Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (799)

Search Parameters:
Keywords = ethanol consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2300 KiB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 154
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

16 pages, 1739 KiB  
Article
Impact of the Thermovinification Practice Combined with the Use of Autochthonous Yeasts on the Fermentation Kinetics of Red Wines
by Islaine Santos Silva, Ana Paula André Barros, Marcos dos Santos Lima, Bruna Carla Agustini, Carolina Oliveira de Souza and Aline Camarão Telles Biasoto
Fermentation 2025, 11(8), 436; https://doi.org/10.3390/fermentation11080436 - 29 Jul 2025
Viewed by 182
Abstract
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research [...] Read more.
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research investigated how combining thermovinification with autochthonous yeast strains influences the fermentation dynamics of Syrah wine. Six treatments were conducted, combining the use of commercial and two autochthonous yeasts with traditional vinification (7-day maceration) and thermovinification (65 °C for 2 h) processes. Sugars and alcohols were quantified during alcoholic fermentation by high-performance liquid chromatography with refractive index detection. Cell viability and kinetic parameters, such as ethanol formation rate and sugar consumption, were also evaluated. The Syrah wine’s composition was characterized by classical wine analyses (OIV procedures). The results showed that cell viability was unaffected by thermovinification. Thermovinification associated with autochthonous yeasts improved the efficiency of alcoholic fermentation. Thermovinified wines also yielded a higher alcohol content (13.9%). Future studies should investigate how thermovinification associated with autochthonous yeasts affects the metabolomic and flavoromic properties of Syrah wine and product acceptability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

20 pages, 3274 KiB  
Article
Investigation of the Influence of Process Parameters on the Physicochemical and Functional Properties of Oil-Based Composites
by Anita Zawadzka and Magda Kijania-Kontak
Materials 2025, 18(15), 3447; https://doi.org/10.3390/ma18153447 - 23 Jul 2025
Viewed by 247
Abstract
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) [...] Read more.
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) acid, hydrobromic acid, acetic acid, salicylic acid, glycolic acid, zinc acetate, ethanol, hydrogen peroxide, and their selected mixtures. The manufacturing process was optimised, and the composites were evaluated for physicochemical and mechanical properties, including compressive strength, bending strength, and water absorption. The best performance was observed for composites catalysed with a mixture of sulfuric(VI) acid and 20% hydrogen peroxide, cured at 240 °C, yielding compressive and bending strengths of 5.20 MPa and 1.34 MPa, respectively. Under modified curing conditions, a compressive strength of 5.70 MPa and a bending strength of 0.75 MPa were obtained. The composite modified with glycolic acid showed the lowest water absorption (3%). These findings demonstrate how catalyst type and curing parameters influence composite structure, porosity, and mechanical behaviour. The study provides new insights into the process–structure–property relationships in oil-based materials and supports the development of environmentally friendly composites from waste feedstocks. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

12 pages, 1374 KiB  
Review
Ethanol-Producing Micro-Organisms of Human Gut: A Biological Phenomenon or a Disease?
by Aladin Abu Issa, Yftach Shoval and Fabio Pace
Appl. Biosci. 2025, 4(3), 36; https://doi.org/10.3390/applbiosci4030036 - 15 Jul 2025
Viewed by 311
Abstract
The discovery that human beings may endogenously produce ethanol is not new and dates back at the end of the 19th century; recently, however, it has become clear that through the proliferation of gut microorganisms that produce ethanol from sugars or other substrates, [...] Read more.
The discovery that human beings may endogenously produce ethanol is not new and dates back at the end of the 19th century; recently, however, it has become clear that through the proliferation of gut microorganisms that produce ethanol from sugars or other substrates, blood alcohol level may be greater than 0, despite Homo sapiens sapiens lacking the enzymatic pathways to produce it. Very rarely this can lead to symptoms and/or to a disease, named gut fermentation syndrome or auto-brewery syndrome (ABS). The list of microorganisms (mostly bacteria and fungi) is very long and contains almost 100 different strains, and many metabolic pathways are involved. Endogenous ethanol production is a neglected entity, but it may be suspected in patients in whom ethanol consumption may be firmly excluded. Nevertheless, due to the growing prevalence of NAFLD (now renamed as MAFLD) worldwide, an ethanol-producing microorganism responsible for endogenous ethanol production such as Klebsiella pneumoniae or Saccharomices cerevisiae is increasingly sought in NAFLD patients, or in patients with metabolic diseases such as diabetes mellitus, obesity, or metabolic syndrome, at least in selected instances. In the absence of standard diagnostic and therapeutic guidelines, ABS requires a detailed patient history, including dietary habits, alcohol consumption, and gastrointestinal symptoms, and a comprehensive physical examination to detect unexplained ethanol intoxication. It has been proposed to start the diagnostic protocol with a standardized carbohydrate challenge test, followed, if positive, by the use of antifungal agents or antibiotics; indeed, fecal microbiota transplantation might be the only way to cure a patient with refractory ABS. Scientific societies should produce internationally agreed recommendations for ABS and other conditions linked to excessive endogenous ethanol production. Full article
Show Figures

