Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (231)

Search Parameters:
Keywords = erosion resistant coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3255 KiB  
Article
Application of the Composite Electrical Insulation Layer with a Self-Healing Function Similar to Pine Trees in K-Type Coaxial Thermocouples
by Zhenyin Hai, Yue Chen, Zhixuan Su, Hongwei Ji, Yihang Zhang, Shigui Gong, Shanmin Gao, Chenyang Xue, Libo Gao and Zhichun Liu
Sensors 2025, 25(16), 5210; https://doi.org/10.3390/s25165210 - 21 Aug 2025
Abstract
Aerospace engines and hypersonic vehicles, among other high-temperature components, often operate in environments characterized by temperatures exceeding 1000 °C and high-speed airflow impacts, resulting in severe thermal erosion conditions. Coaxial thermocouples (CTs), with their unique self-eroding characteristic, are particularly well suited for use [...] Read more.
Aerospace engines and hypersonic vehicles, among other high-temperature components, often operate in environments characterized by temperatures exceeding 1000 °C and high-speed airflow impacts, resulting in severe thermal erosion conditions. Coaxial thermocouples (CTs), with their unique self-eroding characteristic, are particularly well suited for use in such extreme environments. However, fabricating high-temperature electrical insulation layers for coaxial thermocouples remains challenging. Inspired by the self-healing mechanism of pine trees, we designed a composite electrical insulation layer with a similar self-healing function. This composite layer exhibits excellent high-temperature insulation properties (insulation resistance of 14.5 kΩ at 1200 °C). Applied as the insulation layer in K-type coaxial thermocouples via dip-coating, the thermocouples were tested for temperature and heat flux. Temperature tests showed an accuracy of 1.72% in the range of 200–1200 °C, a drift rate better than 0.474%/h at 1200 °C, and hysteresis better than 0.246%. The temperature response time was 1.08 ms. Heat flux tests demonstrated a measurable range of 0–41.32 MW/m2 with an accuracy better than 6.511% and a heat flux response time of 7.6 ms. In simulated extreme environments, the K-type coaxial thermocouple withstood 70 s of 900 °C flame impact and 50 cycles of high-power laser thermal shock. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

13 pages, 5833 KiB  
Article
Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects
by Benjun Cheng, Mingyang Huang, Guoqi Liu, Feng Wu and Xiaocheng Liang
Materials 2025, 18(15), 3618; https://doi.org/10.3390/ma18153618 - 31 Jul 2025
Viewed by 343
Abstract
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. [...] Read more.
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. This study investigated the sintering behavior, mechanical properties, and service performance of Al2O3-SiC-C castables utilizing varying contents of modified flake graphite, pitch, and carbon black as carbon sources. Samples were characterized using SEM, XRD, and EDS for phase composition and microstructural morphology analysis. Key findings revealed that the thermal expansion mismatch between the SiC coating and flake graphite in SiC-modified graphite generated a microcrack-toughening effect. This effect, combined with the synergistic reinforcement from both components, enhanced the mechanical properties. The SiC modification layer improved the wettability and oxidation resistance of the flake graphite. This modified graphite further contributed to enhanced erosion resistance through mechanisms of matrix pinning and crack deflection within the microstructure. However, the microcracks induced by thermal mismatch concurrently reduced erosion resistance, resulting in an overall limited net improvement in erosion resistance attributable to the modified graphite. Specimens containing 1 wt.% modified flake graphite exhibited the optimal overall performance. During industrial trials, this formulation unexpectedly demonstrated a water reduction mechanism requiring further investigation. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Viewed by 347
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 6691 KiB  
Article
Antibiotic-Coated Melt Electrowritten Polycaprolactone Meshes: Fabrication and In Vitro Antibacterial Evaluation
by Joana Pinheiro Martins, Ana Sofia de Sousa, Sofia Costa de Oliveira, António Augusto Fernandes and Elisabete Teixeira da Silva
Macromol 2025, 5(3), 33; https://doi.org/10.3390/macromol5030033 - 16 Jul 2025
Viewed by 376
Abstract
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and [...] Read more.
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and POP reoccurrence. Biodegradable mesh implants with three-dimensional printing technology have emerged as an innovative alternative. In this study, polycaprolactone (PCL) meshes for POP repair were fabricated using melt electrospinning writing (MEW) and mechanically evaluated through uniaxial tensile tests. Following this, they were coated with antibiotics—azithromycin, gentamicin sulfate, and ciprofloxacin—commonly used for genitourinary tract infections. Zone inhibition and biofilm assays evaluated antibiotic effectiveness in preventing mesh infections by Escherichia coli, and methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus. The meshes presented a mechanical behavior closer to vaginal tissue than commercially available meshes. Fourier transform infrared analysis confirmed antibiotic incorporation. Ciprofloxacin demonstrated antibacterial activity against MRSA, with a 92% reduction in metabolic activity and a 99% biomass reduction. Gentamicin and ciprofloxacin displayed inhibitory activity against MSSA and E. coli. Scanning electron microscopy images support these conclusions. This methodology may offer a more effective, patient-friendly solution for POP repair, improving healing and the quality of life for affected women. Full article
Show Figures

