Long-Term Water Level Projections for Lake Balkhash Using Scenario-Based Water Balance Modeling Under Climate and Socioeconomic Uncertainties
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Research Methods
- –
- Weather station data are instrumental measurements that reflect actual weather conditions. They are highly accurate, as they are collected under real conditions. In contrast, historical climate data obtained from CMIP6 models contain systematic errors and uncertainties associated with the parameterization of physical processes and limited spatial resolution of conditions [3].
- –
- Global climate models (GCMs) operate with high spatial resolution (100–250 km), which leads to smoothing of extreme events and possible systematic biases in temperature and precipitation [45].
- Downloading of historical and forecast data on atmospheric precipitation from the reanalysis database (ERA5-Land Monthly Aggregated—ECMWF Climate Reanalysis) according to CMIP6 using climate models and scenarios (e.g., SSP2-4.5, SSP5-8.5) at 5 WSs coordinate points;
- Normalization of forecast model data based on bias correction, taking into account actual WS data;
- Calculation of the forecast precipitation layer separately for the eastern and western parts of Lake Balkhash, based on the spatial location of stations and climatic characteristics of the regions;
- Calculation of the forecast volume of water inflow with atmospheric precipitation by multiplying the calculated precipitation layer by the surface area of Lake Balkhash in the corresponding forecast period.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanson, Z.J.; Zwart, J.A.; Jones, S.E.; Hamlet, A.F. Projected changes of regional lake hydrologic characteristics in response to 21st century climate change. Inland Waters 2021, 11, 335–350. [Google Scholar] [CrossRef]
- Raskin, P.; Gallopín, G.; Gutman, P.; Hammond, A.; Swart, R. Bending the Curve: Toward Global Sustainability (PoleStar Series Report No. 8); Stockholm Environment Institute: Stockholm, Sweden, 1998. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Yapiyev, V.; Sagintayev, Z.; Inglezakis, V.J.; Samarkhanov, K.; Verhoef, A. Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. Water 2017, 9, 798. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Yang, L.; Fang, H. Monitoring variations of inland lakes in the arid region of Central Asia. Front. Earth Sci. 2012, 6, 147–156. [Google Scholar] [CrossRef]
- Syndergaard, M.; Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 2007, 44, 1089–1094. [Google Scholar] [CrossRef]
- Huang, W.; Duan, W.; Chen, Y. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef]
- Che, X.; Feng, M.; Sun, Q.; Sexton, J.O.; Channan, S.; Liu, J. The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset. Remote Sens. 2021, 13, 1032. [Google Scholar] [CrossRef]
- Yao, F.; Livneh, B.; Rajagopalan, B.; Wang, J.; Crétaux, J.-F.; Wada, Y.; Berge-Nguyen, M. Satellites reveal widespread decline in global lake water storage. Science 2023, 380, 743–749. [Google Scholar] [CrossRef]
- Kulebayev, K.M.; Alimkulov, S.K.; Tursunova, A.A.; Makhmudova, L.K.; Talipova, E.K.; Saparova, A.A.; Rodrigo-Clavero, M.-E.; Rodrigo-Ilarri, J. Assessing the VulnerabIlety of Lakes in Western Kazakhstan to Climate Change and Anthropogenic Stressors. Water 2024, 16, 3709. [Google Scholar] [CrossRef]
- Micklin, P. Desiccation of the Aral Sea: A Water Management Disaster in Central Asia. Glob. Environ. Chang. 2014, 15, 275–284. [Google Scholar] [CrossRef]
- Alizadeh, H.; Rakhshandehroo, G.R. A comprehensive investigation of the causes of drying in Lake Urmia, Iran. J. Environ. Manag. 2023, 342, 117219. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1574954123003849 (accessed on 10 January 2025).
- Okonkwo, C.; Li, L.; Yao, Y. The Lake Chad hydrology under current climate change. Sci. Rep. 2020, 10, 5498. Available online: https://www.nature.com/articles/s41598-020-62417-w (accessed on 10 March 2025).
