Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = evening primrose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 931 KiB  
Article
Nutritional Quality, Fatty Acids Profile, and Phytochemical Composition of Unconventional Vegetable Oils
by Wiktoria Kamińska, Anna Grygier, Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska and Grażyna Neunert
Molecules 2025, 30(15), 3269; https://doi.org/10.3390/molecules30153269 - 4 Aug 2025
Abstract
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The [...] Read more.
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The chosen oils were investigated based on their fatty acids profiles, total phenolic compounds (TPC), tocopherols, and pigment contents. Despite the high polyunsaturated fatty acids (PUFAs) content raising concerns about oxidative stability, the significant tocopherol levels and polyphenols content contribute to antioxidative protection. These oils’ favorable hypocholesterolemic, antiatherogenic, and antithrombogenic properties were highlighted by key nutritional indices, showing potential benefits for cardiovascular health. These results suggest that these oils are a promising dietary supplement for promoting both cardiovascular health and sustainability, owing to their rich content of essential fatty acids and bioactive compounds. Moreover, high correlations were found between theoretical and experimental established oxidative stability of the tested oils at the ending stage of the thermostat test. Full article
Show Figures

Figure 1

10 pages, 233 KiB  
Article
Satsuma Orange Tolerance to Spring and Autumn Indaziflam Applications in Georgia
by Nicholas L. Hurdle, Timothy L. Grey, Samanth J. Bowen and Keith Rucker
Agriculture 2025, 15(3), 282; https://doi.org/10.3390/agriculture15030282 - 28 Jan 2025
Viewed by 846
Abstract
Citrus is a major crop in the SE US, with groves located primarily in Florida, but adapted cultivars have allowed for the expansion of commercial production into the Coastal Plains region of Georgia. Indaziflam, a cellulose biosynthesis inhibiting residual herbicide, controls numerous grass [...] Read more.
Citrus is a major crop in the SE US, with groves located primarily in Florida, but adapted cultivars have allowed for the expansion of commercial production into the Coastal Plains region of Georgia. Indaziflam, a cellulose biosynthesis inhibiting residual herbicide, controls numerous grass and broadleaf weed species. Research conducted in Georgia from 2020 to 2022 determined the optimal rate and tree response to indaziflam applications. Biannual treatments applied in April and November in established satsuma citrus groves included residual herbicides indaziflam, flumioxazin, diuron, pendimethalin, simazine, and norflurazon. The data indicated no negative impact on tree diameter growth over 30 months after application initiation. Indaziflam provided residual activity in the first year with >80% weed control for bermudagrass and pink purslane and >70% of cutleaf evening primrose, cutleaf geranium, and wild radish. Greater than 69% of weed control was maintained with indaziflam after sequential application for 2 years. All other herbicides provided inadequate residual weed control. Indaziflam PRE applied in citrus groves in Georgia can provide growers with a reliable herbicide option that has been proven to be safe for trees and season-long weed control. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

15 pages, 2156 KiB  
Article
In Vitro and In Ovo Evaluation of Oenothera biennis L. Oil as an Alternative Preservative for Oil-Based Products
by Ramona Fecker, Ștefana Avram, Ileana Cocan, Ersilia Alexa, Larisa Bora, Daliana Minda, Ioana Zinuca Magyari-Pavel, Cristina Adriana Dehelean and Corina Danciu
Foods 2025, 14(2), 332; https://doi.org/10.3390/foods14020332 - 20 Jan 2025
Viewed by 1211
Abstract
There is a growing need for safer alternatives to synthetic additives commonly used in lipophilic carriers for products such as foods, pharmaceuticals, personal care items, and cosmetics. Natural antioxidants, which prevent lipid peroxidation while providing additional health benefits, offer a promising solution. Evening [...] Read more.
There is a growing need for safer alternatives to synthetic additives commonly used in lipophilic carriers for products such as foods, pharmaceuticals, personal care items, and cosmetics. Natural antioxidants, which prevent lipid peroxidation while providing additional health benefits, offer a promising solution. Evening primrose oil, a rich source of antioxidant compounds with numerous biological benefits, emerges as a potential natural preservative for oil-based products. Our study evaluates a combination of sunflower oil, a widely used cold-pressed oil, with evening primrose oil for potential applications in various fields such as cosmetic, pharmaceutical, or food manufacturing. Various methods were applied to assess oxidative stability by calculating the peroxide value, the p-anisidine value, and the total oxidation value, while biological safety was evaluated using the chick embryo’s chorioallantoic membrane and histological analysis. The findings highlight that evening primrose oil, with its balanced effects on epithelial tissues and vascularization, as well as its strong anti-lipid peroxidation properties, is a suitable alternative to synthetic preservatives when used in combination with cold-pressed oils. This proposed oil combination, emphasizing the safety and beneficial properties of evening primrose oil, shows significant potential for applications in the pharmaceutical industry, dermatology, cosmetology, and food manufacturing. Full article
Show Figures