Figure 1

19 pages, 5321 KiB  
Article
Influence of Polymers on the Performance and Protective Effect of Cement-Based Coating Materials
by Yihao Yin and Yingjun Mei
Materials 2025, 18(14), 3321; https://doi.org/10.3390/ma18143321 - 15 Jul 2025
Viewed by 285
Abstract
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of [...] Read more.
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of material composition on the coating’s mechanical properties, durability, interfacial bond characteristics with concrete, and the durability enhancement of coated concrete. The results demonstrated that compared with ordinary cementitious coating material (OCCM), the interfacial bonding performance between 3% Styrene Butadiene Rubber Powder (SBR) coating material and concrete was improved by 42%; the frost resistance and sulfate erosion resistance of concrete protected by 6% polyurethane (PU) coating material were improved by 31.5% and 69.6%. The inclusion of polymers reduces the mechanical properties. The re-addition of silica fume can lower the porosity while increasing durability and strength. The coating material, mixed with 12% SF and 6% PU, exhibits mechanical properties not lower than those of OCCM. Meanwhile, the interfacial bonding performance and durability of the coated concrete have been improved by 45% and 48%, respectively. The grey relational analysis indicated that the coating material with the best comprehensive performance is the one mixed with 12% SF + 6% PU, and the grey correlation degree is 0.84. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 4494 KiB  
Article
Experimental Investigation on the Erosion Resistance Characteristics of Compressor Impeller Coatings to Water Droplet Impact
by Richárd Takács, Ibolya Zsoldos, Norbert Kiss, Izolda Popa-Müller, István Barabás, Balázs Dobos, Miklós Zsolt Tabakov, Csaba Tóth-Nagy and Pavel Novotny
Coatings 2025, 15(7), 767; https://doi.org/10.3390/coatings15070767 - 28 Jun 2025
Viewed by 420
Abstract
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was [...] Read more.
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was monitored through continuous precision mass measurements, and structural changes on the surfaces of both the base materials and the coatings were examined using a Zeiss Crossbeam 350 scanning electron microscope (SEM). Hardness values were determined using a Vickers KB 30 hardness tester, while the chemical composition was analysed using a WAS Foundry Master optical emission spectrometer. Significant differences in erosion resistance were observed among the various compressor wheels, which can be attributed to differences in coating hardness values, as well as to the detachment of the Ni-P layer from the base material under continuous erosion. In all cases, water droplet erosion led to a reduction in the isentropic efficiency of the compressor—measured using a hot gas turbocharger testbench—with the extent of efficiency loss depending upon the type of coating applied. Although blade protection technologies for turbocharger compressor impellers used in the automotive industry have been the subject of only a limited number of studies, modern technologies, such as the application of certain alternative fuels and exhaust gas recirculation, have increased water droplet formation, thereby accelerating the erosion rate of the impeller. The aim of this study is to evaluate the resistance of three different coating layers to water droplet erosion through standardized tests conducted using a custom-designed experimental apparatus. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