- Wang, Y.; Zhao, Y.; Wu, J.; Fan, J.; Zhang, X.; Wei, M.; Zhang, Y.; Zhang, R.; Wu, C. Anthropogenic influences on Lop Nur lake desiccation in northwest China. Sci. Rep. 2022, 12, 18942. Available online: https://www.nature.com/articles/s41598-022-23462-9 (accessed on 15 December 2024).
- Falkenmark, M.; Rockström, J. Balancing Water for Humans and Nature: The New Approach in Ecohydrology; Earthscan: London, UK, 2004. [Google Scholar]
- Hardin, G. The tragedy of the commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef]
- Global Water Partnership (GWP). Integrated Water Resources Management in Practice: Better Water Management for Development; UNESCO Publishing: Paris, France, 2009. [Google Scholar]
- Liu, H.; Chen, Y.; Ye, Z.; Li, Y.; Zhang, Q. Recent lake area changes in Central Asia. Sci. Rep. 2019, 9, 16772. [Google Scholar] [CrossRef] [PubMed]
- Bolch, T.; Pieczonka, T.; Benn, D. The state and future of the cryosphere in Central Asia. Environ. Earth Sci. 2019, 78, 197. [Google Scholar] [CrossRef]
- Salamat, H.; Xue, Y.; Sun, Y. Inventory and spatial distribution of lakes in Central Asia. J. Arid Land 2020, 12, 907–920. [Google Scholar]
- Huang, W.; Duan, W.; Chen, Y. Unravelling lake water storage change in Central Asia. J. Hydrol. 2022, 610, 127936. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Feng, R.; Yu, R.; Zheng, H.; Gan, M. Spatial and temporal variations in extreme temperature in Central Asia. Int. J. Climatol. 2018, 38, 388–400. [Google Scholar] [CrossRef]
- Wang, W.; Lee, X.; Xiao, W. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Li, Y. Glacier and snow variations and their impacts on regional water resources in mountains. J. Geogr. Sci. 2019, 29, 84–100. [Google Scholar] [CrossRef]
- Yun, L.; Hui, T.; Buda, S.; Zbigniew, W.; Kundzewicz, T. Impacts of 1.5 °C and 2 °C global warming on winter snow depth in Central Asia. Sci. Total Environ. 2019, 651 Pt 2, 2866–2873. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Afzal, M.; Severskiy, I. Changes in the mountain river discharge in the northern Tien Shan since the mid-20th Century: Results from the analysis of a homogeneous daily streamflow data set from seven catchments. J. Hydrol. 2018, 564, 1133–1152. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Shnitnikov, A.V. Intra-Century Variability of the Components of Total Humidity; Nauka: Leningrad, Russia, 1969. (In Russian) [Google Scholar]
- Yunusov, G.R. Water balance of Lake Balkhash. In Problems of Water Use in the Ile River Basin; Ata: Alma, QC, Canada, 1950; pp. 141–189. (In Russian) [Google Scholar]
- Tarasov, M.N. Elements of water and salt balance of Lake Balkhash during periods of falling and rising water levels. Hydrochem. Mater. 1966, 42, 224–230. (In Russian) [Google Scholar]
- Zhirkyevich, A.N. Water balance of Lake Balkhash and prospects for its changes in connection with the use of water resources in the Ile-Balkhash basin. Proc. Kazn. 1972, 44, 140–168. (In Russian) [Google Scholar]
- Iskandirov, T. Water balance of Lake Balkhash. Meteorol. Hydrol. 1968, 2, 60–68. (In Russian) [Google Scholar]
- Kurdin, R.D. On the characteristics of the water level regime of large endorheic lakes in the semi-arid zone. Proc. Kazn. 1975, 52, 3–18. (In Russian) [Google Scholar]
- Ivkina, N.I. Water Level Variations on the Balkash Lake in the Modern Period. Hydrometeorol. Ecol. 2022, 3, 6–13. [Google Scholar] [CrossRef]