Figure 1

17 pages, 1693 KiB  
Article
Overcoming Challenges in the Determination of Fatty Acid Ethyl Esters in Post-Mortem Plasma Samples with the Use of Targeted Metabolomics and the Quality by Design Approach
by Joanna Dawidowska, Julia Jacyna-Gębala, Renata Wawrzyniak, Michał Kaliszan and Michał Jan Markuszewski
Biomedicines 2025, 13(7), 1688; https://doi.org/10.3390/biomedicines13071688 - 10 Jul 2025
Viewed by 310
Abstract
Background: Excessive alcohol consumption constitutes a serious cause of death worldwide. Fatty acid ethyl esters, as metabolites of the non-oxidative elimination pathway of ethanol, have been recognized as mediators of alcohol-induced organ damage. These metabolites serve as potential biomarkers for the assessment of [...] Read more.
Background: Excessive alcohol consumption constitutes a serious cause of death worldwide. Fatty acid ethyl esters, as metabolites of the non-oxidative elimination pathway of ethanol, have been recognized as mediators of alcohol-induced organ damage. These metabolites serve as potential biomarkers for the assessment of ethanol intake and might be also used in post-mortem studies. Methods: In this study, the development and optimization of a simple, fast, precise, accurate, and cost-effective method with the use of gas chromatography coupled with tandem mass spectrometry for quantitative analysis of six fatty acid ethyl esters, namely ethyl laurate, myristate, palmitate, linoleate, oleate, and stearate, were conducted. Results: The optimized method was fully validated according to ICH guidelines. Additionally, identification of critical method parameters was possible by using the quality by design approach. By carrying out analyses according to the Plackett–Burman plan (design of experiments methodology), the robustness of the analytical method developed was confirmed for four (ethyl palmitate, linoleate, oleate, and stearate) ethyl esters. In the case of ethyl myristate, the variable significantly affecting the results appeared to be the temperature of solvent evaporation after the deproteinization step. Conclusions: Biochemical interpretation of the obtained results with available medical records suggests that plasma concentrations of selected fatty acid ethyl esters are valuable indicators of pre-mortem alcohol consumption and may be one of the key factors helpful in determining the cause and mechanism of death. Full article
(This article belongs to the Special Issue Pathophysiology of Fatty Acid Metabolism)
Show Figures