13 pages, 6606 KiB  
Article
Preparation and Properties of C/C-(TiZrHfNbTa)C Composites via Inorganic Salt Precursor Method
by Haibo Ouyang, Jiyong Liu, Cuiyan Li, Tianzhan Shen, Jiaqi Liu, Mengyao He, Yanlei Li and Leer Bao
C 2025, 11(3), 41; https://doi.org/10.3390/c11030041 - 25 Jun 2025
Viewed by 474
Abstract
Using low-cost transition-metal chlorides and furfuryl alcohol as raw materials, the (TiZrHfNbTa)C precursor was prepared, and a three-dimensional braided carbon fiber preform (C/C) coated with pyrolytic carbon (PyC) was used as the reinforcing material. A C/C-(TiZrHfNbTa)C composite was successfully fabricated through the precursor [...] Read more.
Using low-cost transition-metal chlorides and furfuryl alcohol as raw materials, the (TiZrHfNbTa)C precursor was prepared, and a three-dimensional braided carbon fiber preform (C/C) coated with pyrolytic carbon (PyC) was used as the reinforcing material. A C/C-(TiZrHfNbTa)C composite was successfully fabricated through the precursor impregnation pyrolysis (PIP) process. Under extreme oxyacetylene ablation conditions (2311 °C/60 s), this composite material demonstrated outstanding ablation resistance, with a mass ablation rate as low as 0.67 mg/s and a linear ablation rate of only 20 μm/s. This excellent performance can be attributed to the dense (HfZr)6(TaNb)2O17 oxide layer formed during ablation. This oxide layer not only has an excellent anti-erosion capability but also effectively acts as an oxygen diffusion barrier, thereby significantly suppressing further ablation and oxidation within the matrix. This study provides an innovative strategy for the development of low-cost ultra-high-temperature ceramic precursors and opens up a feasible path for the efficient preparation of C/C-(TiZrHfNbTa)C composites. Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites (2nd Edition))
Show Figures

Graphical abstract

16 pages, 6146 KiB  
Article
Current-Carrying Wear Behavior of Cu–TiC Coatings Obtained Through High-Speed Laser Cladding on Conductive Slip Rings of 7075 Aluminum Alloy
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(7), 688; https://doi.org/10.3390/met15070688 - 20 Jun 2025
Viewed by 234
Abstract
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated [...] Read more.
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated using a scanning electron microscope, an X-ray diffractometer, a hardness tester, and a wear tester, respectively. The results show that the increase in scanning speed accelerates the coating’s solidification rate. Among the samples, the coating comprised of equiaxed crystals prepared at 149.7 mm/s presents the best quality, but solidification speeds that are too rapid lead to elemental segregation. The hardness of the coating also decreases with the increase in scanning speed. The coating prepared at 149.7 mm/s exhibits the best wear resistance and electrical conductivity. The wear rate of the coating prepared at 149.7 mm/s at 25 A was 4 × 10−3 mg·m−1, respectively. During the current-carrying friction process, the presence of thermal effects and arc erosion cause the worn track to be prone to oxidation, adhesion, and plastic deformation, so the current-carrying wear mechanisms of coatings at 25 A include adhesive wear, oxidation wear, and electrical damage. Full article
Show Figures

Figure 1

18 pages, 15634 KiB  
Article
Investigations on Cavitation Erosion and Wear Resistance of High-Alloy WC Coatings Manufactured by Electric Arc Spraying
by Edmund Levărdă, Dumitru-Codrin Cîrlan, Daniela Lucia Chicet, Marius Petcu and Stefan Lucian Toma
Materials 2025, 18(10), 2259; https://doi.org/10.3390/ma18102259 - 13 May 2025
Viewed by 452
Abstract
Due to the low hardness of carbon steels, their low resistance to wear, and erosion by cavitation and corrosion, it is necessary to protect the surfaces of parts with layers capable of ensuring the properties listed above. In this paper, we started from [...] Read more.
Due to the low hardness of carbon steels, their low resistance to wear, and erosion by cavitation and corrosion, it is necessary to protect the surfaces of parts with layers capable of ensuring the properties listed above. In this paper, we started from the premise that adding tungsten carbide (WC) powders during the electric arc spraying process of stainless steel would lead to obtaining a composite material coating resistant to wear and erosion at high temperatures, with relatively lower manufacturing costs. Thus, our research compared the following two types of coatings: a highly alloyed layer with WC, Cr, and TiC (obtained from 97MXC core wires) and a 60T/WC coating (obtained from a 60T solid-section wire to which WC was added), in terms of microstructure, mechanical properties, dry friction wear, and behaviour at erosion by cavitation (EC). The results of our research demonstrated that although the 60T/WC coating had lower erosion by cavitation behaviour than the 97MXC one, it can still be considered as a relatively good and inexpensive solution for protecting C15 steel parts. Full article
(This article belongs to the Special Issue Friction, Corrosion and Protection of Material Surfaces)
Show Figures