- Dostai Zh, D.; Tursunov, A.A. Rational Utilization of Natural Resources in Ile-Balkhash Areas. The Effects of Human Activities on Water Resource and Environmental in Central Asia Find Evolution of Snow Resources on Tianshan Mountains; Sciense Press: Urumchy, China, 1997; pp. 34–43. [Google Scholar]
- Dostai, Z.h.D. Management of the Hydroecosystem of the Balkash Lake Basin; Almaty, Kazakhstan, 2009; pp. 122–128. (In Russian) [Google Scholar]
- Alimkulov, S.K.; Myrzakhmetov, A.B.; Tursunova, A.A.; Tairov, Z.A.; Bolatov, K.M. Features of Water Flow Uzynaral Strait of Lake Balkash. Geogr. Water Resour. 2022, 4, 27–35. [Google Scholar] [CrossRef]
- Tursunova, A.A.; Alimkulov, S.K.; Myrzakhmetov, A.B.; Kanai, M.A.; Dostaeva, A.Z.h.; Isakan, G. Basic hydrographic data on rivers and temporary watercourses of the Balkhash-Alakol basin. Bull. Karaganda Univ. Ser. Biol. Med. Geogr. 2023, 109, 195–205. (In Russian) [Google Scholar] [CrossRef]
- Talipova, E.; Shrestha, S.; Alimkulov, S.; Nyssanbayeva, A.; Tursunova, A.; Isakan, G. Influence of climate change and anthropogenic factors on the Ile River basin streamflow, Kazakhstan. Arab. J. Geosci. 2021, 14, 1756. [Google Scholar] [CrossRef]
- Alimkulov, S.; Tursunova, A.; Saparova, A.; Kulebaev, K.; Zagidullina, A.; Myrzahmetov, A. Resources of River Runoff of Kazakhstan. Int. J. Eng. Adv. Technol. 2019, 8, 2242–2249. [Google Scholar] [CrossRef]
- Alimkulov, S.K.; Tursunova, A.A.; Saparova, A.A.; Zagidullina, A.R. Water resources of river runoff of the Southern regions of Kazakhstan: Retrospective state, patterns and distribution. Water resources of Central Asia and their use. In Proceedings of the Materials International Scientific-Practical Conference Devoted to the Summing-Up of the «Water for Life» Decade Declared by the United Nations, Almary, Kazakhstan, 22–24 September 2016; Volume 3, pp. 25–35. (In Russian). [Google Scholar]
- World Meteorological Organization. Updated 30-Year Reference Period Reflects Changing Climate. 19 July 2021. Available online: https://wmo.int/media/news/updated-30-year-reference-period-reflects-changing-climate (accessed on 10 November 2024).
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA; Chichester, UK, 2012. [Google Scholar] [CrossRef]
- Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3. Earth Syst. Dyn. 2019, 10, 405–423. [Google Scholar]
- Hawkins, E.; Harrington, L.; Frame, D.; Joshi, M.; King, A.; Rojas, M.; Sutton, R. Observed variability and trends in climate extremes. Environ. Res. Lett. 2020, 15, 054008. [Google Scholar]
- Zaripov, R. A review of modern methods for special detailing of meteorological fields. Environ. Dyn. Glob. Clim. Chang. 2010, 1, 4–16. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Chang. 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Braslavsky, A.P.; Chistyaeva, S.P. Determination of corrected atmospheric precipitation using the GGO-KazNII method. Proc. Kazn. 1979, 65, 3–94. (In Russian) [Google Scholar]
- Manilyuk, Y. Estimation of precipitation over the Sivash Bay surface. Ecol. Saf. Coast. Shelf Zones Sea 2019, 2, 19–29. (In Russian) [Google Scholar]
- Golubtsov, V.V. Modeling of changes in air temperature and atmospheric precipitation with altitude. Hydrometeorol. Ecol. 2023, 3–4, 7–24. (In Russian) [Google Scholar]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop evapotranspiration and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Paper No. 56); Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Available online: http://www.fao.org/3/x0490e/x0490e00.htm (accessed on 5 June 2025).