Figure 1

20 pages, 2036 KiB  
Article
Behavior at Air/Water Interface and Oxidative Stability of Vegetable Oils Analyzed Through Langmuir Monolayer Technique
by Wiktoria Kamińska, Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska, Anna Dembska and Grażyna Neunert
Molecules 2025, 30(1), 170; https://doi.org/10.3390/molecules30010170 - 4 Jan 2025
Cited by 2 | Viewed by 1262
Abstract
This study aimed to evaluate the oxidative stability and surface properties of cold-pressed vegetable oils using the Langmuir monolayer technique. Six oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, and pumpkin seed—were analyzed to investigate their molecular organization and behavior at the [...] Read more.
This study aimed to evaluate the oxidative stability and surface properties of cold-pressed vegetable oils using the Langmuir monolayer technique. Six oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, and pumpkin seed—were analyzed to investigate their molecular organization and behavior at the air/water interface, particularly after undergoing oxidation. The results showed that oils rich in polyunsaturated fatty acids (PUFAs), such as flaxseed and evening primrose oils, formed monolayers with larger molecular areas and lower stability, which led to faster oxidative degradation, especially under thermal conditions. In contrast, pumpkin seed oil, with a higher content of saturated fatty acids (SFAs), formed more condensed and stable monolayers, enhancing its resistance to oxidation. Black cumin oil, with a balanced profile of SFAs and monounsaturated fatty acids (MUFAs), demonstrated similar stability. The Langmuir technique facilitated a detailed analysis of monolayer phase transitions: PUFA-rich oils transitioned more readily to less stable phases, while SFA-rich oils maintained durable, condensed structures. These findings underscore the utility of this method for assessing the oxidative stability of vegetable oils and highlight key parameters—such as surface pressure, molecular area, and elasticity modulus—that can support the optimization of oil storage and quality in the food industry and related sectors. Full article
(This article belongs to the Special Issue New Insight into Edible Oil: From Food Chemistry to Health Benefits)
Show Figures

Figure 1

54 pages, 5547 KiB  
Review
Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care
by Sara Gonçalves, Lisete Fernandes, Ana Caramelo, Maria Martins, Tânia Rodrigues and Rita S. Matos
Plants 2024, 13(24), 3515; https://doi.org/10.3390/plants13243515 - 16 Dec 2024
Cited by 6 | Viewed by 8034
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates [...] Read more.
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like “plant”, “extract”, and “pruritus”. Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus’s physical and emotional burden, thereby enhancing patient well-being. Full article
Show Figures

