Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,130)

Search Parameters:
Keywords = evaporation characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6988 KiB  
Article
Effect of Substrate Temperature on the Structural, Morphological, and Infrared Optical Properties of KBr Thin Films
by Teng Xu, Qingyuan Cai, Weibo Duan, Kaixuan Wang, Bojie Jia, Haihan Luo and Dingquan Liu
Materials 2025, 18(15), 3644; https://doi.org/10.3390/ma18153644 - 3 Aug 2025
Viewed by 96
Abstract
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning [...] Read more.
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results reveal a complex, non-monotonic response to temperature rather than a simple linear trend. As the substrate temperature increases, growth evolves from a mixed polycrystalline texture to a pronounced (200) preferred orientation. Morphological analysis shows that the film surface is smoothest at 150 °C, while the microstructure becomes densest at 200 °C. These structural variations directly modulate the optical constants: the refractive index attains its highest values in the 150–200 °C window, approaching that of bulk KBr. Cryogenic temperature (6 K) FTIR measurements further demonstrate that suppression of multi-phonon absorption markedly enhances the infrared transmittance of the films. Taken together, the data indicate that 150–200 °C constitutes an optimal process window for fabricating KBr films that combine superior crystallinity, low defect density, and high packing density. This study elucidates the temperature-driven structure–property coupling and offers valuable guidance for optimizing high-performance infrared and cryogenic optical components. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 - 1 Aug 2025
Viewed by 182
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

19 pages, 4156 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 103
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

20 pages, 3137 KiB  
Article
The Heat Transfer Coefficient During Pool Boiling of Refrigerants in a Compact Heat Exchanger
by Marcin Kruzel, Tadeusz Bohdal, Krzysztof Dutkowski, Krzysztof J. Wołosz and Grzegorz Robakowski
Energies 2025, 18(15), 4030; https://doi.org/10.3390/en18154030 - 29 Jul 2025
Viewed by 211
Abstract
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were [...] Read more.
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were heated from the inside with warm water. The flow of the refrigerant was gravity-based. The heat exchanger was practically flooded with liquid refrigerant at a saturation temperature (ts), which flowed out after evaporation in a gaseous form. The tests were conducted for four refrigerants: R1234ze, R1234yf, R134a (a high-pressure refrigerant), and HFE7100 (a low-pressure refrigerant). Thermal characteristics describing the heat transfer process throughout the entire compact heat exchanger, specifically for the boiling process itself, were developed. It was found that in the case of micro-space boiling, there is an exponential dependence of the heat transfer coefficient on the heat flux density on the heated surface. Experimental data were compared to experimental and empirical data presented in other studies. Our own empirical models were proposed to determine the heat transfer coefficient for boiling in a mini-space for individual refrigerants. The proposed calculation models were also generalized for various refrigerants by introducing the value of reduced pressure into the calculation relationship. The developed relationship enables the determination of heat transfer coefficient values during boiling in a micro-space on the surface of horizontal tubes for various refrigerants with an accuracy of ±25%. Full article
Show Figures

Figure 1

31 pages, 9977 KiB  
Article
Novel Deep Learning Framework for Evaporator Tube Leakage Estimation in Supercharged Boiler
by Yulong Xue, Dongliang Li, Yu Song, Shaojun Xia and Jingxing Wu
Energies 2025, 18(15), 3986; https://doi.org/10.3390/en18153986 - 25 Jul 2025
Viewed by 274
Abstract
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from [...] Read more.
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from noise. Additionally, the large number of monitoring parameters (approximately 140) poses a challenge for spatiotemporal feature extraction, feature decoupling, and establishing a mapping relationship between high-dimensional monitoring parameters and leakage, rendering the precise quantitative estimation of evaporation tube leakage extremely difficult. To address these issues, this study proposes a novel deep learning framework (LSTM-CNN–attention), combining a Long Short-Term Memory (LSTM) network with a dual-pathway spatial feature extraction structure (ACNN) that includes an attention mechanism(attention) and a 1D convolutional neural network (1D-CNN) parallel pathway. This framework processes temporal embeddings (LSTM-generated) via a dual-branch ACNN—where the 1D-CNN captures local spatial features and the attention models’ global significance—yielding decoupled representations that prevent cross-modal interference. This architecture is implemented in a simulated supercharged boiler, validated with datasets encompassing three operational conditions and 15 statuses in the supercharged boiler. The framework achieves an average diagnostic accuracy (ADA) of over 99%, an average estimation accuracy (AEA) exceeding 90%, and a maximum relative estimation error (MREE) of less than 20%. Even with a signal-to-noise ratio (SNR) of −4 dB, the ADA remains above 90%, while the AEA stays over 80%. This framework establishes a strong correlation between leakage and multifaceted characteristic parameters, moving beyond traditional threshold-based diagnostics to enable the early quantitative assessment of evaporator tube leakage. Full article
Show Figures

