Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = ex-vivo corneal culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1241 KiB  
Systematic Review
Therapeutic Potential of Rho Kinase Inhibitors in Corneal Disease: A Systematic Review of Preclinical and Clinical Studies
by Laura Andreea Ghenciu, Diana Andrei, Claudia Borza, Roxana Iacob, Emil Robert Stoicescu, Sorin Lucian Bolintineanu, Daniela Iacob and Ovidiu Alin Haţegan
Biomedicines 2025, 13(7), 1602; https://doi.org/10.3390/biomedicines13071602 - 30 Jun 2025
Viewed by 652
Abstract
Background/Objectives: Rho-associated coiled-coil-containing protein kinase inhibitors (ROCKis) have now become known as modulators of corneal endothelial wound repair and cell survival. However, evidence remains fragmented across laboratory and clinical reports. We performed a systematic review to synthesize preclinical and clinical data on ROCKis [...] Read more.
Background/Objectives: Rho-associated coiled-coil-containing protein kinase inhibitors (ROCKis) have now become known as modulators of corneal endothelial wound repair and cell survival. However, evidence remains fragmented across laboratory and clinical reports. We performed a systematic review to synthesize preclinical and clinical data on ROCKis in corneal disease, assess their efficacy and safety, and identify research gaps. Methods: We searched PubMed, Web of Science, Scopus, and Google Scholar (until May 2025) for English-language original studies evaluating ROCKis in corneal models or patients. Inclusion criteria encompassed in vitro, ex vivo, in vivo, and clinical trials reporting functional outcomes (endothelial cell density, wound closure, visual acuity). Results: Thirty-one studies met criteria: 14 preclinical studies and 17 clinical studies. Preclinical models (rabbit, porcine, human explants) uniformly showed ROCKis (Y-27632, Ripasudil, Netarsudil, H-1152) accelerate corneal endothelial cell proliferation, migration, and restoration of a hexagonal monolayer with improved barrier and pump function over days to weeks. In 17 clinical investigations, topical Ripasudil or Netarsudil and cultured cell injections achieved significant corneal thinning, endothelial cell density and central corneal thickness changes, and visual acuity improvements (≥2 lines) with minimal adverse events. Overall bias was moderate in non-randomized studies and low in the RCTs. Conclusions: ROCKis demonstrate consistent pro-regenerative effects on corneal endothelium in multiple models and show promising clinical efficacy in Fuchs endothelial dystrophy and pseudophakic endothelial failure. Future work should explore novel delivery systems and larger controlled trials to optimize dosing, safety, and long-term outcomes. Full article
(This article belongs to the Special Issue Molecular Research in Ocular Pathology)
Show Figures

Figure 1

10 pages, 1598 KiB  
Article
Drug-Dependent Inhibitory Effects on Corneal Epithelium Structure, Cell Viability, and Corneal Wound Healing by Local Anesthetics
by Sabine Foja, Joana Heinzelmann, Susanne Hünniger, Anja Viestenz, Christiane Rüger and Arne Viestenz
Int. J. Mol. Sci. 2024, 25(23), 13074; https://doi.org/10.3390/ijms252313074 - 5 Dec 2024
Viewed by 942
Abstract
Local anesthetics are commonly used in ophthalmic surgery. However, their use can affect the healing process. This study aimed to investigate the potential impact of anesthetic substances at clinically relevant concentrations and incubation times (3 min), specifically oxybuprocaine (OBPC, 0.4%), lidocaine (LIDO, 2%), [...] Read more.
Local anesthetics are commonly used in ophthalmic surgery. However, their use can affect the healing process. This study aimed to investigate the potential impact of anesthetic substances at clinically relevant concentrations and incubation times (3 min), specifically oxybuprocaine (OBPC, 0.4%), lidocaine (LIDO, 2%), and bupivacaine (BUPI, 0.5%), either alone or supplemented with hylase (HYLA, 30 I.E.), on corneal epithelium structure, cell viability, and wound healing. To assess the potential cytotoxicity of these anesthetic substances, viability and colony-forming efficiency (CFE) assays were conducted using the human telomerase-immortalized corneal epithelial (hTCEpi) cell line. Additionally, the toxicity of these substances was evaluated using a 3D human tissue-specific corneal epithelial construct as well as a porcine corneal culture model. The results indicate that OBPC (Novesine® 0.4%) exhibited significant cytotoxicity in 2D and 3D corneal epithelial cell culture models and delayed wound healing in the ex vivo porcine corneal organ culture model. In contrast, LIDO, BUPI, and HYLA were less cytotoxic to corneal cells, with no observed impact on wound healing in the porcine corneal organ culture model. In summary, local anesthetics commonly used in eye surgery are generally considered safe. However, the application of OBPC (Novesine® 0.4%) may delay wound healing. Full article
(This article belongs to the Special Issue Functional Roles of Epithelial and Endothelial Cells)
Show Figures