- Dostai, Z.h.D.; Sarsenbaev, M.K.h.; Baimyrzaev, K.M. Water consumption in the Ile River basin and measures to save Lake Balkhash. In Proceedings of the International Scientific-Practical Conference «Modern Problems of Hydroecology of Inland Endorheic Basins of Central Asia», Almaty, Kazakhstan, 17–18 June 2003; pp. 87–93. (In Russian). [Google Scholar]
- Burlybaev, M.Z.h.; Dostai, Z.h.D.; Mirkhashimov, I.; Nikolaenko, E.; Tursunov, A.A. Current Ecological State of the Ile-Balkhash Basin Ecosystems; Almaty, Kazakhstan, 2009; 115p. (In Russian) [Google Scholar]
- Report on the Activities of the Balkhash-Alakol Basin Inspection for the Regulation of Use and Protection of Water Resources for 2014; Almaty, Kazakhstan, 2015; 341p. (In Russian)
- Zonn, I.S.; Zhiltsov, S.S.; Semenov, A.V.; Kostyanoy, A.G. Transboundary rivers of Kazakhstan and China. Bull. Mosc. Univ. Named After S.Yu. Witte. Ser. Econ. Manag. 2018, 4, 82–90. (In Russian) [Google Scholar] [CrossRef]
- Luo, L.; Gao, Y.Q. Current status of policies and laws for sustainable development and utIlezation of land and water resources along Ile River and its development strategies. J. South. Agric. 2011, 42, 1579–1582. [Google Scholar]
- Shen, Y.J.; Li, S.; Chen, Y.N.; Qi, Y.Q.; Zhang, S.W. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agric. Water Manag. 2013, 128, 55–64. [Google Scholar] [CrossRef]
- Thevs, N.; Nurtazin, S.; Beckmann, V.; Ott, K.; Imentai, A.; Baibagysov, A. Desertification risks and land use changes in the transboundary Ile River basin, Kazakhstan and China. In Proceedings of the International Disaster and Risk Conference IDRC 2014, Davos, Switzerland, 24–28 August 2014. [Google Scholar]
- Spivak, L.F.; Muratova, N.R.; Vitkovskaya, I.S.; Batyrbayeva, M.Z.h.; Alibaev, K.U.; Modazhanov, S.G. Results of satellite monitoring of reservoirs on the tributaries of the Ile River in the territory of China. In Proceedings of the International Scientific-Practical Conference on the Results of the UN Decade «Water for Life», Almaty, Kazakhstan, 22–24 September 2016; Book 1. pp. 424–432. (In Russian). [Google Scholar]
- Terekhov, A.G.; Dolgikh, S.A. GIS-based operational assessment of water volume in artificial reservoirs of the Chinese sector of the Ile River basin. In Proceedings of the International Scientific-Practical Conference on the Results of the UN Decade «Water for Life», Almaty, Kazakhstan, 22–24 September 2016; Book 1. pp. 170–175. (In Russian). [Google Scholar]
- Sayat, A.; Lyazzat, M.; Elmira, T.; Gaukhar, B.; Gulsara, M. Assessment of the impacts of climate change on drought intensity and frequency using SPI and SPEI in the Southern Pre-Balkash region, Kazakhstan. Watershed Ecol. Environ. 2025, 7, 11–22. [Google Scholar] [CrossRef]
- Shapiro, S.M.; Podolny, O.V. Subsurface runoff into Lake Balkhash. In Subsurface Water Exchange Between Land and Sea; Gidrometeoizdat: Leningrad, Russia, 1984; pp. 128–138. (In Russian) [Google Scholar]
- Smolyar, V.A. Modern conditions of groundwater resource formation in the South-Balkhash and Kopa-Ili hydrogeological basins. Bull. Kazakh Natl. Tech. Univ. Named After K.I. Satpayev 2019, 3, 372–377. (In Russian) [Google Scholar]
- Codjia, C.; Diekkrüger, B.; Afouda, A.; Hiepe, C. Monitoring Water Levels in 20 Reservoirs in Burkina Faso Using Sentinel-2 and Random Forest Modeling for Regional Water Balance Assessments. Int. J. Appl. Earth Obs. Geoinf. 2025, 128, 104523. [Google Scholar] [CrossRef]
- Girard, J.; Gal, L.; Riaux, J.; Hubert, P. Comparing Height–Area Methods for Shallow Lakes in West Africa: Implications for Satellite-Driven Hydrological Modelling and Water Abstraction Assessment. Water Resour. Res. 2025, 60, e2024WR037411. [Google Scholar] [CrossRef]
- Gov.KZ. Available online: https://www.gov.kz/ (accessed on 12 November 2024).