Figure 1

17 pages, 3179 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 257
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

15 pages, 3070 KiB  
Article
Characteristics and Sources of VOCs During a Period of High Ozone Levels in Kunming, China
by Chuantao Huang, Yufei Ling, Yunbo Chen, Lei Tong, Yuan Xue, Chunli Liu, Hang Xiao and Cenyan Huang
Atmosphere 2025, 16(7), 874; https://doi.org/10.3390/atmos16070874 - 17 Jul 2025
Viewed by 284
Abstract
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on [...] Read more.
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on the emission characteristics and source analysis of VOCs is important for controlling urban ozone pollution. In this study, hourly concentrations of 57 VOC species in four groups were obtained in April 2022, a period of high ozone pollution in Kunming, China. The ozone formation potential analysis showed that the accumulated reactive VOCs significantly contributed to the subsequent ozone formation, particularly aromatics (44.16%) and alkanes (32.46%). In addition, the ozone production rate in Kunming is mainly controlled by VOCs based on the results of the empirical kinetic modeling approach (KNOx/KVOCs = 0.25). The hybrid single-particle Lagrangian integrated trajectory model and polar coordinate diagram showed high VOC and ozone concentrations from the southwest outside the province (50.28%) and the south in local areas (12.78%). Six factors were obtained from the positive matrix factorization model: vehicle exhaust (31.80%), liquefied petroleum gas usage (24.16%), the petrochemical industry (17.81%), fuel evaporation (11.79%), coal burning (7.47%), and solvent usage (6.97%). These findings underscore that reducing anthropogenic VOC emissions and strengthening controls on the related sources could provide a scientifically robust strategy for mitigating ozone pollution in Kunming. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

18 pages, 3393 KiB  
Article
An Investigation of the Characteristics of the Mei–Yu Raindrop Size Distribution and the Limitations of Numerical Microphysical Parameterization
by Zhaoping Kang, Zhimin Zhou, Yinglian Guo, Yuting Sun and Lin Liu
Remote Sens. 2025, 17(14), 2459; https://doi.org/10.3390/rs17142459 - 16 Jul 2025
Viewed by 341
Abstract
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR [...] Read more.
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR) are slightly underestimated relative to RG measurements. Both observations and simulations identify 1–3 mm raindrops as the dominant precipitation contributors, though the model overestimates small and large drop contributions. At low RR, decreased small-drop and increased large-drop concentrations cause corresponding leftward and rightward RSD shifts with decreasing altitude—a pattern well captured by simulations. However, at elevated rainfall rates, the simulated concentration of large raindrops shows no significant increase, resulting in negligible rightward shifting of RSD in the model outputs. Autoconversion from cloud droplets to raindrops (ATcr), collision and breakup between raindrops (AGrr), ice melting (MLir), and evaporation of raindrops (VDrv) contribute more to the number density of raindrops. At 0.1 < RR < 1 mm·h−1, ATcr dominates, while VDrv peaks in this intensity range before decreasing. At higher intensities (RR > 20 mm·h−1), AGrr contributes most, followed by MLir. When the RR is high enough, the breakup of raindrops plays a more important role than collision, leading to a decrease in the number density of raindrops. The overestimation of raindrop breakup from the numerical parameterization may be one of the reasons why the RSD does not shift significantly to the right toward the surface under the heavy RR grade. The RSD near the surface varies with the RR and characterizes surface precipitation well. Toward the surface, ATcr and VDrv, but not AGrr, become similar when precipitation approaches. Full article
Show Figures