Figure 1

11 pages, 2138 KiB  
Article
Phase-Dependent Differential In Vitro and Ex Vivo Susceptibility of Aspergillus flavus and Fusarium keratoplasticum to Azole Antifungals
by Darby Roberts, Jacklyn Salmon, Marc A. Cubeta and Brian C. Gilger
J. Fungi 2023, 9(10), 966; https://doi.org/10.3390/jof9100966 - 26 Sep 2023
Cited by 3 | Viewed by 1746
Abstract
Fungal keratitis (FK) is an invasive infection of the cornea primarily associated with Aspergillus and Fusarium species. FK is treated empirically with a limited selection of topical antifungals with varying levels of success. Though clinical infections are typically characterized by a dense network [...] Read more.
Fungal keratitis (FK) is an invasive infection of the cornea primarily associated with Aspergillus and Fusarium species. FK is treated empirically with a limited selection of topical antifungals with varying levels of success. Though clinical infections are typically characterized by a dense network of mature mycelium, traditional models used to test antifungal susceptibility of FK isolates exclusively evaluate susceptibility in fungal cultures derived from asexual spores known as conidia. The purpose of this study was to characterize differences in fungal response when topical antifungal treatment is initiated at progressive phases of fungal development. We compared the efficacy of voriconazole and luliconazole against in vitro cultures of A. flavus and F. keratoplasticum at 0, 24, and 48 h of fungal development. A porcine cadaver corneal model was used to compare antifungal efficacy of voriconazole and luliconazole in ex vivo tissue cultures of A. flavus and F. keratoplasticum at 0, 24, and 48 h of fungal development. Our results demonstrate phase-dependent susceptibility of both A. flavus and F. keratoplasticum to both azoles in vitro as well as ex vivo. We conclude that traditional antifungal susceptibility testing with conidial suspensions does not correlate with fungal susceptibility in cultures of a more advanced developmental phase. A revised method of antifungal susceptibility testing that evaluates hyphal susceptibility may better predict fungal response in the clinical setting where treatment is often delayed until days after the initial insult. Full article
(This article belongs to the Special Issue Fungal Diseases in Animals, 2nd Edition)
Show Figures

Figure 1

14 pages, 2530 KiB  
Article
Taurine, a Component of the Tear Film, Exacerbates the Pathogenic Mechanisms of Acanthamoeba castellanii in the Ex Vivo Amoebic Keratitis Model
by Lizbeth Salazar-Villatoro, Bibiana Chávez-Munguía, Celia Esther Guevara-Estrada, Anel Lagunes-Guillén, Dolores Hernández-Martínez, Ismael Castelan-Ramírez and Maritza Omaña-Molina
Pathogens 2023, 12(8), 1049; https://doi.org/10.3390/pathogens12081049 - 16 Aug 2023
Cited by 2 | Viewed by 1706
Abstract
Acanthamoeba spp. is the etiological agent of amoebic keratitis. In this study, the effect of taurine in physiological concentrations in tears (195 μM) on trophozoites of Acanthamoeba castellanii through the ex vivo amoebic keratitis model was evaluated. Trophozoites were coincubated with the Syrian [...] Read more.
Acanthamoeba spp. is the etiological agent of amoebic keratitis. In this study, the effect of taurine in physiological concentrations in tears (195 μM) on trophozoites of Acanthamoeba castellanii through the ex vivo amoebic keratitis model was evaluated. Trophozoites were coincubated with the Syrian golden hamster cornea (Mesocricetus auratus) for 3 and 6 h. Group 1: Control (−). Corneas coincubated with amoebic culture medium and taurine. Group 2: Control (+). Corneas coincubated with trophozoites without taurine. Group 3: Corneas coincubated with taurine 15 min before adding trophozoites. Group 4: Trophozoites coincubated 15 min with taurine before placing them on the cornea. Group 5: Corneas coincubated for 15 min with trophozoites; subsequently, taurine was added. Results are similar for both times, as evaluated by scanning electron microscopy. As expected, in the corneas of Group 1, no alterations were observed in the corneal epithelium. In the corneas of Group 2, few adhered trophozoites were observed on the corneal surface initiating migrations through cell junctions as previously described; however, in corneas of Groups 3, 4 and 5, abundant trophozoites were observed, penetrating through different corneal cell areas, emitting food cups and destabilizing corneal surface in areas far from cell junctions. Significant differences were confirmed in trophozoites adherence coincubated with taurine (p < 0.05). Taurine does not prevent the adhesion and invasion of the amoebae, nor does it favor its detachment once these have adhered to the cornea, suggesting that taurine in the physiological concentrations found in tears stimulates pathogenic mechanisms of A. castellanii. Full article
(This article belongs to the Special Issue Free-Living Amoebae Infections)
Show Figures