- Transform Nation. Chapter 6. Promising Areas for Development: Water Resource Management. 2023. Available online: https://transfornation.kz/tpost/fln1gst091-glava-6-perspektivnie-napravleniya-dlya (accessed on 18 November 2024).
- Zhang, Y.; Zhang, P.; Gu, X.; Long, A. Projections of temperature and precipitation changes in Xinjiang from 2021 to 2050 based on the CMIP6 model. PLoS ONE 2024, 19, e0307911. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, S.; Liu, H.; Wang, F. Assessing the coordination and spatial equilibrium of water-energy-food systems in the Ile River Valley. Agronomy 2024, 14, 2037. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, H.; Lv, Z. The Genesis of the Askartor Be-Mo Deposit in the North Xinjiang, Northwest China: Evidence From Geology, Geochemistry, U-Pb, and Re-Os Geochronology. Front. Earth Sci. 2021, 9, 646772. [Google Scholar] [CrossRef]
- Han, Y.; Jia, S. An Assessment of the Water Resources Carrying Capacity in Xinjiang. Water 2022, 14, 1510. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Malkovsky, I.M.; Toleubayeva, L.S.; Sorokina, T.E.; Tairov, A.Z.; Tolekova, A.; Dolbeshkin, M.V.; Puzikov, E.M.; Povetkin, R.D.; Abdibekov, D.U. Geospatial Simulation Modeling of Water Supply Systems in the Endorheic Basins of Balkhash and Aral. Water Manag. Kazakhstan 2016, 2, 11–28. (In Russian) [Google Scholar]
- Malkovsky, I.M.; Toleubaeva, L.S. Transboundary basin of Lake Balkhash: Scenarios of balanced water use. In Proceedings of the II All-Russian Scientific Conference “Water and Environmental Problems of Siberia and Central Asia”, Barnaul, Russia; 2014; pp. 337–343. [Google Scholar]
- Medeu, A.R.; Malkovsky, I.M.; Toleubaeva, L.S. Aral and Balkhash: Zones of Real and Potential Water Crisis. 2016. Available online: http://www.cawater-info.net/bk/papers_01.htm (accessed on 19 May 2025).
- Zhou, J.; Wan, R.R.; Li, B.; Dai, X. Assessing the impact of climate change and human activities on runoff in the Dongting Lake Basin of China. Appl. Ecol. Environ. Res. 2019, 17, 5797–5812. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Li, W.; Li, F.; Xin, Q. Ecological Responses to Climate Change and Human Activities in the Arid and Semi-Arid Regions of Xinjiang in China. Remote Sens. 2022, 14, 3911. [Google Scholar] [CrossRef]
- Duan, W.; Zou, S.; Chen, Y.; Nover, D.; Fang, G.; Wang, Y. Sustainable water management for cross-border resources: The Balkhash Lake Basin of Central Asia, 1931–2015. J. Clean. Prod. 2020, 263, 121614. [Google Scholar] [CrossRef]
- Alimkulov, S.; Dostai, Z.; Tursunova, A.; Myrzakhmetov, A. Modern hydrological status estuary of Ile River. Arab. J. Geosci. 2012, 6, 3041–3047. [Google Scholar] [CrossRef]
- Myrzakhmetov, A.; Dostay, Z.; Alimkulov, S.; Tursunova, A.; Sarsenova, I. Level regime of Balkhash Lake as the indicator of the state of the environmental ecosystems of the region. Paddy Water Environ. 2022, 20, 315–323. [Google Scholar] [CrossRef]
- Fang, G.H.; Tian, S.; Zhang, Y.; Zhang, B.; Gao, H.; Liu, F.; Meng, Y.; Wang, J.; Liu, W. Global lake evaporation accelerated by changes in surface energy balance since 1985. Commun. Earth Environ. 2021, 2, 27. Available online: https://www.nature.com/articles/s43247-021-00327-z (accessed on 22 December 2024).