Figure 1

20 pages, 9695 KiB  
Article
Numerical Investigation on Flow and Thermal Characteristics of Spray Evaporation Process in Boiler Desuperheater
by Jianqing Wang, Baoqing Liu, Bin Du, Kaifei Wu, Qi Lin, Bohai Liu and Minghui Cheng
Energies 2025, 18(14), 3734; https://doi.org/10.3390/en18143734 - 15 Jul 2025
Viewed by 200
Abstract
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid [...] Read more.
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid dynamics (CFDs) was applied to numerically investigate the flow and thermal characteristics. The Eulerian–Lagrangian approach was used to describe the two-phase flow characteristics. Both primary and secondary droplet breakup, the coupling effect of gas–liquid and stochastic collision and coalescence of droplets were considered in the model. The plain-orifice atomizer model was applied to simulate the atomization process. The numerical model was validated with the plant data. The spray tube structure was found to greatly affect the flow pattern, resulting in the uneven velocity distribution, significant temperature difference, and local reverse flow downstream of the orifices. The velocity and temperature distributions tend to be more uniform due to the complete evaporation and turbulent mixing. Smaller orifices are beneficial for generating smaller-sized droplets, thereby promoting the mass and heat transfer between the steam and droplets. Under the same operating conditions, the desuperheating range of cases with 21, 15, and 9 orifices is 33.7 K, 32.0 K, and 29.8 K, respectively, indicating that the desuperheater with more orifices (i.e., with smaller orifices) shows better desuperheating ability. Additionally, a venturi-type desuperheater was numerically studied and compared with the straight liner case. By contrast, discernible differences in velocity and temperature distribution characteristics can be observed in the venturi case. The desuperheating range of the venturi and straight liner cases is 38.1 K and 35.4 K, respectively. The velocity acceleration through the venturi throat facilitates the droplet breakup and improves mixing, thereby achieving better desuperheating ability and temperature uniformity. Based on the investigation of the spray evaporation process, the complex droplet behaviors and fluid–thermal coupling characteristics in an industrial boiler desuperheater under high temperature and high pressure can be better understood, and effective guidance for the process and design optimizations can be provided. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) for Heat Transfer Modeling)
Show Figures

Figure 1

15 pages, 1457 KiB  
Article
The Hydrochemical Characteristics Evolution and Driving Factors of Shallow Groundwater in Luxi Plain
by Na Yu, Yingjie Han, Guang Liu, Fulei Zhuang and Qian Wang
Sustainability 2025, 17(14), 6432; https://doi.org/10.3390/su17146432 - 14 Jul 2025
Viewed by 270
Abstract
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the [...] Read more.
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the safety of groundwater quality and ensuring the high-quality development of the water supply. This study took Liaocheng City in the hinterland of the Luxi Plain as the study area. To clarify the hydrochemical characteristics evolution trend of groundwater in the area, the hydrochemical characteristics of shallow groundwater in recent years were systematically analyzed. The methods of ion ratio, correlation analysis, Gibbs and Gaillardet endmember diagrams, as well as the application of the absolute principal component scores–multiple linear regression (APCS-MLR) receptor model were used to determine the contribution rates of different ion sources to groundwater and to elucidate the driving factors behind the evolution of groundwater chemistry. Results showed significant spatiotemporal variations in the concentrations of major ions such as Na+, SO42−, and Cl in groundwater in the study area, and these variations demonstrated an overall increasing trend. Notably, the increases in total hardness (THRD), SO4, and Cl concentrations were particularly pronounced, while the variations in Na+, Mg2+, Ca2+ and other ions were relatively gradual. APCS-MLR receptor model analysis revealed that the ions such as Na+, Ca2+, Mg2+, SO42−, Cl, HCO3 and NO3 all have a significant influence on the hydrochemical composition of groundwater due to the high absolute principal component scores of them. The hydrochemical characteristics of groundwater in the study area were controlled by multiple processes, including evaporites, silicates and carbonates weathering, evaporation-concentration, cation alternating adsorption and human activities. Among the natural driving factors, rock weathering had a greater influence on the evolution of groundwater hydrochemical characteristics. Moreover, mining activities were the most important anthropogenic factor, followed by agricultural activities and living activities. Full article
Show Figures

