Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = eucalyptus plantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7718 KiB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 - 6 Aug 2025
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

25 pages, 2786 KiB  
Article
Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance
by José Gándara, Matías Nión, Silvia Ross, Jaime González-Tálice, Paolo Tabeira and María Elena Fernández
Forests 2025, 16(8), 1267; https://doi.org/10.3390/f16081267 - 2 Aug 2025
Viewed by 214
Abstract
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis [...] Read more.
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis (GT), and E. grandis × urophylla (GU1, GU2). We evaluated vessel traits (water transport), fibers (mechanical support), and wood density (D) in stems and branches. Theoretical stem hydraulic conductivity (kStheo), vessel lumen fraction (F), vessel composition (S), and associations with previous hydraulic and growth data were assessed. While general drought responses occurred, GC had the most distinct xylem profile. This may explain it having the highest performance in different irrigation conditions. Red gum hybrids (GC, GT) maintained kStheo under drought, with stable F and a narrower vessel size, especially in branches. Conversely, GG and GU2 reduced F and S; and stem kStheo declined for a similar F in these clones, indicating vascular reconfiguration aligning the stem with the branch xylem. Almost all clones increased D under drought in any organ, with the highest increase in red gum hybrids. These results reveal diverse anatomical adjustments to drought among clones, partially explaining their growth responses. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 529
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

17 pages, 1582 KiB  
Article
Rare Earth Elements in Tropical Agricultural Soils: Assessing the Influence of Land Use, Parent Material, and Soil Properties
by Gabriel Ribeiro Castellano, Juliana Silveira dos Santos, Melina Borges Teixeira Zanatta, Rafael Souza Cruz Alves, Zigomar Menezes de Souza, Milton Cesar Ribeiro and Amauri Antonio Menegário
Agronomy 2025, 15(7), 1741; https://doi.org/10.3390/agronomy15071741 - 19 Jul 2025
Viewed by 389
Abstract
Rare earth elements (REEs) are emerging soil contaminants due to increasing fertilizer use, mining activities, and technological applications. However, few studies have assessed their concentrations in soils or associated environmental risks. Here, we evaluate the influence of land cover types (Eucalyptus plantation, forest, [...] Read more.
Rare earth elements (REEs) are emerging soil contaminants due to increasing fertilizer use, mining activities, and technological applications. However, few studies have assessed their concentrations in soils or associated environmental risks. Here, we evaluate the influence of land cover types (Eucalyptus plantation, forest, and pasture), parent material, and soil physicochemical properties (predictor variables) on REE content in the Brazilian Atlantic Forest and measure pseudo-total REE content using inductively coupled plasma mass spectrometry (ICP-MS). Differences in REE content across land cover types, parent materials, and soil properties were assessed using similarity and variance analyses (ANOSIM, ANOVA, and Kruskal–Wallis) followed by post hoc tests (Tukey HSD and Dunn’s). We used model selection based on the Akaike criterion (ΔAICc < 2) to determine the influence of predictor variables on REE content. Our results showed that parent materials (igneous and metamorphic rocks) were the best predictors, yielding plausible models (Adj R2 ≥ 0.3) for Y, δEu, and LaN/SaN. In contrast, Ca:Mg alone provided a plausible model (Adj R2 = 0.15) for δCe anomalies, while clay content (Adj R2 = 0.11) influenced the SaN/YbN ratio, though soil properties had weaker effects than parent materials. However, we found no evidence that Eucalyptus plantations or pastures under non-intensive management increase REE content in Brazilian Atlantic Forest soils. Full article
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
What Can Ground-Dwelling Ants Tell Us About Different Land-Use Systems in the Brazilian Amazon?
by Elisangela Silva, Cristina Machado Borges, Emília Zoppas Albuquerque, Daniela Faria Florencio, Izaias Fernandes, Mariana Tolentino, Vanesca Korasaki, Júlio Louzada and Ronald Zanetti
Forests 2025, 16(7), 1190; https://doi.org/10.3390/f16071190 - 19 Jul 2025
Viewed by 363
Abstract
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants [...] Read more.
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants within various land-use systems at a local scale in the Amazonian rainforest. Our focus was to respond to the following: (i) How do local species richness and community composition reflect differences among land-use systems? (ii) Are ground-dwelling ants, especially specialists, negatively impacted by intensified land-use changes? We surveyed 55 sites representing five land-use systems: primary forest, secondary forest, forest corridor, selective logging, and Eucalyptus plantation. We registered 150 ant species, and species richness ranged from 43 to 94. Richness varies according to the land-use systems, likely influenced by differences in habitat structural complexity both vertically and horizontally. Ant species composition and guilds distribution also varied among land-use systems studied. Environments characterized by reduced structural complexity or higher disturbed levels, such as Eucalyptus plantations, tend to support lower resource availability, which may lead to decreased species richness. However, the surrounding matrix appears to play a key role in maintaining regional biodiversity, as evidenced by the absence of differences in ground-dwelling ants diversity across all land-use systems studied. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