Graphical abstract

19 pages, 3256 KiB  
Article
Wnt/β-Catenin Signaling Activation Induces Differentiation in Human Limbal Epithelial Stem Cells Cultured Ex Vivo
by Jovana Bisevac, Kirankumar Katta, Goran Petrovski, Morten Carstens Moe and Agate Noer
Biomedicines 2023, 11(7), 1829; https://doi.org/10.3390/biomedicines11071829 - 26 Jun 2023
Cited by 8 | Viewed by 2323
Abstract
Human limbal epithelial stem cells (hLESCs) continuously replenish lost or damaged human corneal epithelial cells. The percentage of stem/progenitor cells in autologous ex vivo expanded tissue is essential for the long-term success of transplantation in patients with limbal epithelial stem cell deficiency. However, [...] Read more.
Human limbal epithelial stem cells (hLESCs) continuously replenish lost or damaged human corneal epithelial cells. The percentage of stem/progenitor cells in autologous ex vivo expanded tissue is essential for the long-term success of transplantation in patients with limbal epithelial stem cell deficiency. However, the molecular processes governing the stemness and differentiation state of hLESCs remain uncertain. Therefore, we sought to explore the impact of canonical Wnt/β-catenin signaling activation on hLESCs by treating ex vivo expanded hLESC cultures with GSK-3 inhibitor LY2090314. Real-time qRT-PCR and microarray data reveal the downregulation of stemness (TP63), progenitor (SOX9), quiescence (CEBPD), and proliferation (MKI67, PCNA) genes and the upregulation of genes for differentiation (CX43, KRT3) in treated- compared to non-treated samples. The pathway activation was shown by AXIN2 upregulation and enhanced levels of accumulated β-catenin. Immunocytochemistry and Western blot confirmed the findings for most of the above-mentioned markers. The Wnt/β-catenin signaling profile demonstrated an upregulation of WNT1, WNT3, WNT5A, WNT6, and WNT11 gene expression and a downregulation for WNT7A and DKK1 in the treated samples. No significant differences were found for WNT2, WNT16B, WIF1, and DKK2 gene expression. Overall, our results demonstrate that activation of Wnt/β-catenin signaling in ex vivo expanded hLESCs governs the cells towards differentiation and reduces proliferation and stem cell maintenance capability. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Ophthalmology Disorders)
Show Figures