- de Boer, T.; Paltan, H.; Sternberg, T.; Wheeler, K. Evaluating Vulnerability of Central Asian Water Resources under Uncertain Climate and Development Conditions: The Case of the Ile-Balkhash Basin. Water 2021, 13, 615. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, S.; Chen, J.; AghaKouchak, A. Global assessment and hotspots of lake drought. Commun. Earth Environ. 2025, 6, 308. [Google Scholar] [CrossRef]
- Alimkulov, S.; Makhmudova, L.; Talipova, E.K.; Baspakova, G.; Tigkas, D.; Gulsaira, I. Response of the Water Level of Lake Balkhash to the Distribution of Meteorological and Hydrological Droughts under Climate Change Conditions. J. Water Clim. Chang. 2024, 15, 3395–3408. [Google Scholar] [CrossRef]
- Prange, M.; Wilke, T.; Wesselingh, F.P. The other side of sea level change. Commun. Earth Environ. 2020, 1, 69. [Google Scholar] [CrossRef]
- Javan, K.; Movaghari, A.; Park, J.-S. Projected Changes in Extreme Precipitation Indices over the Lake Urmia Basin in Iran. J. Water Clim. Chang. 2023, 14, 2564–2582. [Google Scholar] [CrossRef]
- Climate Risk Profile: Chad. Available online: https://agrica.de/wp-content/uploads/2021/01/GIZ_Climate-risk-profile-Chad_EN_final.pdf (accessed on 22 November 2024).
No. | River Name | River Length, km | Water Catchment Area, km2 |
---|---|---|---|
1 | Ile | 1439 | 131,000 |
2 | Karatal | 390 | 19,100 |
3 | Aksu | 316 | 5040 |
4 | Lepsy | 417 | 8110 |
5 | Ayagoz | 492 | 15,700 |
N° | Model Index | Scientific Institutions, Country | Atmospheric Resolution (Latitude × Longitude) | For Mean Temperature | For Precipitation |
---|---|---|---|---|---|
1 | ACCESS-CM2 | CSIRO/ARCCSS, Australia | 1.875° × 1.25° | + | |
2 | BCC-CSM2-MR | BCC, China | 1.12° × 1.11° | + | + |
3 | CMCC-ESM2 | CMCC, Italy | 1.0° × 1.0° | + | |
4 | CanESM5 | CCCma, Canada | 2.81° × 2.77° | + | |
5 | CESM2 | NCAR, USA | 1.25° × 0.9° | + | |
6 | CNRM-ESM2-1 | CNRM/CERFACS, France | 1.4° × 1.4° | + | |
7 | CMCC-CM2-SR5 | CMCC, Italy | 1.0° × 1.0° | + | |
8 | EC-Earth3-Veg-LR | Consortium of European Institutions | 2.8° × 2.8° | + | |
9 | FGOALS-g3 | CAS, China | 2.0° × 5.18° | + | |
10 | GFDL-CM4 | NOAA-GFDL, USA | 0.5° × 0.5° | ||
11 | GFDL-ESM4 | NOAA-GFDL, USA | 1.25° × 1.0° | + | |
12 | GISS-E2-1-G | NASA GISS, USA | 2.0° × 2.5° | + | |
13 | HadGEM3-GC31-LL | MOHC, UK | 1.88° × 1.25° | + | |
14 | INM-CM4-8 | INM, Russia | 2.0° × 1.5° | + | + |
15 | INM-CM5-0 | INM, Russia | 2.0° × 1.5° | + | + |
16 | IPSL-CM6A-LR | IPSL, France | 2.5° × 1.27° | + | |
17 | MIROC6 | JAMSTEC/AORI/NIES/RIKEN, Japan | 1.41° × 1.39° | + | |
18 | MIROC-ES2L | JAMSTEC/AORI/NIES/RIKEN, Japan | 2.81° × 2.77° | + | + |
19 | KIOST-ESM | KIOST, South Korea | 1.875° × 1.875° | + | |
20 | MPI-ESM1-2-HR | DKRZ, Germany | 0.93° × 0.93° | + | |
21 | KACE-1-0-G | NIMS-KMA, South Korea | 1.88° × 1.25° | + | |
22 | TaiESM1 | Taiwan | 1.9° × 2.5° | + | |