15 pages, 5045 KiB  
Article
Transpiration and Water Use Efficiency of Mediterranean Eucalyptus Genotypes Under Contrasting Irrigation Regimes
by Juan C. Valverde, Rafael A. Rubilar, Alex Medina, Matías Pincheira, Verónica Emhart, Yosselin Espinoza, Daniel Bozo and Otávio C. Campoe
Plants 2025, 14(14), 2232; https://doi.org/10.3390/plants14142232 - 19 Jul 2025
Viewed by 323
Abstract
Water scarcity is a key constraint for commercial Eucalyptus plantations, particularly given the increasing frequency of droughts driven by climate change. This study assessed annual transpiration (Tr) and water use efficiency (WUE) across eight genotypes subjected to contrasting irrigation regimes (WR). A split-plot [...] Read more.
Water scarcity is a key constraint for commercial Eucalyptus plantations, particularly given the increasing frequency of droughts driven by climate change. This study assessed annual transpiration (Tr) and water use efficiency (WUE) across eight genotypes subjected to contrasting irrigation regimes (WR). A split-plot design was implemented, comprising two irrigation levels: high (maintained above 75% of field capacity) and low (approximately 25% above the permanent wilting point). The genotypes included Eucalyptus globulus (EgH, EgL), E. nitens × globulus (EngH, EngL), E. nitens (En), E. camaldulensis × globulus (Ecg), E. badjensis (Eb), and E. smithii (Es). Between stand ages of 7 and 9 years (2020–2023), we measured current annual increment (CAI), leaf area index (LAI), Tr, and WUE. Under high WR, CAI ranged from 8 to 36 m3 ha−1 yr−1, Tr from 520 to 910 mm yr−1, and WUE from 0.7 to 2.9 kg m−3. Low irrigation reduced CAI by 5–25% and Tr by 10–35%, while WUE responses varied across genotypes, ranging from a 12% decrease to a 48% increase. Based on their functional responses, genotypes were grouped as follows: (i) stable performers (Es, Ecg, Eb) exhibited high WUE and consistent Tr under both WR; (ii) partially plastic genotypes (EgH, EngH) combined moderate reductions in Tr with improved WUE; and (iii) water-sensitive genotypes (EgL, EngL, En) showed substantial declines in Tr alongside variable WUE gains. These findings underscore the importance of selecting genotypes with adaptive water-use traits to improve the resilience and long-term sustainability of Eucalyptus plantations in Mediterranean environments. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

27 pages, 3680 KiB  
Article
Carbon Storage in Coffee Agroforestry Systems: Role of Native and Introduced Shade Trees in the Central Peruvian Amazon
by Noelito Salgado Veramendi, Lorena Estefani Romero-Chavez, Eldhy Sianina Huerto Pajuelo, Carolina del Carmen Ibarra Porras, Joseph Michael Cunyas-Camayo, Uriel Aldava Pardave, Geomar Vallejos-Torres and Richard Solórzano Acosta
Agriculture 2025, 15(13), 1415; https://doi.org/10.3390/agriculture15131415 - 30 Jun 2025
Viewed by 1307
Abstract
What is the potential impact on carbon storage of the native and introduced tree species commonly associated with coffee in the central Peruvian Amazon? Coffee is a pivotal crop within the Peruvian economy. Nevertheless, the establishment of new plantations—driven by the subsistence needs [...] Read more.
What is the potential impact on carbon storage of the native and introduced tree species commonly associated with coffee in the central Peruvian Amazon? Coffee is a pivotal crop within the Peruvian economy. Nevertheless, the establishment of new plantations—driven by the subsistence needs of smallholder farmers—has led to expansion into forested areas. Given the significance of this crop and the demonstrated ecosystem benefits of agroforestry systems (AFSs), the aim of this study was to evaluate the influence of native and introduced shade tree species on carbon storage in coffee plantations. This study was observational and exhibited characteristics of an unbalanced incomplete block design. Agroforestry systems (AFSs) with shade tree species such as Inga, Retrophyllum rospigliosii, Eucalyptus and Pinus, and three unshaded coffee plantations, were included in this study. The total carbon stored in each AFS was higher than in unshaded coffee plantations. Soil contributed between 47% and 91% to total carbon storage, shade trees (24–46%), coffee (2–7%), leaf litter (0.6–1.9%) and shrubs and herbaceous plants (0.02–0.3%). The AFS with R. rospigliosii achieved the highest carbon storage with 190.38 Mg ha−1, highlighting the compatibility of this species with coffee plantations, as well as its positive effect on climate change mitigation in deforested areas. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