Graphical abstract

18 pages, 3023 KiB  
Article
A Novel Technique of Amniotic Membrane Preparation Mimicking Limbal Epithelial Crypts Enhances the Number of Progenitor Cells upon Expansion
by Jovana Bisevac, Morten Carstens Moe, Liv Drolsum, Olav Kristianslund, Goran Petrovski and Agate Noer
Cells 2023, 12(5), 738; https://doi.org/10.3390/cells12050738 - 24 Feb 2023
Cited by 4 | Viewed by 2005
Abstract
We aimed to investigate whether a novel technique of human amniotic membrane (HAM) preparation that mimics the crypts in the limbus enhances the number of progenitor cells cultured ex vivo. The HAMs were sutured on polyester membrane (1) standardly, to obtain a flat [...] Read more.
We aimed to investigate whether a novel technique of human amniotic membrane (HAM) preparation that mimics the crypts in the limbus enhances the number of progenitor cells cultured ex vivo. The HAMs were sutured on polyester membrane (1) standardly, to obtain a flat HAM surface, or (2) loosely, achieving the radial folding to mimic crypts in the limbus. Immunohistochemistry was used to demonstrate a higher number of cells positive for progenitor markers p63α (37.56 ± 3.34% vs. 62.53 ± 3.32%, p = 0.01) and SOX9 (35.53 ± 0.96% vs. 43.23 ± 2.32%, p = 0.04), proliferation marker Ki-67 (8.43 ± 0.38 % vs. 22.38 ± 1.95 %, p = 0.002) in the crypt-like HAMs vs. flat HAMs, while no difference was found for the quiescence marker CEBPD (22.99 ± 2.96% vs. 30.49 ± 3.33 %, p = 0.17). Most of the cells stained negative for the corneal epithelial differentiation marker KRT3/12, and some were positive for N-cadherin in the crypt-like structures, but there was no difference in staining for E-cadherin and CX43 in crypt-like HAMs vs. flat HAMs. This novel HAM preparation method enhanced the number of progenitor cells expanded in the crypt-like HAM compared to cultures on the conventional flat HAM. Full article
Show Figures

Figure 1

19 pages, 6872 KiB  
Article
Short-Term UVB Irradiation Leads to Persistent DNA Damage in Limbal Epithelial Stem Cells, Partially Reversed by DNA Repairing Enzymes
by Thomas Volatier, Björn Schumacher, Berbang Meshko, Karina Hadrian, Claus Cursiefen and Maria Notara
Biology 2023, 12(2), 265; https://doi.org/10.3390/biology12020265 - 7 Feb 2023
Cited by 7 | Viewed by 3145
Abstract
The cornea is frequently exposed to ultraviolet (UV) radiation and absorbs a portion of this radiation. UVB in particular is absorbed by the cornea and will principally damage the topmost layer of the cornea, the epithelium. Epidemiological research shows that the UV damage [...] Read more.
The cornea is frequently exposed to ultraviolet (UV) radiation and absorbs a portion of this radiation. UVB in particular is absorbed by the cornea and will principally damage the topmost layer of the cornea, the epithelium. Epidemiological research shows that the UV damage of DNA is a contributing factor to corneal diseases such as pterygium. There are two main DNA photolesions of UV: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6–4) photoproducts (6-4PPs). Both involve the abnormal linking of adjacent pyrimide bases. In particular, CPD lesions, which account for the vast majority of UV-induced lesions, are inefficiently repaired by nucleotide excision repair (NER) and are thus mutagenic and linked to cancer development in humans. Here, we apply two exogenous enzymes: CPD photolyase (CPDPL) and T4 endonuclease V (T4N5). The efficacy of these enzymes was assayed by the proteomic and immunofluorescence measurements of UVB-induced CPDs before and after treatment. The results showed that CPDs can be rapidly repaired by T4N5 in cell cultures. The usage of CPDPL and T4N5 in ex vivo eyes revealed that CPD lesions persist in the corneal limbus. The proteomic analysis of the T4N5-treated cells shows increases in the components of the angiogenic and inflammatory systems. We conclude that T4N5 and CPDPL show great promise in the treatment of CPD lesions, but the complete clearance of CPDs from the limbus remains a challenge. Full article
(This article belongs to the Special Issue Limbal Stem Cell Biology and Contribution to Cornea Homeostasis)
Show Figures

