Satsuma Orange Tolerance to Spring and Autumn Indaziflam Applications in Georgia
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Setup
2.3. Data Collection
2.4. Data Analysis
3. Results and Discussion
3.1. Experiment 1
3.2. Experiment 2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frankson, R.; Kunkel, K.E.; Stevens, L.E.; Stewart, B.C.; Sweet, W.; Murphey, B. NOAA Technical Report. NESDIS 149-GA Georgia State Climate Summary. Available online: https://statesummaries.ncics.org/downloads/Georgia-StateClimateSummary2022.pdf (accessed on 3 December 2024).
- National Agricultural Statistics Service (NASS). United States Department of Agriculture. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=FLORIDA (accessed on 19 November 2024).
- Fonsah, E.G.; Price, J.; Cantrell, B. Research Report: Economic analysis of production satsuma citrus in Georgia using an enterprise budget. J. Food Distrib. Res. 2020, 51, 43–49. [Google Scholar] [CrossRef]
- Gasic, K.; Preece, J.E.; Karp, D. Register of New Fruit and Nut Cultivars List 50: Tift3-46. HortScience 2020, 55, 1164–1201. [Google Scholar] [CrossRef]
- Graham, J.H.; Bassanezi, R.B.; Dawson, W.O.; Dantzler, R. Management of Huanglongbing of citrus: Lessons from Sao Paulo and Florida. Annu. Rev. Phytopathol. 2024, 62, 243–262. [Google Scholar] [CrossRef]
- Grafton-Carwell, E.E.; Daugherty, M.P. UC IPM Pest Notes: Asian Citrus Psyllid and Huanglongbing Disease; UC ANR Publication: Oakland, CA, USA, 2018; Available online: http://ipm.ucanr.edu/pdf/pestnotes/pnasiancitruspsyllid.pdf (accessed on 3 September 2022).
- Wang, N. A promising plant defense peptide against citrus Huanglongbing disease. Proc. Natl. Acad. Sci. USA 2021, 118, e2026483118. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Kanissery, R.; Ammar, E.D.; Cabral, I.; Markle, L.T.; Patt, J.M.; Stelinski, L.L. Feeding behavior of Asian citrus psyllid [Diaphorina citri (Hemiptera: Liviidae)] nymphs and adults on common weeds occurring in cultivated citrus described using electrical penetration graph recordings. Insects 2020, 11, 48. [Google Scholar] [CrossRef]
- Anonymous. Alion® Herbicide Product Label; Bayer CropScience: Research Triangle Park, NC, USA, 2023; 66p, Available online: https://www.cdms.net/ldat/ldA75010.pdf (accessed on 7 September 2023).
- Jarvis, M.C. Cellulose Biosynthesis: Counting the Chains. Plant Physiol. 2013, 163, 1485–1486. [Google Scholar] [CrossRef]
- Davis, J.K. Combining polysaccharide biosynthesis and transport in a single enzyme: Dual-function cell wall glycan synthases. Front. Plant Sci. 2012, 3, 138. [Google Scholar] [CrossRef]
- Desprez, T.; Juraniex, M.; Crowell, E.F.; Jouy, H.; Pochylova, A.; Parcy, F.; Höfte, H.; Gonneau, M.; Vernhettes, S. Organization of Cellulose Synthase Complexes Involved in Primary Cell Wall Synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2007, 104, 15572–15577. [Google Scholar] [CrossRef] [PubMed]
- Alberts, B.; Johnson, A.; Lewis, J. The Plant Cell Wall. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26928/ (accessed on 21 November 2024).