14 pages, 1317 KiB  
Article
Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale
by Simone Bergonzoli, Luca Cozzolino, Elio Romano and Luigi Pari
Ecologies 2025, 6(3), 45; https://doi.org/10.3390/ecologies6030045 - 23 Jun 2025
Viewed by 382
Abstract
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management [...] Read more.
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management remains less understood. To address this gap, a sampling of diversity was carried out through Malaise traps on five agricultural surfaces with different management schemes: two characterized by the presence of trees (Populus L. spp. and Eucalyptus spp.), two herbaceous fields in different development stages (flowering Carthamus tinctorius L. and stubble of Triticum aestivum), and one mixed system (an agroforestry plantation composed of Populus L. spp. and Carthamus tinctorius L.). Data collection focused on evaluating the total animal biomass (weight and number) and the richness and evenness components of diversity using Shannon and Simpson indices at the Order level. The sampled arthropods belonged to six Orders of Insecta and one Order of Arachnida. The agroforestry system had a higher total animal biomass, in terms of weight, than the other treatments (61.24% higher than in the eucalyptus system, 58.91% higher than in the wheat stubble, 42.63% higher than in the flowering safflower system, and 11.63% higher than in the poplar plantation), with the number of total arthropods following a similar trend. The results demonstrated that the biomass, richness, and evenness of the collected arthropods varied according to the management practices applied, and higher values were recorded in the agroforestry system. Although preliminary, the findings suggest the suitability of mixed systems for sustaining higher diversity than traditional monoculture management schemes. Full article
Show Figures