Figure 1

17 pages, 11495 KiB  
Article
A Framework for Human Corneal Endothelial Cell Culture and Preliminary Wound Model Experiments with a New Cell Tracking Approach
by Francisco Bandeira, Gustavo Teixeira Grottone, Joyce Luciana Covre, Priscila Cardoso Cristovam, Renata Ruoco Loureiro, Francisco Irochima Pinheiro, Ricardo Pedro Casaroli-Marano, Waleska Donato and José Álvaro Pereira Gomes
Int. J. Mol. Sci. 2023, 24(3), 2982; https://doi.org/10.3390/ijms24032982 - 3 Feb 2023
Cited by 7 | Viewed by 3856
Abstract
Cell injection therapy is emerging as an alternative to treat corneal endothelial dysfunction (CED) and to avoid corneal scarring due to bullous keratopathy. However, establishing a standardized culture procedure that provides appropriate cell yield while retaining functional features remains a challenge. Here, we [...] Read more.
Cell injection therapy is emerging as an alternative to treat corneal endothelial dysfunction (CED) and to avoid corneal scarring due to bullous keratopathy. However, establishing a standardized culture procedure that provides appropriate cell yield while retaining functional features remains a challenge. Here, we describe a detailed framework obtained from in vitro culture of human corneal endothelial cells (HCECs) and comparative in vivo experimental models for CED treatment with a new cell tracking approach. Two digestion methods were compared regarding HCEC morphology and adhesion. The effect of Y-27632 (ROCKi) supplementation on final cell yield was also assessed. Cell adhesion efficacy with two cell delivery systems (superparamagnetic embedding and cell suspension) was evaluated in an ex vivo human cornea model and in an in vivo rabbit CED model. The injection of supplemented culture medium or balanced salt solution (BSS) was used for the positive and negative controls, respectively. HCEC isolation with collagenase resulted in better morphology and adhesion of cultured HCEC when compared to EDTA. Y-27632 supplementation resulted in a 2.6-fold increase in final cell yield compared to the control. Ex vivo and in vivo adhesion with both cell delivery systems was confirmed by cell tracker fluorescence detection. Corneal edema and opacity improved in both animal groups treated with cultured HCEC. The corneas in the control groups remained opaque. Both HCEC delivery systems seemed comparable as treatments for CED and for the prevention of corneal scarring. Full article
Show Figures