- Brabham, C.; Lei, L.; Gu, Y.; Stork, J.; Barrett, M.; DeBolt, S. Indaziflam herbicidal action: A potent cellulose biosynthesis inhibitor. Plant Physiol. 2014, 166, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Shaner, D.L. Indaziflam. In Herbicide Handbook, 10th ed.; Weed Science Society of America: Lawrence, KS, USA, 2014; pp. 266–267. [Google Scholar]
- Grey, T.L.; Rucker, L.; Wells, L.; Luo, X. Response of young pecan trees to repeated applications of indaziflam and halosulfuron. HortScience 2018, 53, 313–317. [Google Scholar] [CrossRef]
- Hurdle, N.L.; Grey, T.L.; McCullough, P.E.; Shilling, D.; Belcher, J. Bermudagrass tolerance of indaziflam PRE applications in forage production. Weed Technol. 2019, 34, 125–128. [Google Scholar] [CrossRef]
- González-Delgado, A.M.; Ashigh, J.; Shukla, K.K.; Perkins, R. Mobility of indaziflam influenced by soil properties in a semi-arid area. PLoS ONE 2015, 10, e0126100. [Google Scholar] [CrossRef] [PubMed]
- Jhala, A.J.; Singh, M. Leaching of indaziflam compared with residual herbicides commonly used in Florida citrus. Weed Technol. 2012, 26, 602–607. [Google Scholar] [CrossRef]
- Jhala, A.J.; Ramirez, A.H.M.; Singh, M. Tank mixing saflufenacil, glufosinate, and indaziflam improved burndown and residual weed control. Weed Technol. 2013, 27, 422–429. [Google Scholar] [CrossRef]
- Blanco, F.M.G.; Ramos, Y.G.; Scarso, M.G.; Jorge, L.A.C. Determining the Selectivity of Herbicides and Assessing Their Effect on Plant Roots—A Case Study with Indaziflam and Glyphosate Herbicides. In Herbicides, Physiology of Action, and Safety; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef]
- Shaner, D.L. Glyphosate. In Herbicide Handbook, 10th ed.; Weed Science Society of America: Lawrence, KS, USA, 2014; pp. 240–242. [Google Scholar]
- Alister, C.A.; Gomez, P.A.; Rojas, S.; Kogan, M. Pendimethalin and Oxyfluorfen Degradation under Two Irrigation Conditions over Four Years Application. J. Environ. Sci. Health Part B 2009, 44, 337–343. [Google Scholar] [CrossRef]
- Duke, S.O. The History and Current Status of Glyphosate. Pest. Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Bromilow, R.H.; Chamberlain, K.; Tench, A.J.; Williams, R.H. Phloem translocation of strong acids-glyphosate, substituted phosphonic and sulfonic acids in Ricinus communis L. Pestic. Sci. 1997, 37, 39–47. [Google Scholar] [CrossRef]
- Martinelli, R.; Rufino, L.R., Jr.; Alcántara-de la Cruz, R.; da Conceição, P.M.; Monquero, P.A.; de Azevedo, F.A. Glyphosate Excessive Use Affects Citrus Growth and Yield: The Vicious (and Unsustainable) Circle in Brazilian Orchards. Agronomy 2022, 12, 453. [Google Scholar] [CrossRef]
- Kanissery, R. Can Chemical Weed Control Affect Tree Health & Fruit Drop in Citrus? 2022 Florida Citrus Growers’ Institute. 2022. Available online: https://citrusagents.ifas.ufl.edu/media/crecifasufledu/citrus-agents/growers-institutes/2022/Kanissery_Institute2022.pdf (accessed on 26 November 2024).