Graphical abstract

18 pages, 2822 KiB  
Article
A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis
by Juan Feng, Chatchadaporn Mahakuntha, Su Lwin Htike, Charin Techapun, Yuthana Phimolsiripol, Pornchai Rachtanapun, Julaluk Khemacheewakul, Siraphat Taesuwan, Kritsadaporn Porninta, Sumeth Sommanee, Rojarej Nunta and Noppol Leksawasdi
Agriculture 2025, 15(14), 1472; https://doi.org/10.3390/agriculture15141472 - 9 Jul 2025
Viewed by 272
Abstract
A substrate–product switch model was proposed to describe ethanol fermentation from longan solid waste using Candida tropicalis at an initial glucose and xylose ratio of 2 to 1. The model incorporated multiple rate equations for cell growth, sugar uptake, and ethanol production along [...] Read more.
A substrate–product switch model was proposed to describe ethanol fermentation from longan solid waste using Candida tropicalis at an initial glucose and xylose ratio of 2 to 1. The model incorporated multiple rate equations for cell growth, sugar uptake, and ethanol production along with ethanol consumption. It elucidated the following three-step mechanism: (I) sugar uptake, (II) sugar conversion, and (III) ethanol consumption concerning the effects of concentration factor (CF) and associated growth function. Optimal kinetic parameters were estimated and validated against experimental data. The identification of two critical xylose concentrations showed that ethanol consumption either preceded or coincided with xylose consumption cessation. The phenolics inhibitory effect of gallic acid, ellagic acid, pyrogallol, and catechol on cell growth and ethanol production was elucidated with relatively minimal effect. The highest ethanol concentration of 25.5 g/L was reached with corresponding ethanol mass yield and productivity of 0.30 g/g and 1.063 g/L/h, respectively. The proposed model and kinetics provide valuable insights for designing and optimizing ethanol fermentation, contributing to more sustainable and cost-effective ethanol production. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 2956 KiB  
Article
Selection of Fructophilic Yeast from Sun-Dried Pedro Ximénez Grape Must for the Development of New Vinegars Containing Gluconic Acid
by Juan Carbonero-Pacheco, Álvaro García-Jiménez, Juan C. Mauricio, Juan C. García-García, Juan J. Román-Camacho, Elena García-Muñoz, Inés M. Santos-Dueñas, Teresa García-Martínez and Isidoro García-García
Foods 2025, 14(14), 2410; https://doi.org/10.3390/foods14142410 - 8 Jul 2025
Viewed by 390
Abstract
Wine vinegar and wine are traditional Spanish products, obtained from grape must by alcoholic fermentation (wine) and subsequent acetification (vinegar). Although these are established products, there is great interest in the development of new products, particularly new vinegars, and among these, the possibility [...] Read more.
Wine vinegar and wine are traditional Spanish products, obtained from grape must by alcoholic fermentation (wine) and subsequent acetification (vinegar). Although these are established products, there is great interest in the development of new products, particularly new vinegars, and among these, the possibility of vinegars containing gluconic acid stands out. Gluconic acid in vinegar, mainly produced by acetic acid bacteria (AAB), is positively valued by consumers. Its content depends on the availability of glucose in the base wine; however, this hexose is preferentially consumed by the indigenous yeast population which conducts the previous alcoholic fermentation. For this reason, the use of non-conventional fructophilic yeasts, which consume fructose rather than glucose, is required. In this work, we isolated, screened, and identified osmophilic and fructophilic non-Saccharomyces yeasts from sun-dried grape must and tested them under different fermentation conditions in synthetic and natural grape musts, in order to obtain a base wine with ethanol and glucose content for the development of new vinegars containing gluconic acid. The isolate of the species Starmerella lactis-condensi was found to be an ideal candidate due to its fructophilic and osmophilic features, which allowed for the production of a base wine with high ethanol (11% v/v) and glucose (up to 200 g/L) content from a natural concentrated must. In fresh must, inoculation with Starmerella lactis-condensi resulted in faster and preferential fructose consumption over glucose compared to the control. However, both sugars were completely consumed at the end of the alcoholic fermentation; therefore, new fermentation strategies should be tested in this type of must. Furthermore, this strain could be of interest in oenology due to its high glycerol yield and low volatile acid production during alcoholic fermentation. The use of this strain could allow for the production of new wines with unique metabolic profiles suitable for further vinegar production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

27 pages, 3169 KiB  
Review
Alcohol Consumption and Liver Metabolism in the Era of MASLD: Integrating Nutritional and Pathophysiological Insights
by Carlo Acierno, Fannia Barletta, Alfredo Caturano, Riccardo Nevola, Ferdinando Carlo Sasso, Luigi Elio Adinolfi and Luca Rinaldi
Nutrients 2025, 17(13), 2229; https://doi.org/10.3390/nu17132229 - 5 Jul 2025
Viewed by 823
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the leading cause of chronic liver disease worldwide, driven by the global epidemics of obesity, type 2 diabetes, and metabolic syndrome. In this evolving nosological landscape, alcohol consumption—traditionally excluded from the diagnostic criteria of [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the leading cause of chronic liver disease worldwide, driven by the global epidemics of obesity, type 2 diabetes, and metabolic syndrome. In this evolving nosological landscape, alcohol consumption—traditionally excluded from the diagnostic criteria of non-alcoholic fatty liver disease (NAFLD)—has regained central clinical importance. The recently defined MetALD phenotype acknowledges the co-existence of metabolic dysfunction and a significant alcohol intake, highlighting the synergistic nature of their pathogenic interactions. This narrative review provides a comprehensive analysis of the biochemical, mitochondrial, immunometabolic, and nutritional mechanisms through which alcohol exacerbates liver injury in MASLD. Central to this interaction is cytochrome P450 2E1 (CYP2E1), whose induction by both ethanol and insulin resistance enhances oxidative stress, lipid peroxidation, and fibrogenesis. Alcohol also promotes mitochondrial dysfunction, intestinal barrier disruption, and micronutrient depletion, thereby aggravating metabolic and inflammatory derangements. Furthermore, alcohol contributes to sarcopenia and insulin resistance, establishing a bidirectional link between hepatic and muscular impairment. While some observational studies have suggested a cardiometabolic benefit of a moderate alcohol intake, emerging evidence challenges the safety of any threshold in patients with MASLD. Accordingly, current international guidelines recommend alcohol restriction or abstinence in all individuals with steatotic liver disease and metabolic risk. The review concludes by proposing an integrative clinical model and a visual cascade framework for the assessment and management of alcohol consumption in MASLD, integrating counseling, non-invasive fibrosis screening, and personalized lifestyle interventions. Future research should aim to define safe thresholds, validate MetALD-specific biomarkers, and explore the efficacy of multidisciplinary interventions targeting both metabolic and alcohol-related liver injury. Full article
(This article belongs to the Special Issue Alcohol Consumption and Human Health)
Show Figures