23 | UKESM1-0-LL | MOHC, UK | 1.88° × 1.25° | + |
Periods | Inflow | Outflow | Water Balance Residual | ||||
---|---|---|---|---|---|---|---|
Surface Inflow | Precipitation | Total | Evaporation | Qnet | Total | ||
1947–1969 | 16.0 | 3.43 | 19.4 | 17.8 | 0.384 | 18.1 | 1.30 |
1970–1987 | 12.2 | 3.21 | 15.4 | 17.4 | 0.384 | 17.8 | −2.45 |
1988–2021 | 14.7 | 3.53 | 18.2 | 17.1 | 0.384 | 17.5 | 0.70 |
Forecast Periods | Water Availability | Inflow | Outflow | Water Balance Residual | ||||
---|---|---|---|---|---|---|---|---|
Surface Inflow | Precipitation | Total | Evaporation | Groundwater Exchange | Total | |||
2030 | Q50 | 12.1 | 3.73 | 15.8 | 20.7 | 0.38 | 21.1 | −5.4 |
Q75 | 9.32 | 3.64 | 13.0 | 20.4 | 0.38 | 20.8 | −8.4 | |
2040 | Q50 | 11.3 | 3.68 | 15.0 | 20.9 | 0.38 | 21.3 | −6.4 |
Q75 | 8.49 | 3.57 | 12.1 | 20.7 | 0.38 | 21.1 | −9.5 | |
2050 | Q50 | 10.5 | 3.73 | 14.2 | 21.1 | 0.38 | 21.5 | −7.4 |
Q75 | 7.64 | 3.61 | 11.2 | 20.9 | 0.38 | 21.3 | −10.5 |
Forecast Periods | Water Availabilety | Inflow | Outflow | Water Balance Residual | ||||
---|---|---|---|---|---|---|---|---|
Surface Inflow | Precipitation | Total | Evaporation | Groundwater Exchange | Total | |||
2030 | Q50 | 12.2 | 3.59 | 15.8 | 21.0 | 0.38 | 21.4 | −5.7 |
Q75 | 9.45 | 3.50 | 12.9 | 20.7 | 0.38 | 21.1 | −8.7 | |
2040 | Q50 | 11.4 | 3.73 | 15.1 | 21.4 | 0.38 | 21.8 | −6.6 |
Q75 | 8.59 | 3.61 | 12.2 | 21.1 | 0.38 | 21.5 | −9.9 | |
2050 | Q50 | 10.2 | 3.75 | 13.9 | 21.6 | 0.38 | 22.0 | −8.2 |
Q75 | 7.37 | 3.61 | 11.0 | 21.4 | 0.38 | 21.8 | −11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimkulov, S.; Makhmudova, L.; Talipova, E.; Baspakova, G.; Myrzakhmetov, A.; Smagulov, Z.; Zagidullina, A. Long-Term Water Level Projections for Lake Balkhash Using Scenario-Based Water Balance Modeling Under Climate and Socioeconomic Uncertainties. Water 2025, 17, 2021. https://doi.org/10.3390/w17132021
Alimkulov S, Makhmudova L, Talipova E, Baspakova G, Myrzakhmetov A, Smagulov Z, Zagidullina A. Long-Term Water Level Projections for Lake Balkhash Using Scenario-Based Water Balance Modeling Under Climate and Socioeconomic Uncertainties. Water. 2025; 17(13):2021. https://doi.org/10.3390/w17132021
Chicago/Turabian StyleAlimkulov, Sayat, Lyazzat Makhmudova, Elmira Talipova, Gaukhar Baspakova, Akhan Myrzakhmetov, Zhanibek Smagulov, and Alfiya Zagidullina. 2025. "Long-Term Water Level Projections for Lake Balkhash Using Scenario-Based Water Balance Modeling Under Climate and Socioeconomic Uncertainties" Water 17, no. 13: 2021. https://doi.org/10.3390/w17132021
APA StyleAlimkulov, S., Makhmudova, L., Talipova, E., Baspakova, G., Myrzakhmetov, A., Smagulov, Z., & Zagidullina, A. (2025). Long-Term Water Level Projections for Lake Balkhash Using Scenario-Based Water Balance Modeling Under Climate and Socioeconomic Uncertainties. Water, 17(13), 2021. https://doi.org/10.3390/w17132021