Figure 1

19 pages, 2695 KiB  
Article
Experimental Study of an Evaporative Cooling System in a Rotating Vertical Channel with a Circular Cross-Section for Large Hydro-Generators
by Ruiwei Li and Lin Ruan
Energies 2025, 18(14), 3681; https://doi.org/10.3390/en18143681 - 12 Jul 2025
Viewed by 286
Abstract
With the evolution of hydroelectric generators toward larger capacity and higher rotational speeds, the significa++nt increase in power density has rendered rotor cooling technology a critical bottleneck restricting performance enhancement. Addressing the need for feasibility verification and thermodynamic characteristic analysis of evaporative cooling [...] Read more.
With the evolution of hydroelectric generators toward larger capacity and higher rotational speeds, the significa++nt increase in power density has rendered rotor cooling technology a critical bottleneck restricting performance enhancement. Addressing the need for feasibility verification and thermodynamic characteristic analysis of evaporative cooling applied to rotors, this study innovatively proposes an internal-cooling-based evaporative cooling architecture for rotor windings. By establishing a single-channel experimental platform for a rotor evaporative cooling system, the key parameters of the system circulation flow under varying centrifugal accelerations and thermal loads are obtained, revealing the flow mechanism of the cooling system. The experimental results demonstrate that the novel architecture has outstanding heat dissipation performance. Furthermore, the experimental findings reveal that the flow characteristics of the medium are governed by the coupled effect of centrifugal acceleration and thermal load; the flow rate decreases with increasing centrifugal acceleration and increases with rising thermal load. Centrifugal acceleration reduces frictional losses in the heating pipe, leading to a decrease in the inlet–outlet pressure difference. Through the integration of experimental data with classic formulas, this study refines the friction factor model, with the modified formula showing a discrepancy of −10% to +5% compared with the experimental results. Finally, the experiment was rerun to verify the universality of the modified friction factor. Full article
Show Figures

Figure 1

15 pages, 3298 KiB  
Article
Linkage Between Radar Reflectivity Slope and Raindrop Size Distribution in Precipitation with Bright Bands
by Qinghui Li, Xuejin Sun, Xichuan Liu and Haoran Li
Remote Sens. 2025, 17(14), 2393; https://doi.org/10.3390/rs17142393 - 11 Jul 2025
Viewed by 283
Abstract
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below [...] Read more.
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below the freezing level, revealing distinct microphysical regimes: Type 1 (K = 0 to −0.9) shows coalescence-dominated growth; Type 2 (|K| > 0.9) shows the balance between coalescence and evaporation/size sorting; and Type 3 (K = 0.9 to 0) demonstrates evaporation/size-sorting effects. Surface DSD analysis demonstrates distinct precipitation characteristics across classification types. Type 3 has the highest frequency of occurrence. A gradual decrease in the mean rain rates is observed from Type 1 to Type 3, with Type 3 exhibiting significantly lower rainfall intensities compared to Type 1. At equivalent rainfall rates, Type 2 exhibits unique microphysical signatures with larger mass-weighted mean diameters (Dm) compared to other types. These differences are due to Type 2 maintaining a high relative humidity above the freezing level (influencing initial Dm at bottom of melting layer) but experiencing limited Dm growth due to a dry warm rain layer and downdrafts. Type 1 shows opposite characteristics—a low initial Dm from the dry upper layers but maximum growth through the moist warm rain layer and updrafts. Type 3 features intermediate humidity throughout the column with updrafts and downdrafts coexisting in the warm rain layer, producing moderate growth. Full article
(This article belongs to the Special Issue Remote Sensing in Clouds and Precipitation Physics)
Show Figures