Figure 1

20 pages, 2792 KiB  
Article
Residues from the Oil Pressing Process as a Substrate for the Production of Alternative Biochar Materials
by Bogdan Saletnik, Radosław Czarnota, Mateusz Maczuga, Aneta Saletnik, Marcin Bajcar, Grzegorz Zaguła and Czesław Puchalski
Appl. Sci. 2024, 14(17), 8028; https://doi.org/10.3390/app14178028 - 8 Sep 2024
Viewed by 1561
Abstract
The purpose of this study was to evaluate the feasibility of using residues from cooking oil production to produce alternative biochar fuels along with optimizing the pyrolysis process. The work consisted of carrying out the pyrolysis process at varying temperatures and holding times [...] Read more.
The purpose of this study was to evaluate the feasibility of using residues from cooking oil production to produce alternative biochar fuels along with optimizing the pyrolysis process. The work consisted of carrying out the pyrolysis process at varying temperatures and holding times at the final temperature, and then evaluating the energy potential of the materials studied. Taking into account aspects of environmental emissions, the content of selected oxides in the flue gases generated during the combustion of cakes and the biochar obtained from them was evaluated. Plant biomass derived from a variety of oilseeds, i.e., fennel flower (Nigella sativa L.), rapeseed (Brassica napus L. var. Napus), flax (Linum usitatissimum L.), evening primrose (Oenothera biennis L.), milk thistle (Silybum marianum L. Gaertn.) and hemp (Cannabis sativa L.), was used to produce biochar. The experimental data have shown that the obtained biochar can have a calorific value of nearly 27 MJ kg−1. The use of pyrolysis allowed for a maximum increase in the calorific value of nearly 41% compared to non-thermally processed cakes and a several-fold decrease in carbon monoxide, nitrogen oxides and sulfur dioxide emissions. According to these results, it can be concluded that the pyrolysis process can be an attractive method for using residues from the production of various cooking oils to produce alternative biofuels, developing the potential of the circular economy. Full article
Show Figures

Figure 1

29 pages, 7538 KiB  
Article
A New Methodology Based on Experimental Design and Sovová’s Broken and Intact Cells Model for the Prediction of Supercritical CO2 Extraction Kinetics
by Adil Mouahid, Magalie Claeys-Bruno and Sébastien Clercq
Processes 2024, 12(9), 1865; https://doi.org/10.3390/pr12091865 - 31 Aug 2024
Cited by 1 | Viewed by 1371
Abstract
Nowadays, supercritical CO2 extraction is highly regarded in industry, and several studies dealing with scale-up calculations aim to facilitate the transition from small scale to large scale. To complete this transition, it would be interesting to be able to predict supercritical CO [...] Read more.
Nowadays, supercritical CO2 extraction is highly regarded in industry, and several studies dealing with scale-up calculations aim to facilitate the transition from small scale to large scale. To complete this transition, it would be interesting to be able to predict supercritical CO2 extraction kinetics, which is the aim of this work. A new methodology based on the association of Sovová’s broken and intact cell model and response surface methodology was developed to predict SC-CO2 extraction kinetics from different biomass (Argan kernels, evening primrose, Punica granatum, Camellia sinensis, and dry paprika) at different operating conditions (200–700 bar, 40–60 °C, 0.14–10 kg/h) inside an operating domain. The absolute average relative deviations between the experimental and predicted data ranged from 1.86 to 29.03%, showing satisfactory reliability of this new methodology. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 13907 KiB  
Article
Oil Plant Pomace as a Raw Material in Technology of Sustainable Thermoplastic Polymer Composites
by Karolina Lipska, Izabela Betlej, Katarzyna Rybak, Małgorzata Nowacka and Piotr Boruszewski
Sustainability 2024, 16(16), 7088; https://doi.org/10.3390/su16167088 - 18 Aug 2024
Cited by 2 | Viewed by 4932
Abstract
The design of composites offers extensive opportunities for controlling parameters and utilizing diverse materials, including those sourced from recycling or waste streams. In this study, biocomposites were developed using high-density polyethylene (HDPE) and pomace derived from oilseed plants such as evening primrose, gold [...] Read more.
The design of composites offers extensive opportunities for controlling parameters and utilizing diverse materials, including those sourced from recycling or waste streams. In this study, biocomposites were developed using high-density polyethylene (HDPE) and pomace derived from oilseed plants such as evening primrose, gold of pleasure, rapeseed, and sunflower seeds, mixed in a 1:1 ratio. These biocomposites were evaluated for their structural, mechanical, morphological, and thermal properties, as well as their vulnerability to overgrowth by cellulolytic fungi. The results indicate that incorporating plant waste into HDPE reduces thermal stability while increasing water absorption and thickness swelling. Additionally, the biocomposites showed enhanced fungal growth, which may improve their biodegradability. Notably, the PE_EP composite, derived from evening primrose pomace, did not show significant differences in surface roughness and MOE parameters compared to pure polyethylene. In the case of PE_R composite, an increase in MOE was observed while maintaining the MOR parameter compared to pure PE. Although generally the mechanical properties of composites were lower compared to pure polyethylene, the findings suggest that with further optimization, oil plant pomace can be a valuable raw material for producing biocomposites suitable for various industrial applications, thereby contributing to sustainability and effective waste recycling. Full article
(This article belongs to the Special Issue Sustainability in Civil and Environmental Engineering)
Show Figures