Graphical abstract

15 pages, 2836 KiB  
Article
Novel ROCK Inhibitors, Sovesudil and PHP-0961, Enhance Proliferation, Adhesion and Migration of Corneal Endothelial Cells
by Kyung Wook Kim, Young Joo Shin and Sammy Chi Sam Lee
Int. J. Mol. Sci. 2022, 23(23), 14690; https://doi.org/10.3390/ijms232314690 - 24 Nov 2022
Cited by 8 | Viewed by 2380
Abstract
The loss or dysfunction of human corneal endothelial cells (hCEnCs) is a leading cause of blindness due to corneal failure. Corneal transplantation with a healthy donor cornea has been the only available treatment for corneal endothelial disease. However, the need for way to [...] Read more.
The loss or dysfunction of human corneal endothelial cells (hCEnCs) is a leading cause of blindness due to corneal failure. Corneal transplantation with a healthy donor cornea has been the only available treatment for corneal endothelial disease. However, the need for way to regenerate the CEnCs has been increased due to the global shortage of donor corneas. The aim of the study is to investigate whether novel Rho-kinase (ROCK) inhibitors can induce the cultivation and regeneration of hCEnCs. Cultured hCEnCs were treated with Y-27632, sovesudil, or PHP-0961 for 24 h. Cellular responses, including cell viability, cytotoxicity, proliferation, and Ki67 expression with ROCK inhibitors were evaluated. We also evaluated wound healing and cell adhesion assays. Porcine corneas were used ex vivo to evaluate the effects of Y-27632, sovesudil, and PHP-0961 on wound healing and regeneration. We performed live/dead cell assays and immunofluorescence staining for SRY (sex determining region Y)-box 2 (SOX2), β-catenin, and ZO-1 on porcine corneas after ROCK inhibitor treatments. Cell viability, cell proliferation rate, and the number of Ki67-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated cells compared to the control. There was no difference in LDH cytotoxicity test between any groups. Cells treated with Y-27632, sovesudil and PHP-0961 showed faster migration, wound healing, and cell adhesion. In the porcine ex vivo experiments, wound healing, the number of live cells, and SOX2-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated corneas. In all experiments, sovesudil and PHP-0961, the novel ROCK inhibitors, were equal or superior to the results of the ROCK inhibitor positive control, Y-27632. In conclusion, sovesudil and PHP-0961, novel ROCK inhibitors have the capacity to regenerate hCEnCs by enhancing cell proliferation and adhesion between cells. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 4448 KiB  
Article
Epithelial Cell-Derived Extracellular Vesicles Trigger the Differentiation of Two Epithelial Cell Lines
by Tiago Ramos, Mohit Parekh, Stephen B. Kaye and Sajjad Ahmad
Int. J. Mol. Sci. 2022, 23(3), 1718; https://doi.org/10.3390/ijms23031718 - 2 Feb 2022
Cited by 17 | Viewed by 3488
Abstract
Extracellular vesicles (EVs), specifically exosomes, carry a cell-type dependent cargo that is transported to the recipient cell and translated in the presence of a required machinery. Differences in the cargo carried by the corneal and conjunctival-derived EVs could be the agent that triggers [...] Read more.
Extracellular vesicles (EVs), specifically exosomes, carry a cell-type dependent cargo that is transported to the recipient cell and translated in the presence of a required machinery. Differences in the cargo carried by the corneal and conjunctival-derived EVs could be the agent that triggers the transdifferentiation of these two cell populations. Therefore, this study investigates the role of EVs in triggering the plasticity of corneal and conjunctival epithelial cells and identifies prospective miRNA and genes responsible for maintaining ocular surface homeostasis. The EVs were extracted from the conditioned media (after starving) of corneal epithelial (hTCEpi) and conjunctival (HCjE-Gi) cell lines using ultracentrifugation. HCjE-Gi cells were cultured with hTCEpi-derived EVs and vice-versa. The EVs were characterized as exosomes using Nanosight and Flow cytometry. KRT3 and KRT12 were used as associated corneal markers, whereas KRT7 and KRT13 were used as associated conjunctival markers with ΔNp63 as a differentiation marker. Shift of these markers was an indication of transdifferentiation. The cargo of the extracted exosomes from both the cell types was explored using next-generation sequencing. The hTCEpi-derived EVs induced conjunctival epithelial cells to express the corneal-associated markers KRT3 and KRT12, losing their conjunctival phenotype at both the mRNA and protein level. Simultaneously, HCjE-Gi-derived EVs induced corneal epithelial cells to express the conjunctival associated markers KRT7 and KRT13, losing their corneal phenotype. This process of differentiation was accompanied by an intermediate step of cell de-differentiation showed by up-regulation in the expression of epithelial stem cell marker ΔNp63, also shown on the ex vivo human cadaveric donor corneas. miRNA molecules (total of 11 including precursor and mature) with significant differences in their relative abundance between the two populations (p < 0.05) were found and investigated. miR-9-5p expression was higher in HCjE-Gi cells and HCjE-Gi-derived EVs when compared to hTCEpi cells and hTCEPi-derived EVs (p < 0.001). The results suggest that EVs released by the two cell types have the ability to influence the transdifferentiation of human conjunctival and corneal epithelial cells. miR-9-5p could have a role in stem cell homeostasis and cell differentiation via HES-1 gene. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 1830 KiB  
Article
Assessment of Cidofovir for Treatment of Ocular Bovine Herpesvirus-1 Infection in Cattle Using an Ex-Vivo Model
by Christopher R. Alling, Chin-Chi Liu, Ingeborg M. Langohr, Muzammel Haque, Renee T. Carter, Rose E. Baker and Andrew C. Lewin
Viruses 2021, 13(10), 2102; https://doi.org/10.3390/v13102102 - 18 Oct 2021
Cited by 3 | Viewed by 3444
Abstract
Bovine herpesvirus-1 (BoHV-1) infection contributes to keratoconjunctivitis, respiratory disease, and reproductive losses in cattle. The objective of this study was to determine the most appropriate ophthalmic antiviral agent for BoHV-1 inhibition using in-vitro culture and novel ex-vivo bovine corneal modeling. Half-maximal inhibitory concentrations [...] Read more.
Bovine herpesvirus-1 (BoHV-1) infection contributes to keratoconjunctivitis, respiratory disease, and reproductive losses in cattle. The objective of this study was to determine the most appropriate ophthalmic antiviral agent for BoHV-1 inhibition using in-vitro culture and novel ex-vivo bovine corneal modeling. Half-maximal inhibitory concentrations of BoHV-1 were determined for cidofovir, ganciclovir, idoxuridine, and trifluridine via in-vitro plaque reduction assays. In-vitro cytotoxicity was compared amongst these compounds via luciferase assays. Trifluridine and cidofovir were the most potent BoHV-1 inhibitors in vitro, while trifluridine and idoxuridine were the most cytotoxic agents. Therefore, cidofovir was the most potent non-cytotoxic agent and was employed in the ex-vivo corneal assay. Corneoscleral rings (n = 36) from fresh cadaver bovine globes were harvested and equally divided into an uninfected, untreated control group; a BoHV-1-infected, untreated group; and a BoHV-1-infected, cidofovir-treated group. Virus isolation for BoHV-1 titers was performed from corneal tissue and liquid media. Histologic measurements of corneal thickness, epithelial cell density, and tissue organization were compared between groups. Substantial BoHV-1 replication was observed in infected, untreated corneas, but BoHV-1 titer was significantly reduced in cidofovir-treated (1.69 ± 0.08 × 103 PFU/mL) versus untreated (8.25 ± 0.25 × 105 PFU/mL, p < 0.0001) tissues by day 2 of culture. No significant differences in histologic criteria were observed between groups. In conclusion, cidofovir warrants further investigation as treatment for BoHV-1 keratoconjunctivitis, with future studies needed to assess in-vivo tolerability and efficacy. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals)
Show Figures