Figure 1

22 pages, 6402 KiB  
Article
A Study on Airborne Hyperspectral Tree Species Classification Based on the Synergistic Integration of Machine Learning and Deep Learning
by Dabing Yang, Jinxiu Song, Chaohua Huang, Fengxin Yang, Yiming Han and Ruirui Wang
Forests 2025, 16(6), 1032; https://doi.org/10.3390/f16061032 - 19 Jun 2025
Viewed by 436
Abstract
Against the backdrop of global climate change and increasing ecological pressure, the refined monitoring of forest resources and accurate tree species identification have become essential tasks for sustainable forest management. Hyperspectral remote sensing, with its high spectral resolution, shows great promise in tree [...] Read more.
Against the backdrop of global climate change and increasing ecological pressure, the refined monitoring of forest resources and accurate tree species identification have become essential tasks for sustainable forest management. Hyperspectral remote sensing, with its high spectral resolution, shows great promise in tree species classification. However, traditional methods face limitations in extracting joint spatial–spectral features, particularly in complex forest environments, due to the “curse of dimensionality” and the scarcity of labeled samples. To address these challenges, this study proposes a synergistic classification approach that combines the spatial feature extraction capabilities of deep learning with the generalization advantages of machine learning. Specifically, a 2D convolutional neural network (2DCNN) is integrated with a support vector machine (SVM) classifier to enhance classification accuracy and model robustness under limited sample conditions. Using UAV-based hyperspectral imagery collected from a typical plantation area in Fuzhou City, Jiangxi Province, and ground-truth data for labeling, a highly imbalanced sample split strategy (1:99) is adopted. The 2DCNN is further evaluated in conjunction with six classifiers—CatBoost, decision tree (DT), k-nearest neighbors (KNN), LightGBM, random forest (RF), and SVM—for comparison. The 2DCNN-SVM combination is identified as the optimal model. In the classification of Masson pine, Chinese fir, and eucalyptus, this method achieves an overall accuracy (OA) of 97.56%, average accuracy (AA) of 97.47%, and a Kappa coefficient of 0.9665, significantly outperforming traditional approaches. The results demonstrate that the 2DCNN-SVM model offers superior feature representation and generalization capabilities in high-dimensional, small-sample scenarios, markedly improving tree species classification accuracy in complex forest settings. This study validates the model’s potential for application in small-sample forest remote sensing and provides theoretical support and technical guidance for high-precision tree species identification and dynamic forest monitoring. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 2086 KiB  
Article
Eucalyptus globulus Afforestation Reduces Invertebrate Richness and Diversity in Streams
by Anais Rivas-Torres, Manuel A. S. Graça, Andrea Landeira-Dabarca, Maruxa Álvarez, Leandro Juen and Adolfo Cordero-Rivera
Hydrobiology 2025, 4(2), 16; https://doi.org/10.3390/hydrobiology4020016 - 12 Jun 2025
Viewed by 502
Abstract
Intensive forestry, particularly the establishment of monospecific plantations with exotic species, can deeply impact the ecological functioning of forest streams, where riparian leaf litter is the primary source of energy. In this study, we investigated the effects of Eucalyptus globulus afforestation on macroinvertebrate [...] Read more.
Intensive forestry, particularly the establishment of monospecific plantations with exotic species, can deeply impact the ecological functioning of forest streams, where riparian leaf litter is the primary source of energy. In this study, we investigated the effects of Eucalyptus globulus afforestation on macroinvertebrate communities in 20 streams in Galicia (NW Spain) with varying levels of accumulated eucalypt leaf litter. Sampling was done in autumn 2020 and spring 2021. In autumn, six streams had leaf litter composed of >50% of eucalypt leaves, a proportion that increased to 12 streams in spring. A total of 24,705 individuals were found in autumn and 12,529 in spring, belonging to 125 taxa. Although some taxa decreased their abundance with an increase in the proportion of eucalypt litter, variability in overall macroinvertebrate abundance was mainly explained by season, stream flow, and water temperature. However, species richness and diversity were significantly lower in streams mainly subsided by Eucalyptus litter compared to those dominated by native riparian vegetation. Macroinvertebrate abundance, richness, and diversity peaked in autumn, coinciding with the influx of deciduous litterfall and lower proportion of eucalypt litter. The lower quality, low-nutrient content, and presence of feeding deterrents in Eucalyptus leaf litter compared to native deciduous tree species likely drive these observed patterns, underscoring the importance of preserving native riparian forests to sustain stream biodiversity, even in managed landscapes dominated by Eucalyptus plantations. Full article
Show Figures

Figure 1

25 pages, 10720 KiB  
Article
Responses of Water Use Strategies to Seasonal Drought Stress Differed Among Eucalyptus urophylla S.T.Blake × E. grandis Plantations Along with Stand Ages
by Zhichao Wang, Yuxing Xu, Wankuan Zhu, Runxia Huang, Apeng Du, Haoyang Cao and Wenhua Xiang
Forests 2025, 16(6), 962; https://doi.org/10.3390/f16060962 - 6 Jun 2025
Viewed by 395
Abstract
Water use strategies reflect the ability of plants to adapt to drought caused by climate change. However, how these strategies change with stand development and seasonal drought is not fully understood. This study used stable isotope techniques (δD, δ18O, and δ [...] Read more.
Water use strategies reflect the ability of plants to adapt to drought caused by climate change. However, how these strategies change with stand development and seasonal drought is not fully understood. This study used stable isotope techniques (δD, δ18O, and δ13C) combined with the MixSIAR model to quantify the seasonal changes in water use sources and water use efficiency (WUE) of Eucalyptus urophylla S.T.Blake × E. grandis (E. urophylla × E. grandis) at four stand ages (2-, 4-, 9- and 14-year-old) and to identify their influencing factors. Our results showed that the young (2-year-old) and middle-aged (4-year-old) stands primarily relied on shallow soil water throughout the growing season due to the limitations of a shallow root system. In contrast, the mature (9-year-old) and overmature (14-year-old) stands, influenced by the synergistic effects of larger and deeper root systems and relative extractable water (REW), exhibited more flexibility in water use, mainly relying on shallow soil water in wet months, but shifting to using middle and deep soil layer water in dry months, and quickly returning to mainly using shallow soil water in the episodic wet month of the dry season. The WUE of E. urophylla × E. grandis was affected by the combined effect of air temperature (T), vapor pressure deficit (VPD), and REW. WUE was consistent across the stand ages in the wet season but decreased significantly with stand age in the dry season. This suggests that mature and overmature stands depend more on shifting their water source, while young and middle-aged stands rely more on enhanced WUE to cope with seasonal drought stress, resulting in young and middle-aged stands being more vulnerable to drought stress. These findings offer valuable insights for managing water resources in eucalyptus plantations, particularly as drought frequency and intensity continue to rise. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