Figure 1

23 pages, 2350 KiB  
Article
Comparative Evaluation of the Effects of Variable Spark Timing and Ethanol-Supplemented Fuel Use on the Performance and Emission Characteristics of an Aircraft Piston Engine
by Roussos Papagiannakis and Nikolaos Lytras
Energies 2025, 18(13), 3440; https://doi.org/10.3390/en18133440 - 30 Jun 2025
Viewed by 244
Abstract
Nowadays, there are many studies that have been conducted in order to reduce the emissions of modern reciprocating engines without, at the same time, having a negative impact on the performance characteristics. One method to accomplish that is by using ethanol-supplemented fuels instead [...] Read more.
Nowadays, there are many studies that have been conducted in order to reduce the emissions of modern reciprocating engines without, at the same time, having a negative impact on the performance characteristics. One method to accomplish that is by using ethanol-supplemented fuels instead of conventional gasoline. On the other side of the spectrum, spark timing is one of the most important parameters that affects the combustion mechanism inside a reciprocating engine and is basically controlled by the ignition advance of the engine. Therefore, the main purpose of this study is to investigate the effect of spark timing alteration on the performance characteristics and emissions of a modern reciprocating, naturally aspirated, aircraft SI engine (i.e., ROTAX 912s), operated under four different engine operating points (i.e., combination of engine speed and throttle opening), by using ethanol-supplemented fuel. The implementation of the aforementioned method is achieved through the use of an advanced simulating software (i.e., GT-POWER), which provides the user with the possibility to completely design a piston engine and parameterize it, by using a comprehensive single-zone phenomenological model, for any operating conditions in the entire range of its operating points. The predictive ability of the designed engine model is evaluated by comparing the results with the experimental values obtained from the technical manuals of the engine. For all test cases examined in the present work, the results are affiliated with important performance characteristics, i.e., brake power, brake torque, and brake-specific fuel consumption, as well as specific NO and CO concentrations. Thus, the primary objectives of this study were to examine and evaluate the results of the combination of using ethanol-supplemented fuel instead of gasoline and the alteration of the spark timing, to asses their effects on the basic performance characteristics and emissions of the aforementioned type of engine. By examining the results of this study, it is revealed that the increase in the ethanol concentration in the gasoline–ethanol fuel blend combined with the increase in the ignition advance might be an auspicious solution in order to meliorate both the performance and the environmental behavior of a naturally aspirated SI aircraft piston engine. In a nutshell, the outcoming results of this research show that the combination of the two methods examined may be a valuable solution if applied to existing reciprocating SI engines. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2025)
Show Figures