- Morillo, E.; Undabeytia, T.; Cabrera, A.; Villaverde, J.; Maqueda, C. Effect of Soil Type on Adsorption-Desorption, Mobility, and Activity of the Herbicide Norflurazon. J. Agric. Food Chem. 2004, 52, 884–890. [Google Scholar] [CrossRef]
- Niekamp, J.W.; Johnson, W.G. Weed management with sulfentrazone and flumioxazin in no-tillage soyabean (Glycine max). Crop Prot. 2001, 20, 215–220. [Google Scholar] [CrossRef]
- Ramirez, A.H.M.; Jhala, A.J.; Singh, M. Efficacy of PRE and POST Herbicides for Control of Citron Melon (Citrullus lanatus var. citroides). Weed Technol. 2012, 26, 783–788. [Google Scholar] [CrossRef]
- Richardson, R.J.; Zandstra, B.H. Weed Control in Christmas Trees with Flumioxazin and Other Residual Herbicides Applied Alone or in Tank Mixtures. HortTechnology 2009, 19, 181–186. [Google Scholar] [CrossRef]
- Basinger, N.T.; Jennings, K.M.; Monks, D.W.; Mitchem, W.E. Effect of Rate and Timing of Indaziflam on ‘Sunbelt’ and Muscadine Grape. Weed Technol. 2019, 33, 380–385. [Google Scholar] [CrossRef]
2020 | 2021 | 2022 | ||||
---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st | 2nd | 3rd | |
Experiment 1 | 6 April | 4 November | 2 April | ___ | ___ | ___ |
Experiment 2 | ___ | ___ | ___ | 2 April | 3 November | 21 March |
Year | Month | Maximum Temperature b | Minimum Temperature b | Rainfall c |
---|---|---|---|---|
_________________________________°C___________________________________ | ________cm________ | |||
2020 | April | 25.5 | 16.6 | 14.2 |
May | 29.4 | 19.9 | 6.6 | |
June | 30.8 | 20.8 | 12.9 | |
July | 33.7 | 22.3 | 4.7 | |
August | 33.3 | 22.5 | 11.6 | |
September | 29.4 | 20.1 | 13.3 | |
October | 28.3 | 17.3 | 1.4 | |
November | 22.6 | 12.5 | 11.8 | |
December | 21.5 | 11.4 | 16.5 | |
Season | 93.0 | |||
2021 | January | 15.1 | 5.7 | 17.8 |
February | 17.1 | 6.4 | 22.3 | |
March | 23.3 | 11.1 | 11.9 | |
April | 23.9 | 11.6 | 17.3 | |
May | 28.7 | 15.7 | 2.7 | |
June | 31.1 | 21.4 | 11.8 | |
July | 31.7 | 22 | 20.7 | |
August | 31.9 | 22.5 | 14.9 | |
September | 30.4 | 19.2 | 9.0 | |
October | 27.8 | 16.9 | 5.1 | |
November | 20.1 | 6.2 | 1.3 | |
December | 21.2 | 10.5 | 7.1 | |
Season | 141.9 | |||
2022 | January | 15.5 | 3.7 | 16.7 |
February | 19.1 | 6.9 | 6.0 | |
March | 23.6 | 10.5 | 10.1 | |
April | 25.0 | 12.3 | 5.8 | |
May | 30.4 | 18.0 | 3.2 | |
June | 34.2 | 21.8 | 9.9 | |
July | 32.9 | 22.4 | 14.2 | |
August | 32.2 | 21.9 | 20.7 | |
September | 29.6 | 18.6 | 6.3 | |
October | 25.1 | 10.7 | 2.6 | |
November | 20.8 | 10.4 | 8.7 | |
December | 16.7 | 6.0 | 3.6 | |
Season | 107.8 |
Treatment | Rate | Experiment 1 a,c | Experiment 2 a,c | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
April 2020 b | November 2021 | Growth Change | April 2021 | November 2022 | Growth Change | ||||||||
_______g ai ha−1_______ | ___________mm___________ | ____%_____ | __________mm___________ | ____%____ | |||||||||
Nontreated control | 18.7 | a b | 48.0 | a | 158 | a | 28.2 | a | 39.6 | b | 40.2 | a | |
Glyphosate | 1336 | 19.4 | a | 50.3 | a | 160 | a | 28.8 | a | 43.0 | a | 50.6 | a |
Glyphosate plus indaziflam | 1336 + 51 | 17.6 | a | 49.3 | a | 189 | a | 29.0 | a | 45.5 | a | 58.5 | a |
Glufosinate plus indaziflam | 1269 + 51 | 18.2 | a | 52.2 | a | 188 | a | 30.1 | a | 44.4 | ab | 48.3 | a |