Figure 1

17 pages, 5300 KiB  
Article
A Decellularized Human Limbal Scaffold for Limbal Stem Cell Niche Reconstruction
by Naresh Polisetti, Benjamin Roschinski, Ursula Schlötzer-Schrehardt, Philip Maier, Günther Schlunck and Thomas Reinhard
Int. J. Mol. Sci. 2021, 22(18), 10067; https://doi.org/10.3390/ijms221810067 - 17 Sep 2021
Cited by 16 | Viewed by 3703
Abstract
The transplantation of ex vivo expanded limbal epithelial progenitor cells (LEPCs) on amniotic membrane or fibrin gel is an established therapeutic strategy to regenerate the damaged corneal surface in patients with limbal stem cell deficiency (LSCD), but the long-term success rate is restricted. [...] Read more.
The transplantation of ex vivo expanded limbal epithelial progenitor cells (LEPCs) on amniotic membrane or fibrin gel is an established therapeutic strategy to regenerate the damaged corneal surface in patients with limbal stem cell deficiency (LSCD), but the long-term success rate is restricted. A scaffold with niche-specific structure and extracellular matrix (ECM) composition might have the advantage to improve long-term clinical outcomes, in particular for patients with severe damage or complete loss of the limbal niche tissue structure. Therefore, we evaluated the decellularized human limbus (DHL) as a biomimetic scaffold for the transplantation of LEPCs. Corneoscleral tissue was decellularized by sodium deoxycholate and deoxyribonuclease I in the presence or absence of dextran. We evaluated the efficiency of decellularization and its effects on the ultrastructure and ECM composition of the human corneal limbus. The recellularization of these scaffolds was studied by plating cultured LEPCs and limbal melanocytes (LMs) or by allowing cells to migrate from the host tissue following a lamellar transplantation ex vivo. Our decellularization protocol rapidly and effectively removed cellular and nuclear material while preserving the native ECM composition. In vitro recellularization by LEPCs and LMs demonstrated the good biocompatibility of the DHL and intrastromal invasion of LEPCs. Ex vivo transplantation of DHL revealed complete epithelialization as well as melanocytic and stromal repopulation from the host tissue. Thus, the generated DHL scaffold could be a promising biological material as a carrier for the transplantation of LEPCs to treat LSCD. Full article
(This article belongs to the Special Issue Biofabrication for Tissue Engineering Applications)
Show Figures

