song, Hyeonjoon Moon and Chang-Jae Chun
J. Mar. Sci. Eng. 2025, 13(8), 1398; https://doi.org/10.3390/jmse13081398 - 23 Jul 2025
Viewed by 202
Abstract
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, [...] Read more.
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, early fault diagnosis of abnormal engine conditions is critical for effective maintenance. In this paper, we propose a deep hybrid model for fault diagnosis of ship main engines, utilizing exhaust gas temperature data. The proposed model utilizes both time-domain features (TDFs) and time-series raw data. In order to effectively extract features from each type of data, two distinct feature extraction networks and an attention module-based classifier are designed. The model performance is evaluated using real-world cylinder exhaust gas temperature data collected from the large ship low-speed two-stroke main engine. The experimental results demonstrate that the proposed method outperforms conventional methods in fault diagnosis accuracy. The experimental results demonstrate that the proposed method improves fault diagnosis accuracy by 6.146% compared to the best conventional method. Furthermore, the proposed method maintains superior performanceeven in noisy environments under realistic industrial conditions. This study demonstrates the potential of using exhaust gas temperature using a single sensor signal for data-driven fault detection and provides a scalable foundation for future multi-sensor diagnostic systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 3409 KiB  
Article
Order Lot Sizing: Insights from Lattice Gas-Type Model
by Margarita Miguelina Mieras, Tania Daiana Tobares, Fabricio Orlando Sanchez-Varretti and Antonio José Ramirez-Pastor
Entropy 2025, 27(8), 774; https://doi.org/10.3390/e27080774 - 23 Jul 2025
Viewed by 243
Abstract
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the [...] Read more.
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications. Full article
(This article belongs to the Special Issue Statistical Mechanics of Lattice Gases)
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 316
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

16 pages, 2549 KiB  
Article
An Engine Load Monitoring Approach for Quantifying Yearly Methane Slip Emissions from an LNG-Powered RoPax Vessel
by Benoit Sagot, Raphael Defossez, Ridha Mahi, Audrey Villot and Aurélie Joubert
J. Mar. Sci. Eng. 2025, 13(7), 1379; https://doi.org/10.3390/jmse13071379 - 21 Jul 2025
Viewed by 507
Abstract
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less [...] Read more.
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less carbon dioxide (CO2) than conventional marine fuels, and the use of non-fossil LNG offers further potential for reducing greenhouse gas emissions. However, this benefit can be partially offset by methane slip—the release of unburned methane in engine exhaust—which has a much higher global warming potential than CO2. This study presents an experimental evaluation of methane emissions from a RoPax vessel powered by low-pressure dual-fuel four-stroke engines with a direct mechanical propulsion system. Methane slip was measured directly during onboard testing and combined with a year-long analysis of engine operation using an Engine Load Monitoring (ELM) method. The yearly average methane slip coefficient (Cslip) obtained was 1.57%, slightly lower than values reported in previous studies on cruise ships (1.7%), and significantly lower than the default values specified by the FuelEU (3.1%) Maritime regulation and IMO (3.5%) LCA guidelines. This result reflects the ship’s operational profile, characterized by long crossings at high and stable engine loads. This study provides results that could support more representative emission assessments and can contribute to ongoing regulatory discussions. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

17 pages, 3065 KiB  
Article
Soot Mass Concentration Prediction at the GPF Inlet of GDI Engine Based on Machine Learning Methods
by Zhiyuan Hu, Zeyu Liu, Jiayi Shen, Shimao Wang and Piqiang Tan
Energies 2025, 18(14), 3861; https://doi.org/10.3390/en18143861 - 20 Jul 2025
Viewed by 227
Abstract
To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using [...] Read more.
To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R2) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