16 pages, 1726 KiB  
Article
Analysis of Operational Performance and Costs of Log Loaders Under Different Conditions
by Cássio Furtado Lima, Leonardo França da Silva, Cristiano Márcio Alves de Souza, Francisco de Assis Costa Ferreira, Luciano José Minette, Fernando Mateus Paniagua Mendieta, Roldão Carlos Andrade Lima, Luís Carlos de Freitas, Jéssica Karina Mesquita Vieira, Victor Crespo de Oliveira, Bruno Leão Said Schettini and Arthur Araújo Silva
Forests 2025, 16(6), 913; https://doi.org/10.3390/f16060913 - 29 May 2025
Viewed by 587
Abstract
The Brazilian forestry sector comprises 9.94 million hectares of plantations, with eucalyptus dominating 75% of this area for pulp production. Technological advances have enhanced machinery performance, with the cut-to-length system being the primary method for pulpwood production. This study aimed to optimize the [...] Read more.
The Brazilian forestry sector comprises 9.94 million hectares of plantations, with eucalyptus dominating 75% of this area for pulp production. Technological advances have enhanced machinery performance, with the cut-to-length system being the primary method for pulpwood production. This study aimed to optimize the operational cycle of the log loader by evaluating productivity, operational cycles, and loading costs. Data were collected in Bahia, northeastern Brazil, from a forestry company operating under varying productivity scenarios and forest rotations. Time and motion studies were conducted to assess the log loader’s cycles, while productivity and cost analyses were performed. The results indicated that predictive models effectively explained productivity variations. The log loader’s productivity increased with the average volume per tree (AVT) and decreased with the number of movements, which consumed 68% of the cycle time due to wood adjustment and stack organization. Stages such as personal breaks, truck movements, crane adjustments, and cleaning of fallen material showed no significant statistical differences. Loading costs rose by up to 154% with increased movements and decreased with a higher AVT. Additionally, loading tri-train trucks significantly influenced transportation efficiency, emphasizing the importance of optimizing the log loader’s cycle to balance costs and enhance transportation operations. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

23 pages, 3195 KiB  
Article
The Impact of Expanding Eucalyptus Plantations on the Hydrology of a Humid Highland Watershed in Ethiopia
by Habtamu M. Fenta, Tammo S. Steenhuis, Teshager A. Negatu, Fasikaw A. Zimale, Wim Cornelis and Seifu A. Tilahun
Hydrology 2025, 12(5), 121; https://doi.org/10.3390/hydrology12050121 - 17 May 2025
Viewed by 800
Abstract
Changes in climate and land use significantly impact downstream water availability. Quantifying these effects in the Ethiopian Highlands is crucial, as 85% of the transboundary water in Egypt and Sudan originates from these highlands. While the impact of climate change on water availability [...] Read more.
Changes in climate and land use significantly impact downstream water availability. Quantifying these effects in the Ethiopian Highlands is crucial, as 85% of the transboundary water in Egypt and Sudan originates from these highlands. While the impact of climate change on water availability has been widely studied, few experimental studies have examined how it is affected by eucalyptus reforestation. Therefore, the objective was to investigate how eucalyptus expansion impairs water availability in the Ethiopian Highlands. The study was conducted in the 39 km2 Amen watershed, located in the upper reaches of the Blue Nile. Rainfall data were collected from local agencies from 1990 to 2024, while streamflow data were available only for 2002–2009 and 2015–2018. Actual evapotranspiration was obtained using the WaPOR portal, and land use was derived from Landsat 5 TM and Landsat 8 OLI. The satellite images showed that the eucalyptus acreage increased from 238 ha in 2001 to 799 ha in 2024, or 24 ha y−1. The actual evapotranspiration of eucalyptus was up to 30% greater than that of other land uses during the dry monsoon phase (January to March), resulting in decreased water storage in the watershed over a 23-year period. Since runoff is generated by saturation excess runoff, it takes longer for the valley bottoms to become saturated. In the 2002–2009 period, it took an average of around 160 mm of cumulative effective rain for significant runoff to start, and from 2015 to 2018, 274 mm was needed. Additionally, base flow decreased significantly. The annual runoff trended upward when the annual rainfall was more than the additional amount of water evaporated by eucalyptus, but decreased otherwise. Full article
Show Figures