Figure 1

15 pages, 4119 KiB  
Article
Establishment of a Robust and Simple Corneal Organ Culture Model to Monitor Wound Healing
by Sandra Schumann, Eva Dietrich, Charli Kruse, Salvatore Grisanti and Mahdy Ranjbar
J. Clin. Med. 2021, 10(16), 3486; https://doi.org/10.3390/jcm10163486 - 6 Aug 2021
Cited by 7 | Viewed by 3664
Abstract
The use of in vitro systems to investigate the process of corneal wound healing offers the opportunity to reduce animal pain inflicted during in vivo experimentation. This study aimed to establish an easy-to-handle ex vivo organ culture model with porcine corneas for the [...] Read more.
The use of in vitro systems to investigate the process of corneal wound healing offers the opportunity to reduce animal pain inflicted during in vivo experimentation. This study aimed to establish an easy-to-handle ex vivo organ culture model with porcine corneas for the evaluation and modulation of epithelial wound healing. Cultured free-floating cornea disks with a punch defect were observed by stereomicroscopic photo documentation. We analysed the effects of different cell culture media and investigated the impact of different wound sizes as well as the role of the limbus. Modulation of the wound healing process was carried out with the cytostatic agent Mitomycin C. The wound area calculation revealed that after three days over 90% of the lesion was healed. As analysed with TUNEL and lactate dehydrogenase assay, the culture conditions were cell protecting and preserved the viability of the corneal tissue. Wound healing rates differ dependent on the culture medium used. Mitomycin C hampered wound healing in a concentration-dependent manner. The porcine cornea ex vivo culture ideally mimics the in vivo situation and allows investigations of cellular behaviour in the course of wound healing. The effect of substances can be studied, as we have documented for a mitosis inhibitor. This model might aid in toxicological studies as well as in the evaluation of drug efficacy and could offer a platform for therapeutic approaches based on regenerative medicine. Full article
(This article belongs to the Special Issue Treatment of Cornea and Ocular Surface Diseases)
Show Figures

Figure 1

15 pages, 2638 KiB  
Article
Partitioning and Spatial Distribution of Drugs in Ocular Surface Tissues
by Anusha Balla, Seppo Auriola, Angus C. Grey, Nicholas J. Demarais, Annika Valtari, Emma M. Heikkinen, Elisa Toropainen, Arto Urtti, Kati-Sisko Vellonen and Marika Ruponen
Pharmaceutics 2021, 13(5), 658; https://doi.org/10.3390/pharmaceutics13050658 - 4 May 2021
Cited by 16 | Viewed by 4206
Abstract
Ocular drug absorption after eye drop instillation has been widely studied, but partitioning phenomena and spatial drug distribution are poorly understood. We investigated partitioning of seven beta-blocking drugs in corneal epithelium, corneal stroma, including endothelium and conjunctiva, using isolated porcine tissues and cultured [...] Read more.
Ocular drug absorption after eye drop instillation has been widely studied, but partitioning phenomena and spatial drug distribution are poorly understood. We investigated partitioning of seven beta-blocking drugs in corneal epithelium, corneal stroma, including endothelium and conjunctiva, using isolated porcine tissues and cultured human corneal epithelial cells. The chosen beta-blocking drugs had a wide range (−1.76–0.79) of n-octanol/buffer solution distribution coefficients at pH 7.4 (Log D7.4). In addition, the ocular surface distribution of three beta-blocking drugs was determined by matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) after their simultaneous application in an eye drop to the rabbits in vivo. Studies with isolated porcine corneas revealed that the distribution coefficient (Kp) between the corneal epithelium and donor solution showed a positive relationship and good correlation with Log D7.4 and about a 50-fold range of Kp values (0.1–5). On the contrary, Kp between corneal stroma and epithelium showed an inverse (negative) relationship and correlation with Log D7.4 based on a seven-fold range of Kp values. In vitro corneal cell uptake showed a high correlation with the ex vivo corneal epithelium/donor Kp values. Partitioning of the drugs into the porcine conjunctiva also showed a positive relationship with lipophilicity, but the range of Kp values was less than with the corneal epithelium. MALDI-IMS allowed simultaneous detection of three compounds in the cornea, showed data in line with other experiments, and revealed uneven spatial drug distribution in the cornea. Our data indicate the importance of lipophilicity in defining the corneal pharmacokinetics and the Kp values are a useful building block in the kinetic simulation models for topical ocular drug administration. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Graphical abstract

22 pages, 2888 KiB  
Review
Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis
by Lucy Urwin, Katarzyna Okurowska, Grace Crowther, Sanhita Roy, Prashant Garg, Esther Karunakaran, Sheila MacNeil, Lynda J. Partridge, Luke R. Green and Peter N. Monk
Cells 2020, 9(11), 2450; https://doi.org/10.3390/cells9112450 - 10 Nov 2020
Cited by 51 | Viewed by 7199
Abstract
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are [...] Read more.
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface. Full article
Show Figures

Figure 1

Back to TopTop