Figure 1

2 pages, 139 KiB  
Abstract
Determination of Qualitative Changes in Edible Oils during the Oxidation Process Using the FTIR Method
by Grażyna Neunert and Wiktoria Kamińska
Proceedings 2024, 105(1), 40; https://doi.org/10.3390/proceedings2024105040 - 28 May 2024
Viewed by 481
Abstract
In the food industry, including the fat and oil sector, chemical methods are commonly used for routine quality analyses. These analyses are typically time-consuming and often require the use of toxic solvents and reagents. Moreover, in some cases, sophisticated instruments such as gas [...] Read more.
In the food industry, including the fat and oil sector, chemical methods are commonly used for routine quality analyses. These analyses are typically time-consuming and often require the use of toxic solvents and reagents. Moreover, in some cases, sophisticated instruments such as gas chromatographs are used, which are expensive and a form of advanced instrumentation. As an alternative approach, it is possible to use simpler methods utilizing spectroscopic techniques, like FTIR spectroscopy, the results of which have been reported to correlate with those obtained using wet chemical methods. In this study, we used the FTIR technique to assess the oxidative stability of some edible oils available on the Polish market. The oils studied were nigella seed, pumpkin seed, flax seed, linseed, evening primrose seed, and thistle seed oils. FTIR/ATR spectra of the undiluted oils were recorded in the range of 500–4000 cm−1 with a resolution of 2 cm−1. To monitor the oxidation process, the peak at 721 cm−1, related to cis double bonds of unsaturated fatty acids (UFAs), and the peak intensity at 986 cm−1, associated with the presence of conjugated diene groups of hydroperoxides (HPs), were analyzed. The content of free fatty acids (FFAs) and the ratio of unsaturated/saturated fatty acids (UFAs/SFAs) were qualitatively expressed by the intensity band at 1712 cm−1 and the peak ratio of 3011/2925 cm−1, respectively. Additionally, using the Triphenylphosphine/Triphenylphosphine Oxide (TPP/TPPO) assay, the peroxide value (PV) was calculated. The parameter analysis revealed significant variations among the tested oils. Moreover, all determined parameters from the FTIR spectrum changed during the oxidation process. However, the nature and degree of these changes differed depending on the oil tested. The findings indicated that the straightforward instrumental FTIR method could serve as a rapid analytical tool for evaluating the level of oxidation or comparing the quality of edible oils. Full article
2 pages, 136 KiB  
Abstract
Fatty Acid Profile of Vegan Omega-3 Food Supplements
by Gordana Milojević Miodragović, Jelena Banović Fuentes and Ljilja Torović
Proceedings 2023, 91(1), 270; https://doi.org/10.3390/proceedings2023091270 - 5 Feb 2024
Viewed by 1752
Abstract
Consumers’ current interest in vegan products strengthens the market growth for omega-3 fatty acid (FA) supplements from (micro)algae, offering all the benefits of a high dose of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, which are commonly considered to support normal vision, heart, and [...] Read more.
Consumers’ current interest in vegan products strengthens the market growth for omega-3 fatty acid (FA) supplements from (micro)algae, offering all the benefits of a high dose of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, which are commonly considered to support normal vision, heart, and brain health and immunity, without the safety and sustainability concerns associated with fish oil. Of the three main omega-3 FA, terrestrial plants typically contain only alpha-linolenic (ALA). This study aimed to assess the FA profiles and quality indices of plant-based omega-3 supplements that are convenient for vegans and vegetarians. A total of 12 omega-3 supplements, 7 based on terrestrial plants and 5 based on algae, were subjected to GC-FID analysis of FA profiles, which were further used for the calculation of lipid quality indices. The findings confirmed the identity as well as the pivotal differences between the FA profiles of algae and terrestrial plants: EPA and DHA, which were abundantly present in algae supplements ((23.1 + 36.3)%; (3.3 + 72.2)%; 45.6; and 46.1% of DHA in Scizochytrium sp. microalgae), were absent from other plants. The opposite observation was recorded for ALA, which was present only in terrestrial plant supplements: maximum 45.8% in flaxseed, 38.5% in mixed flaxseed/primrose/olive/rice husk/sea buckthorn oil, 26.7% in the hemp/flaxseed/spirulina mixture, and 11.0% in black currant/soy oil, whereas evening primrose supplements contained 10% of γ-linolenic acid. The most beneficial polyunsaturated to saturated FA ratio was obtained for primrose oil (7.8), followed by black currant/soy (5.9), flaxseed (3.2), and hemp/flaxseed/spirulina (2.9), whereas in algae supplements, it ranged from 1.6 to 6.5. The hypocholesterolemic/hypercholesterolemic index varied from 7.2 in hemp to 12.2 in primrose and from 2.7 to 22.6 in the case of algae supplements. The atherogenicity (IA) and thrombogenicity (IT) indices of both terrestrial plant and algae supplements were favorably low (IA 0.1–0.2 and 0.4; IT 0.1–0.2 and 0.02–0.2), along with high unsaturation indices ranging from 170.9–188.6 to 304.3–469.8, respectively. Considering the limited ability of the human body to convert ALA to EPA and DHA, algae supplements seem to be a better choice for vegans and vegetarians. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
34 pages, 725 KiB  
Article
Chemical Compositions and Essential Fatty Acid Analysis of Selected Vegetable Oils and Fats
by Pawan Kumar Ojha, Darbin Kumar Poudel, Anil Rokaya, Salina Maharjan, Sunita Timsina, Ambika Poudel, Rakesh Satyal, Prabodh Satyal and William N. Setzer
Compounds 2024, 4(1), 37-70; https://doi.org/10.3390/compounds4010003 - 17 Jan 2024
Cited by 19 | Viewed by 10371
Abstract
The fatty acid (FA) compositions of thirty-nine vegetable oils and fats, including nangai nut, pili nut, shea butter, tamanu oil, baobab, sea buckthorn berry, Brazil nut, grape seed, black seed, evening primrose, passion fruit, milk thistle, sunflower, pumpkin seed, sesame, soybean, flax seed, [...] Read more.
The fatty acid (FA) compositions of thirty-nine vegetable oils and fats, including nangai nut, pili nut, shea butter, tamanu oil, baobab, sea buckthorn berry, Brazil nut, grape seed, black seed, evening primrose, passion fruit, milk thistle, sunflower, pumpkin seed, sesame, soybean, flax seed, kukui, red raspberry seed, walnut, chia seed, hemp seed, rosehip, almond, avocado, carrot seed, moringa, apricot kernel, camellia seed, macadamia, olive, marula, argan, castor, jojoba, pomegranate seed, medium-chain triglyceride (MCT) coconut, roasted coconut, canola, and mustard oil, were analyzed using gas chromatography–mass spectrometry (GC-MS). Vegetable oils and fats have different profiles in terms of their fatty acid composition, and their major constituents vary significantly. However, we categorized them into different classes based on the percentages of different fatty acids they contain. The saturated fatty acids, such as palmitic acid and stearic acid, and the unsaturated fatty acids, including oleic acid, linoleic acid, and linolenic acid, are the main categories. Among them, roasted coconut oil contained the greatest amount of saturated fatty acids followed by nangai nut (45.61%). Passion fruit oil contained the largest amount of linoleic acid (66.23%), while chia seed oil had the highest content of linolenic acid (58.25%). Oleic acid was exclusively present in camellia seed oil, constituting 78.57% of its composition. Notably, mustard oil had a significant presence of erucic acid (54.32%), while pomegranate seed oil exclusively contained punicic acid (74.77%). Jojoba oil primarily consisted of (Z)-11-eicosenoic acid (29.55%) and (Z)-docos-13-en-1-ol (27.96%). The major constituent in castor oil was ricinoleic acid (89.89%). Compared with other vegetable oils and fats, pili nut oil contained a significant amount of (E)-FA (20.62%), followed by sea buckthorn berry oil with a content of 9.60%. FA compositions from sources may be problematic in the human diet due to no labeling or the absence of essential components. Therefore, consumers must cast an eye over some essential components consumed in their dietary intake. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2022–2023))
Show Figures