Figure 1

19 pages, 8399 KiB  
Article
Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China
by Liang Guo, Yuanyuan Ding, Haisong Fang, Chunxue An, Wanjun Jiang and Nuan Yang
Water 2025, 17(14), 2074; https://doi.org/10.3390/w17142074 - 11 Jul 2025
Viewed by 275
Abstract
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid [...] Read more.
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid regions. This study integrated hydrochemical analysis, stable isotopes, and inverse hydrochemical modeling to identify groundwater recharge sources, hydrochemical evolution, and controlling mechanisms in an arid endorheic watershed, northwestern China. A stable isotope signature indicated that groundwater is primarily recharged by high-altitude meteoric precipitation and glacial snowmelt. The regional hydrochemical type evolved from HCO3·Cl-Ca·Mg·Na types in phreatic aquifers to more complex HCO3·Cl-Ca·Mg Na and HCO3·Cl-Na Mg types in confined aquifers and a Cl-Mg·Na type in high-salinity groundwater. The dissolution of halite, gypsum, calcite, K-feldspar, and albite was identified as the primary source of dissolved substances and a key factor controlling the hydrochemical characteristics. Meanwhile, hydrochemical evolution is influenced by cation exchange, mineral dissolution–precipitation, and carbonate equilibrium mechanisms. Inverse hydrochemical modeling demonstrated that high-salinity groundwater has experienced intensive evaporation and quantified the transfer amounts of associated minerals. This study offers deeper insight into hydrochemical evolution in the Golmud River watershed and elucidates mineral transport and enrichment mechanisms, providing a theoretical basis for investigating hydrochemical metallogenic processes. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

24 pages, 17095 KiB  
Article
Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry
by Huaiyu Xue, Jianping Qian and Wentan Xu
Minerals 2025, 15(7), 717; https://doi.org/10.3390/min15070717 - 8 Jul 2025
Viewed by 316
Abstract
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes [...] Read more.
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes its genetic process. The research is based on the measured geological section and conducts high-precision analysis and testing, encompassing major and trace elements, rare earth elements, stable carbon and oxygen isotopes, strontium isotopes, crystal structure parameters, and micro-area elements of dolomite. Analysis of V/(V + Ni), Th/U, Sr/Ba, Mn/Sr, (Eu/Eu*) N, (Ce/Ce*) N, and the dolomite crystal parameters indicates that the formation of dolomite is related to evaporation. Furthermore, REE and micro-area characteristics of dolomite, as well as the significant negative deviation of δ13C and δ18O, in conjunction with 87Sr/86Sr deviating from the standard values of Ordovician seawater, suggest an origin of the dolomite in this formation with mixed-water dolomitization and burial dolomitization. A comprehensive assessment of dolomite formation suggests three distinct stages: early-stage evaporation dolomitization, subsequent mixed-water dolomitization, and later-stage burial dolomitization. The research further corroborated that dolomite formation is a complex outcome resulting from the interplay of various geological processes over space and time. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

32 pages, 24319 KiB  
Article
Long-Term Water Level Projections for Lake Balkhash Using Scenario-Based Water Balance Modeling Under Climate and Socioeconomic Uncertainties
by Sayat Alimkulov, Lyazzat Makhmudova, Elmira Talipova, Gaukhar Baspakova, Akhan Myrzakhmetov, Zhanibek Smagulov and Alfiya Zagidullina
Water 2025, 17(13), 2021; https://doi.org/10.3390/w17132021 - 4 Jul 2025
Viewed by 470
Abstract
The study presents a scenario analysis of the long-term dynamics of the water level of Lake Balkhash, one of the largest closed lakes in Central Asia, taking into account climate change according to CMIP6 scenarios (SSP2-4.5 and SSP5-8.5) and socio-economic factors of water [...] Read more.
The study presents a scenario analysis of the long-term dynamics of the water level of Lake Balkhash, one of the largest closed lakes in Central Asia, taking into account climate change according to CMIP6 scenarios (SSP2-4.5 and SSP5-8.5) and socio-economic factors of water use. Based on historical data (1947–2021) and a water balance model, the contribution of surface runoff, precipitation and evaporation to the formation of the lake’s hydrological regime was assessed. It was established that the main source of water resources for the lake is the flow of the Ile River, which feeds the western part of the reservoir. The eastern part is characterized by extremely limited water inflow, while evaporation remains the main element of water consumption, having increased significantly in recent decades due to rising air temperatures. Increasing intra-seasonal and interannual fluctuations in water levels have been recorded: The amplitude of short-term fluctuations reached 0.7–0.8 m, which exceeds previously characteristic values. The results of water balance modeling up to 2050 show a trend towards a 30% reduction in surface inflow and an increase in evaporation by 25% compared to the 1981–2010 climate norm, which highlights the high sensitivity of the lake’s hydrological regime to climatic and anthropogenic influences. The results obtained justify the need for the comprehensive and adaptive management of water resources in the Balkhash Lake basin, taking into account the transboundary nature of water use and changing climatic conditions. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

Back to TopTop