Figure 1

11 pages, 2159 KiB  
Article
Class III Alcohol Dehydrogenase Modulates Renal Parietal Epithelial Cell Transformation During Chronic Alcohol Consumption in Mice
by Midori Katsuyama, Takahisa Okuda, Masamichi Ishizaki, Kentaro Wada, Motoyo Maruyama, Toshio Akimoto, Youkichi Ohno, Takahito Hayashi and Takeshi Haseba
Int. J. Mol. Sci. 2025, 26(13), 6279; https://doi.org/10.3390/ijms26136279 - 29 Jun 2025
Viewed by 307
Abstract
Class III alcohol dehydrogenase (ADH3), primarily localized in the liver and kidney, contributes to alcohol metabolism during chronic alcohol consumption (CAC). However, its role in kidney function remains unclear. This study investigated renal morphological changes associated with ADH3-mediated alcohol metabolism. Nine-week-old male wild-type [...] Read more.
Class III alcohol dehydrogenase (ADH3), primarily localized in the liver and kidney, contributes to alcohol metabolism during chronic alcohol consumption (CAC). However, its role in kidney function remains unclear. This study investigated renal morphological changes associated with ADH3-mediated alcohol metabolism. Nine-week-old male wild-type (WT) and ADH3-deficient (Adh3-/-) mice were administered 10% ethanol for 1 month. Histological analyses were performed using periodic acid–Schiff (PAS) staining and electron microscopy. Serum biochemical parameters were also assessed. In WT mice, CAC induced an increase in cuboidal parietal epithelial cells (PECs) in Bowman’s capsule, along with elevated testosterone levels in both serum and urine. Adh3-/- mice showed increased PECs even in the control group, with similarly elevated serum testosterone in both control and ethanol-treated groups. These findings suggest that ADH3 is involved in testosterone metabolism, and that that metabolism is suppressed by CAC because ADH3 shifts toward ethanol metabolism. The resulting testosterone elevation may contribute to PEC proliferation. An increase in PECs observed even in Adh3-/- control mice may also be caused by the lack of testosterone metabolism via ADH3. Thus, renal ADH3 may protect kidney structure through testosterone metabolism, but its role may be disturbed by CAC. This study highlights the role of ADH3 in the relationship between physiological steroid metabolism and alcoholic pathological abnormality in the kidney. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

11 pages, 2968 KiB  
Article
Physiological and Transcriptome Analysis Revealed the Effect of ABA on Promoting Persimmon Fruit Postharvest Deastringency
by Han Zhou, Jiao-Jiao Nie, Meng-Lin Ren, Yu-Duan Ding, Ya-Xiu Xu and Qing-Gang Zhu
Life 2025, 15(7), 1027; https://doi.org/10.3390/life15071027 - 27 Jun 2025
Viewed by 284
Abstract
Persimmon (Diospyros kaki Thunb.) fruit can accumulate proanthocyanidins (tannins) during development, which causes astringency and affects consumption. The hormone abscisic acid (ABA) has been reported to play a key role in fruit ripening and softening. However, the effect of ABA on postharvest [...] Read more.
Persimmon (Diospyros kaki Thunb.) fruit can accumulate proanthocyanidins (tannins) during development, which causes astringency and affects consumption. The hormone abscisic acid (ABA) has been reported to play a key role in fruit ripening and softening. However, the effect of ABA on postharvest persimmon fruit deastringency remains unclear. In this study, we found that 300 mg/L ABA treatment could decrease the content of soluble tannins, thus leading removal of persimmon fruit astringency. The contents of acetaldehyde and ethanol did not increase during the storage time, indicating that ABA treatment-promoted persimmon fruit deastringency was not due to the acetaldehyde interaction with soluble tannins. Furthermore, the transcriptome analysis showed that 6713 differentially expressed genes (DEGs) were identified, and the WGCNA (weighted gene co-expression network analysis) showed that one module, which comprises 575 DEGs, significantly correlated with the contents of soluble and resoluble tannins. The analysis based on the carbohydrate metabolism pathway indicated that 37 differentially expressed structural genes involved in acetaldehyde metabolism were upregulated by ABA. Real-time quantitative PCR showed that the previously reported key genes, including structural genes and transcription factors, were all upregulated by ABA treatment. The obtained results indicate that ABA treatment, promoting persimmon fruit astringency removal, may occur through gel polymerization of cell wall materials with soluble tannins. Full article
Show Figures