Figure 1

26 pages, 1217 KiB  
Review
Beneficial Effects of Plant Oils Supplementation on Multiple Sclerosis: A Comprehensive Review of Clinical and Experimental Studies
by Ghanya Al-Naqeb, Aliki Kalmpourtzidou, Rachele De Giuseppe and Hellas Cena
Nutrients 2023, 15(22), 4827; https://doi.org/10.3390/nu15224827 - 18 Nov 2023
Cited by 5 | Viewed by 4846
Abstract
Multiple sclerosis disease (MS) is a 38.5 chronic neurological autoimmune disease that affects the nervous system, and its incidence is increasing globally. At present, there is no cure for this disease, and with its severity and disabling variety, it is important to search [...] Read more.
Multiple sclerosis disease (MS) is a 38.5 chronic neurological autoimmune disease that affects the nervous system, and its incidence is increasing globally. At present, there is no cure for this disease, and with its severity and disabling variety, it is important to search for possibilities that could help to slow its progression. It is recognized that the mechanisms of MS pathology, its development and degree of activity can be affected by dietary factors. In this review, the beneficial health effects of 10 plants oils—mainly seed oils, including pomegranate seed oil, sesame oil, acer truncatum bunge seed oil, hemp seeds oil, evening primrose seed oil, coconut oil, walnut oil, essential oil from Pterodon emarginatus seeds, flaxseed oil and olive oil—on MS are discussed. The literature data indicate that plant oils could be effective for the treatment of MS and its related symptoms primarily through reducing inflammation, promoting remyelination, immunomodulation and inhibiting oxidative stress. Plant oils may potentially reduce MS progression. Longitudinal research including a larger sample size with a longer duration is essential to confirm the findings from the selected plant oils. Moreover, new plant oils should be studied for their potential MS benefit. Full article
(This article belongs to the Special Issue Nutrition, Neurons and Disease)
Show Figures

Figure 1

20 pages, 6500 KiB  
Article
Evening Primrose Extract Modulates TYMS Expression via SP1 Transcription Factor in Malignant Pleural Mesothelioma
by Małgorzata Chmielewska-Kassassir, Katarzyna Sobierajska, Wojciech M. Ciszewski, Jakub Kryczka, Andrzej Zieleniak and Lucyna A. Wozniak
Cancers 2023, 15(20), 5003; https://doi.org/10.3390/cancers15205003 - 16 Oct 2023
Cited by 1 | Viewed by 1866
Abstract
Purpose: To determine the mechanism of EPE in downregulating TYMS in MPM cancer. Methods: The TYMS mRNA expression with epithelial-to-mesenchymal transition biomarkers and nuclear factor SP1 was assessed using the GEO database in a data set of MPM patients (GSE51024). Invasive MPM cell [...] Read more.
Purpose: To determine the mechanism of EPE in downregulating TYMS in MPM cancer. Methods: The TYMS mRNA expression with epithelial-to-mesenchymal transition biomarkers and nuclear factor SP1 was assessed using the GEO database in a data set of MPM patients (GSE51024). Invasive MPM cell lines were in vitro models for the investigation of TYMS expression after EPE treatment. The tyms promoter SP1 binding sequences were determined using Genomatix v 3.4 software Electrophoretic mobility shift and dual-luciferase reporter assays revealed specific SP1 motifs in the interaction of EPE and reference compounds. Chromatin immunoprecipitation and Re-ChIP were used for the co-occupancy study. Results: In MPM patients, a positive correlation of overexpressed TYMS with mesenchymal TWIST1, FN1 and N-cadherin was observed. EPE and its major components, gallic and ellagic acid (GA and EA, respectively), downregulated TYMS in invasive MPM cells by interacting with particular SP1 motifs on the tyms promoter. The luciferase constructs confirmed the occupation of two SP1 regulatory regions critical for the promotion of TYMS expression. Both EPE and reference standards influenced SP1 translocation into the nucleus. Conclusion: EPE components reduced TYMS expression by occupation of SP1 motifs on the tyms promoter and reversed the EMT phenotype of invasive MPM cells. Further in-depth analysis of the molecular docking of polyphenol compounds with SP1 regulatory motifs is required. Full article
(This article belongs to the Special Issue Advances in Malignant Pleural Mesothelioma (MPM))
Show Figures