20 pages, 3162 KiB  
Article
Study on Separation of Desulfurization Wastewater in Ship Exhaust Gas Cleaning System with Rotating Dynamic Filtration
by Shiyong Wang, Juan Wu, Yanlin Wu and Wenbo Dong
Membranes 2025, 15(7), 214; https://doi.org/10.3390/membranes15070214 - 18 Jul 2025
Viewed by 393
Abstract
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental [...] Read more.
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental testing, theoretical analysis, and pilot-scale validation. Flux increases with temperature and pressure but decreases with feed concentration, remaining unaffected by circulation flow. For a small membrane (152 mm), flux consistently increases with rotational speed across all pressures. For a large membrane (374 mm), flux increases with rotational speed at 300 kPa but firstly increases and then decreases at 100 kPa. Filtrate turbidity in all experiments complies with regulatory standards. Due to the unique hydrodynamic characteristics of RDF, back pressure reduces the effective transmembrane pressure, whereas shear force mitigates concentration polarization and cake layer formation. Separation performance is governed by the balance between these two forces. The specific energy consumption of RDF is only 10–30% that of cross-flow filtration (CFF). Under optimized pilot-scale conditions, the wastewater was concentrated 30-fold, with filtrate turbidity consistently below 2 NTU, outperforming CFF. Moreover, continuous operation proves more suitable for marine environments. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 3070 KiB  
Article
Characteristics and Sources of VOCs During a Period of High Ozone Levels in Kunming, China
by Chuantao Huang, Yufei Ling, Yunbo Chen, Lei Tong, Yuan Xue, Chunli Liu, Hang Xiao and Cenyan Huang
Atmosphere 2025, 16(7), 874; https://doi.org/10.3390/atmos16070874 - 17 Jul 2025
Viewed by 303
Abstract
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on [...] Read more.
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on the emission characteristics and source analysis of VOCs is important for controlling urban ozone pollution. In this study, hourly concentrations of 57 VOC species in four groups were obtained in April 2022, a period of high ozone pollution in Kunming, China. The ozone formation potential analysis showed that the accumulated reactive VOCs significantly contributed to the subsequent ozone formation, particularly aromatics (44.16%) and alkanes (32.46%). In addition, the ozone production rate in Kunming is mainly controlled by VOCs based on the results of the empirical kinetic modeling approach (KNOx/KVOCs = 0.25). The hybrid single-particle Lagrangian integrated trajectory model and polar coordinate diagram showed high VOC and ozone concentrations from the southwest outside the province (50.28%) and the south in local areas (12.78%). Six factors were obtained from the positive matrix factorization model: vehicle exhaust (31.80%), liquefied petroleum gas usage (24.16%), the petrochemical industry (17.81%), fuel evaporation (11.79%), coal burning (7.47%), and solvent usage (6.97%). These findings underscore that reducing anthropogenic VOC emissions and strengthening controls on the related sources could provide a scientifically robust strategy for mitigating ozone pollution in Kunming. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

7 pages, 482 KiB  
Proceeding Paper
Parameters Characterizing the Performance of Automotive Electronic Control Systems on Petrol Engine Emissions
by Hristo Konakchiev and Evgeni Dimitrov
Eng. Proc. 2025, 100(1), 41; https://doi.org/10.3390/engproc2025100041 - 15 Jul 2025
Viewed by 241
Abstract
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles [...] Read more.
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles to the highest possible level, primarily through software modifications of the parameters determining the performance of the internal combustion engine (ICE). The potential for advancement in this area is evidenced by the presence of systems that enhance environmental efficiency, even in Euro 2 vehicles. These include exhaust gas recirculation, catalytic converter, lambda sensor, electronic control fuel injection, and ignition timing. It is precisely these vehicles that are subject to optimization, a process which would allow the maximum service life of otherwise more reliable but older vehicles to be exploited. Full article
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Optimization of Vertical Ultrasonic Attenuator Parameters for Reducing Exhaust Gas Smoke of Compression–Ignition Engines: Efficient Selection of Emitter Power, Number, and Spacing
by Adil Kadyrov, Łukasz Warguła, Aliya Kukesheva, Yermek Dyssenbaev, Piotr Kaczmarzyk, Wojciech Klapsa and Bartosz Wieczorek
Appl. Sci. 2025, 15(14), 7870; https://doi.org/10.3390/app15147870 - 14 Jul 2025
Viewed by 289
Abstract
Compression–ignition engines emit particulate matter (PM) (soot), prompting the widespread use of diesel particulate filters (DPFs) in the automotive sector. An alternative method for PM reduction involves the use of ultrasonic waves to disperse and modify the structure of exhaust particles. This article [...] Read more.
Compression–ignition engines emit particulate matter (PM) (soot), prompting the widespread use of diesel particulate filters (DPFs) in the automotive sector. An alternative method for PM reduction involves the use of ultrasonic waves to disperse and modify the structure of exhaust particles. This article presents experimental results of the effects of ultrasonic emitter parameters, including the number, arrangement, and power, along with the engine speed, on the exhaust smoke density. Tests were conducted on a laboratory prototype equipped with six ultrasonic emitters spaced 0.17 m apart. The exhaust source was a diesel engine from a construction excavator, based on the MTZ-80 tractor design, delivering 80 HP and a displacement of 4750 cm3. A regression model was developed to describe the relationship between the engine speed, emitter power and spacing, and smoke density. The optimal configuration was found to involve an emitter power of 319.35 W and a spacing of 1.361 m for a given engine speed. Under the most effective conditions—an engine speed of 1500 rpm, six active emitters, and a total power of 600 W—smoke emissions were reduced by 18%. These findings support the feasibility of using ultrasonic methods as complementary or alternative exhaust gas filtration techniques for non-road diesel engines. Full article
Show Figures

Figure 1

Back to TopTop