Figure 1

13 pages, 4454 KiB  
Article
Seasonal Water Use Patterns of Eucalyptus with Different Ages in Southern Subtropical China
by Haijun Zuo, Qing Xu, Deqiang Gao, Wenbin Xu, Ke Diao and Beibei Zhang
Forests 2025, 16(4), 708; https://doi.org/10.3390/f16040708 - 21 Apr 2025
Viewed by 438
Abstract
Seasonal droughts induced by climate change pose a significant threat to the normal growth patterns of forests in the subtropical regions of southern China. Therefore, it is crucial to explore the response of tree water use patterns to seasonal drought to maintain tree [...] Read more.
Seasonal droughts induced by climate change pose a significant threat to the normal growth patterns of forests in the subtropical regions of southern China. Therefore, it is crucial to explore the response of tree water use patterns to seasonal drought to maintain tree physiological activities. However, it remains unknown whether changes in dry and wet seasons have an impact on the water use patterns of trees of different ages. In this study, a two-year experiment was conducted in Eucalyptus urophylla × Eucalyptus grandis (hereinafter referred to as Eucalyptus) plantations at three ages (4, 7, and 17 years). Specifically, the water use patterns of Eucalyptus in dry and wet seasons were calculated using hydrogen stable isotopes (including the isotopes in xylem water and 0–150 cm soil layers) coupled with MixSIAR. The results showed that there were notable variations in the proportions of water absorption from different soil layers by Eucalyptus during dry and wet seasons. During the dry season (April 2024), 4-year-old and 7-year-old Eucalyptus primarily utilized water from the 40–90 cm soil layer, while 17-year-old Eucalyptus mainly relied on deep soil water at depths of 60–150 cm, with a utilization ratio of 50.9%. During the wet season (August 2023), the depth of water uptake by Eucalyptus of different ages significantly shifted towards shallow layers, and the trees primarily utilized surface soil water from the 0–60 cm layer, with utilization ratios of 59.9%, 64.8%, and 61.6% for 4-year-old, 7-year-old, and 17-year-old Eucalyptus, respectively. The water sources of Eucalyptus during dry and wet seasons were variable, which allowed Eucalyptus to cope with seasonal drought stress. The differences in the water uptake strategies of Eucalyptus between dry and wet seasons can be attributed to their long-term adaptation to the environment. Our research revealed the differences in the water utilization of Eucalyptus with various ages between dry and wet seasons in subtropical China, providing new insights for a better understanding of the adaptive mechanisms of subtropical forests in response to alterations in water conditions caused by climate change. Full article
Show Figures

Figure 1

41 pages, 10191 KiB  
Review
Impact of Land-Use Change on Vascular Epiphytes: A Review
by Thorsten Krömer, Helena J. R. Einzmann, Glenda Mendieta-Leiva and Gerhard Zotz
Plants 2025, 14(8), 1188; https://doi.org/10.3390/plants14081188 - 11 Apr 2025
Cited by 1 | Viewed by 1052
Abstract
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use [...] Read more.
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use changes due to their reliance on host trees and specific microclimatic conditions. While tree species in secondary forests recover relatively quickly, epiphyte recolonization is slower, especially in humid montane regions, where species richness may decline by up to 96% compared to primary or old-growth forests. A review of nearly 300 pertinent studies has revealed a geographic bias toward the Neotropics, with limited research from tropical Asia, Africa, and temperate regions. The studies can be grouped into four main areas: 1. trade, use and conservation, 2. ecological effects of climate and land-use change, 3. diversity in human-modified habitats, and 4. responses to disturbance. In agricultural and timber plantations, particularly those using exotic species like pine and eucalyptus, epiphyte diversity is significantly reduced. In contrast, most native tree species and shade-grown agroforestry systems support higher species richness. Traditional polycultures with dense canopy cover maintain up to 88% of epiphyte diversity, while intensive management practices, such as epiphyte removal in coffee and cacao plantations, cause substantial biodiversity losses. Conservation strategies should prioritize preserving old-growth forests, maintaining forest fragments, and minimizing intensive land management. Active restoration, including the translocation of fallen epiphytes and planting vegetation nuclei, is more effective than passive approaches. Future research should include long-term monitoring to understand epiphyte dynamics and assess the broader impacts of epiphyte loss on biodiversity and ecosystem functioning. Full article
Show Figures

Figure 1

Back to TopTop