Graphical abstract

18 pages, 3764 KiB  
Article
LC–MS Metabolomic Profiling of Five Types of Unrefined, Cold-Pressed Seed Oils to Identify Markers to Determine Oil Authenticity and to Test for Oil Adulteration
by Agata Sumara, Anna Stachniuk, Alicja Trzpil, Adrian Bartoszek, Magdalena Montowska and Emilia Fornal
Molecules 2023, 28(12), 4754; https://doi.org/10.3390/molecules28124754 - 14 Jun 2023
Cited by 8 | Viewed by 2720
Abstract
The authenticity of food products marketed as health-promoting foods—especially unrefined, cold-pressed seed oils—should be controlled to ensure their quality and safeguard consumers and patients. Metabolomic profiling using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC–QTOF) was employed to identify authenticity markers for [...] Read more.
The authenticity of food products marketed as health-promoting foods—especially unrefined, cold-pressed seed oils—should be controlled to ensure their quality and safeguard consumers and patients. Metabolomic profiling using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC–QTOF) was employed to identify authenticity markers for five types of unrefined, cold-pressed seed oils: black seed oil (Nigella sativa L.), pumpkin seed oil (Cucurbita pepo L.), evening primrose oil (Oenothera biennis L.), hemp oil (Cannabis sativa L.) and milk thistle oil (Silybum marianum). Of the 36 oil-specific markers detected, 10 were established for black seed oil, 8 for evening primrose seed oil, 7 for hemp seed oil, 4 for milk thistle seed oil and 7 for pumpkin seed oil. In addition, the influence of matrix variability on the oil-specific metabolic markers was examined by studying binary oil mixtures containing varying volume percentages of each tested oil and each of three potential adulterants: sunflower, rapeseed and sesame oil. The presence of oil-specific markers was confirmed in 7 commercial oil mix products. The identified 36 oil-specific metabolic markers proved useful for confirming the authenticity of the five target seed oils. The ability to detect adulterations of these oils with sunflower, rapeseed and sesame oil was demonstrated. Full article
(This article belongs to the Special Issue Food Chemistry: Food Quality and New Analytical Approaches)
Show Figures

Figure 1

14 pages, 736 KiB  
Systematic Review
Systematic Review of Evening Primrose (Oenothera biennis) Preparations for the Facilitation of Parturition
by Timothy C. Hutcherson, Nicole E. Cieri-Hutcherson, Maggie M. Lycouras, Dharmista Koehler, Madison Mortimer, Christina J. Schaefer, Olivia S. Costa, Ashley L. Bohlmann and Mudit K. Singhal
Pharmacy 2022, 10(6), 172; https://doi.org/10.3390/pharmacy10060172 - 10 Dec 2022
Cited by 2 | Viewed by 3710
Abstract
Background: The objective of this systematic review was to characterize the efficacy and safety of evening primrose (EP) for facilitation of parturition in peripartum persons. Methods: This search sought records related to the efficacy and safety of EP preparations to facilitate parturition. Eligibility [...] Read more.
Background: The objective of this systematic review was to characterize the efficacy and safety of evening primrose (EP) for facilitation of parturition in peripartum persons. Methods: This search sought records related to the efficacy and safety of EP preparations to facilitate parturition. Eligibility criteria were primary literature with efficacy or safety outcomes reported; studied in peripartum persons; and available in English. Records were excluded if they were available as abstracts only. Data was synthesized by study characteristics, patient demographics, and outcomes. The RoB2 and ROBINS-I were used to assess risk of bias. Results: A total of 11 studies met inclusion criteria: seven randomized placebo-controlled trials, one randomized non placebo-controlled trial, one case study, one observational retrospective study, and one quasi-experimental cross-sectional study. Efficacy outcomes included Bishop scores and duration of labor during the different phases. Reported adverse events were generally mild and included increased blood pressure, decreased heart rate, pain, bleeding, nausea, and vomiting. Important risks of bias exist across the literature reviewed. Conclusions: The use of EP for parturition in peripartum individuals is not recommended. Further research is warranted before use during parturition or the peripartum period. Other: The authors deny conflicts of interest. The study was neither registered nor funded. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Pharmacy)
Show Figures

Figure 1

Back to TopTop