Figure 1

13 pages, 2271 KiB  
Article
Rice Bran and American Ginseng Residue as Media for Black Truffle Solid-State Fermentation
by Zih-Yang Lin, Zi-Jun Lin and Su-Der Chen
Sustainability 2025, 17(12), 5562; https://doi.org/10.3390/su17125562 - 17 Jun 2025
Viewed by 931
Abstract
American ginseng (Panax quinquefolium L.) residue from the extraction industry can be dried and mixed with rice bran as media for black truffle solid-state fermentation to enhance reuse and bioactive functions. Different ratios of rice bran (R) and American ginseng residue (G) [...] Read more.
American ginseng (Panax quinquefolium L.) residue from the extraction industry can be dried and mixed with rice bran as media for black truffle solid-state fermentation to enhance reuse and bioactive functions. Different ratios of rice bran (R) and American ginseng residue (G) mixtures were used as solid-state media for 5 weeks of black truffle fermentation, and then their bio-component contents and whitening effects were analyzed. Finally, four drying methods—hot air drying (HA), microwave drying (MW), hot air-assisted radio frequency (HARF) drying, and radio frequency vacuum (RFV) drying—were assessed to optimize drying efficiency for fermented medium. The results showed that using a 3:1 ratio of rice bran and American ginseng residue as the medium increased the crude polysaccharide and flavonoid contents by approximately threefold and enhanced the ginsenoside Rg3 content about twelvefold. Additionally, the 100 µg/mL ethanol extract of the fermented product inhibited 70% of tyrosinase activity and reduced the melanin area on zebrafish embryos by 42.74%. In the drying study, RFV drying R2G1 required only 13 min without exceeding 70 °C, demonstrating superior drying efficiency, temperature control, and low energy consumption. Overall, this study demonstrates the potential of black truffle fermentation of solid-state media from rice bran and American ginseng residue mixtures for whitening applications and highlights RFV drying as an efficient method for by-products. Full article
(This article belongs to the Special Issue Agricultural Waste Management and Sustainable Practices)
Show Figures

Graphical abstract

20 pages, 3969 KiB  
Article
Analysis of Novel DNA Adducts Derived from Acetaldehyde
by Yuuki Betsuyaku, Mina Motohashi, Akira Sassa, Takeji Takamura-Enya and Yukari Totsuka
Biomolecules 2025, 15(6), 878; https://doi.org/10.3390/biom15060878 - 16 Jun 2025
Viewed by 497
Abstract
Alcohol consumption is a known risk factor for esophageal and liver cancers. Recently, it was reported that mutation signatures characterized by T:A to C:G mutations (SBS16), which are suggested to be associated with alcohol intake, are frequently detected in esophageal, liver, and stomach [...] Read more.
Alcohol consumption is a known risk factor for esophageal and liver cancers. Recently, it was reported that mutation signatures characterized by T:A to C:G mutations (SBS16), which are suggested to be associated with alcohol intake, are frequently detected in esophageal, liver, and stomach cancers among the Japanese population. However, the scientific evidence linking alcohol consumption to SBS16 remains lacking. Acetaldehyde (AA), a carcinogenic metabolite of alcohol, is considered a key contributor to alcohol-related cancer development. Although the guanine adducts associated with alcohol exposure have been reported as part of its carcinogenic mechanism, an adenine adduct, N6-ethyl-deoxyadenosine (N6-ethyl-dA), a potential contributor to the SBS16 mutation pattern, was recently identified using a mass spectrometry-based DNA adductome approach. However, the mutagenicity assessment of N6-ethyl-dA using primer extension assays and the supF gene mutation test showed that this adenine adduct is not mutagenic. To identify another candidate as a driver adduct for SBS16, a DNA adductome approach was conducted, leading to the identification of a novel adenine adduct, 3-(2′-deoxyribos-1′-yl)-7,9-dimethyl-3,9-dihydro-7H-[1,3,5]oxadiazino[4,3-i]purine (N1-oxydiethylidene-dA), in which two AA molecules are bound to an adenine base. Moreover, N1-oxydiethylidene-dA was detected in mouse livers, and its levels increased following ethanol administration, suggesting that alcohol may contribute to SBS16 induction via the formation of N1-oxydiethylidene-dA. Full article
(This article belongs to the Special Issue Recent Advances in Adduct Science)
Show Figures