Glufosinate plus flumioxazin | 1269 + 215 | 20.5 | a | 56.4 | a | 175 | a | 30.3 | a | 43.8 | ab | 44.5 | a |
Glufosinate plus diuron | 1269 + 1774 | 15.8 | a | 48.9 | a | 213 | a | 30.0 | a | 41.6 | ab | 39.8 | a |
Glufosinate plus pendimethalin | 1269 + 2448 | 18.1 | a | 48.3 | a | 169 | a | 30.5 | a | 42.3 | ab | 38.8 | a |
Glufosinate plus simazine | 1269 + 2369 | 20.4 | a | 55.3 | a | 171 | a | 30.8 | a | 43.9 | ab | 42.5 | a |
Glufosinate plus pendimethalin plus simazine | 1269 + 2448 + 2369 | 18.5 | a | 51.9 | a | 181 | a | 29.2 | a | 42.4 | ab | 45.9 | a |
Glufosinate plus norflurazon | 1269 + 1123 | 19.6 | a | 50.0 | a | 158 | a | 29.8 | a | 43.0 | ab | 44.2 | a |
Treatment | Rate | April 2020 | November 2020 | April 2021 | |||
---|---|---|---|---|---|---|---|
___g ai ha−1___ | ___________________________%___________________________ | ||||||
Nontreated control | 0 b | c c | 0 | e | 0 | e | |
Glyphosate | 1336 | 39 | b | 26 | d | 22 | de |
Glyphosate plus indaziflam | 1336 + 51 | 80 | a | 88 | a | 89 | a |
Glufosinate plus indaziflam | 1269 + 51 | 80 | a | 69 | ab | 88 | a |
Glufosinate plus flumioxazin | 1269 + 215 | 92 | a | 64 | b | 73 | ab |
Glufosinate plus diuron | 1269 + 1774 | 84 | a | 81 | a | 56 | a–c |
Glufosinate plus pendimethalin | 1269 + 2448 | 72 | ab | 33 | cd | 47 | b–d |
Glufosinate plus simazine | 1269 + 2369 | 76 | ab | 41 | c | 28 | c–e |
Glufosinate plus pendimethalin plus simazine | 1269 + 2448 + 2369 | 91 | a | 75 | ab | 63 | ab |
Glufosinate plus norflurazon | 1269 + 1123 | 41 | b | 34 | cd | 53 | b–d |
Treatment | Rate | April 2021 | November 2021 | April 2022 | |||
---|---|---|---|---|---|---|---|
___g ai ha−1__ | _________________________%_________________________ | ||||||
Nontreated control | 0 b | d c | 0 | e | 0 | f | |
Glyphosate | 1336 | 30 | b-d | 16 | de | 17 | ef |
Glyphosate plus indaziflam | 1336 + 51 | 62 | ab | 81 | a | 79 | a |
Glufosinate plus indaziflam | 1269 + 51 | 55 | ab | 75 | ab | 69 | ab |
Glufosinate plus flumioxazin | 1269 + 215 | 66 | a | 39 | cd | 39 | b–e |
Glufosinate plus diuron | 1269 + 1774 | 40 | a–c | 55 | a–c | 50 | a–d |
Glufosinate plus pendimethalin | 1269 + 2448 | 28 | b–d | 34 | c–e | 37 | d–f |
Glufosinate plus simazine | 1269 + 2369 | 43 | a–c | 30 | c–e | 23 | b–e |
Glufosinate plus pendimethalin plus simazine | 1269 + 2448 + 2369 | 18 | cd | 47 | b–d | 45 | b–e |
Glufosinate plus norflurazon | 1269 + 1123 | 28 | b–d | 57 | a–c | 64 | a–c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurdle, N.L.; Grey, T.L.; Bowen, S.J.; Rucker, K. Satsuma Orange Tolerance to Spring and Autumn Indaziflam Applications in Georgia. Agriculture 2025, 15, 282. https://doi.org/10.3390/agriculture15030282
Hurdle NL, Grey TL, Bowen SJ, Rucker K. Satsuma Orange Tolerance to Spring and Autumn Indaziflam Applications in Georgia. Agriculture. 2025; 15(3):282. https://doi.org/10.3390/agriculture15030282
Chicago/Turabian StyleHurdle, Nicholas L., Timothy L. Grey, Samanth J. Bowen, and Keith Rucker. 2025. "Satsuma Orange Tolerance to Spring and Autumn Indaziflam Applications in Georgia" Agriculture 15, no. 3: 282. https://doi.org/10.3390/agriculture15030282
APA StyleHurdle, N. L., Grey, T. L., Bowen, S. J., & Rucker, K. (2025). Satsuma Orange Tolerance to Spring and Autumn Indaziflam Applications in Georgia. Agriculture, 15(3), 282. https://doi.org/10.3390/agriculture15030282