Figure 1

19 pages, 11778 KiB  
Article
Lipid-Lowering Potential of Almond Hulls (Quercetin, Baicalein, and Kaempferol): Insights from Network Pharmacology and Molecular Dynamics
by Qiming Miao, Lu Sun, Jiayuan Wu, Xinyue Zhu, Juer Liu, Roger Ruan, Guangwei Huang, Shengquan Mi and Yanling Cheng
Curr. Issues Mol. Biol. 2025, 47(6), 450; https://doi.org/10.3390/cimb47060450 - 12 Jun 2025
Viewed by 628
Abstract
The advancement of modern lifestyles has precipitated excessive consumption of energy-dense foods, driving the escalating global burden of lipid metabolism dysregulation-related pathologies—including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disorders—which collectively pose a formidable challenge to global [...] Read more.
The advancement of modern lifestyles has precipitated excessive consumption of energy-dense foods, driving the escalating global burden of lipid metabolism dysregulation-related pathologies—including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disorders—which collectively pose a formidable challenge to global public health systems. The almond hull, as a by-product of almond processing, is rich in polyphenolic compounds with demonstrated antioxidant, anti-inflammatory, and lipid-lowering potential, though its precise hypo-lipidemic mechanisms remain elusive. In this study, polyphenols were extracted from almond hulls using 50% ethanol with ultrasound-assisted extraction, followed by preliminary purification via solvent partitioning. The ethyl acetate fraction was analyzed by liquid chromatography–mass spectrometry (LC-MS). Network pharmacology and molecular docking were employed to investigate the interactions between key bioactive constituents (e.g., quercetin, baicalein, and kaempferol) and targets in lipid metabolism-related pathways. Molecular dynamics (MD) simulations further evaluated the stability of the lowest-energy complexes. Results revealed that the ethyl acetate fraction exhibited potent pancreatic lipase inhibitory activity (IC50 = 204.2 µg/mL). At 0.1 mg/mL after 24 h treatment, it significantly reduced free fatty acids (FFAs)-induced intracellular triglyceride accumulation (p < 0.01) and enhanced cellular antioxidant capacity. Network pharmacology and in vitro studies suggest almond hull extract modulates PI3K-AKT signaling and improves insulin resistance, demonstrating lipid-lowering effects. These findings support its potential in functional foods and pharmaceuticals, though further in vivo validation and mechanistic investigations are required. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

21 pages, 1361 KiB  
Article
Anhydrous Ethanol Production from Discarded Fruits Using Fermentation and a Green Dehydration System
by Margarita Ramírez-Carmona, Leidy Rendón-Castrillón, Carlos Ocampo-López, Manuela García-Ríos, Xiomy Lamilla-Mendoza, Sebastián Piedrahíta-Pérez, Juliana Rodríguez-Estrada, Valerie Samaan-Salazar, Samuel Urrea-López, Daniel Valencia-Yepes and Santiago Zea-Gutiérrez
Processes 2025, 13(6), 1854; https://doi.org/10.3390/pr13061854 - 12 Jun 2025
Viewed by 749
Abstract
This study explores the production of anhydrous ethanol from discarded fruits, aiming to determine optimal fermentation conditions and evaluate the feasibility of a green separation technology. Fermentation experiments were performed using juices from Psidium guajava (S1), Carica paapaya (S2), and mucilage residues of [...] Read more.
This study explores the production of anhydrous ethanol from discarded fruits, aiming to determine optimal fermentation conditions and evaluate the feasibility of a green separation technology. Fermentation experiments were performed using juices from Psidium guajava (S1), Carica paapaya (S2), and mucilage residues of Coffea arabica (S3). All fermentations were carried out at a pH of 4.5 for 7 days in 1 L bioreactors. A full 22 factorial design was applied to evaluate the effects of two variables: yeast type (commercial Saccharomyces cerevisiae [CY] vs. native yeast [NY]) and temperature (21 °C vs. 30 °C). Higher ethanol concentrations were achieved with CY at 30 °C, yielding 6.79% ethanol for S3. A multi-criteria matrix prioritized coffee residues due to their high ethanol yield, biomass availability, and economic viability. The ethanol was dehydrated using a packed-bed bioadsorption system with crushed corn, which increased purity from 6.7% v/v to 98.9% v/v in two stages, while avoiding azeotropic limitations. Energy analysis revealed low specific consumption (3.68 MJ/kg), outperforming conventional distillation. The results of this study, obtained at operating temperatures of 30 °C and 21 °C, a pH of 4.5, and an operating time of 7 days in a 1L bioreactor, demonstrate ethanol concentrations of 6.79%, confirming the technical feasibility of using agricultural waste as a raw material and validating the efficiency of a bioadsorption-based dehydration system. These findings address the current gap in integrating green ethanol separation with low-cost agricultural residues and highlight a sustainable alternative for decentralized bioethanol production. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

Back to TopTop