Figure 1

24 pages, 10717 KiB  
Article
Synthesis, Microstructural Evolution, and Wet Wear Performance of an Fe55-Based Coating Reinforced with CeO2 and TiN Particles Fabricated via Plasma Beam Spraying
by Xinbin Liu, Liang Yu, Tongfei Zheng, Yongfu Tang, Gaofei Yan, Fuming He, Xianli Huang and Zhengbing Meng
Coatings 2025, 15(5), 548; https://doi.org/10.3390/coatings15050548 - 3 May 2025
Viewed by 498
Abstract
Valve leakage mainly comes from worn sealing surfaces caused by abrasive particles. This study uses plasma beam spraying to create Fe55 alloy coatings with CeO2 and TiN added to improve microstructure and wear resistance. Five coatings were prepared: Fe55 with 0.02% CeO [...] Read more.
Valve leakage mainly comes from worn sealing surfaces caused by abrasive particles. This study uses plasma beam spraying to create Fe55 alloy coatings with CeO2 and TiN added to improve microstructure and wear resistance. Five coatings were prepared: Fe55 with 0.02% CeO2 (FC2), 0.04% CeO2 (FC4), 1% TiN (FT1), 2% TiN (FT2), and 2% TiN/0.02% CeO2 (FC2T2). These coatings were tested for wear and erosion using wet sand and slurry experiments. Results showed that FC2T2 had the most uniform microstructure with fully equiaxed grains (20.32 μm size) and no columnar grains. This was due to CeO2 and TiN co-working effect: CeO2 was adsorbed onto TiN surfaces, reducing TiN decomposition and acting as nucleation sites. The FC2T2 coating also showed the highest hardness uniformity (no large changes with depth) and the lowest surface roughness after wear (41% lower than pure Fe55). In wear tests, FC2T2’s Cr7C3 hard phases blocked abrasive cutting, while the γ-Fe matrix prevented Cr7C3 from breaking off. Erosion tests confirmed FC2T2’s superior performance, as its uniform structure limited deep grooves. Adding both CeO2 and TiN improved wear resistance by providing a balanced microstructure, reducing leakage risks in valve sealing surfaces. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

16 pages, 26634 KiB  
Article
The Microstructure and Properties of Laser-Cladded Ni-Based Self-Fluxing Alloy Coatings Reinforced by TiC Particles
by Jacek Górka, Aleksandra Lont and Tomasz Poloczek
Coatings 2025, 15(5), 527; https://doi.org/10.3390/coatings15050527 - 28 Apr 2025
Cited by 1 | Viewed by 927
Abstract
In this study, NiCrBSi composite coatings reinforced with 5–15 wt.% TiC particles were prepared using laser cladding to investigate the influence of the TiC content and laser beam power on the coatings’ quality, structure, and properties. Penetrant tests revealed the presence of cracks [...] Read more.
In this study, NiCrBSi composite coatings reinforced with 5–15 wt.% TiC particles were prepared using laser cladding to investigate the influence of the TiC content and laser beam power on the coatings’ quality, structure, and properties. Penetrant tests revealed the presence of cracks in the composite coatings, which were reduced with the higher laser power due to a decrease in cooling rate. A macroscopic analysis showed that pure NiCrBSi coatings exhibited a high quality and were free of defects, while the addition of TiC particles led to the formation of large pores, particularly in coatings produced with a lower laser power. Microstructural characterization was conducted using Scanning Electron Microscopy (SEM), Energy-Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD). The microstructure of the pure NiCrBSi coatings consisted of an austenitic matrix with chromium-based precipitates (carbides and borides). Variations in structural morphology across different regions of the coatings and under varying laser powers were described. When TiC particles were added, partial dissolution occurred in the molten pool, enriching it with titanium and carbon, which subsequently led to the precipitation of titanium carbides. The average microhardness of the composite coatings increased by 28%–40% compared to the pure NiCrBSi coating, while the erosion resistance remained comparable. Solid particle erosion tests in accordance with the ASTM G76-18 standard resulted in average erosion values of the pure NiCrBSi coating of 0.0056 and 0.0025 mm3/g for the 30° and 90° impingement angles, respectively. Full article
(This article belongs to the Special Issue Welding Techniques in Surface Engineering)
Show Figures

Graphical abstract

15 pages, 15656 KiB  
Article
Oxidation of the Alloy Based on the Intermetallic Phase FeAl in the Temperature Range of 700–1000 °C in Air and Possibilities of Practical Application
by Janusz Cebulski, Dorota Pasek, Maria Sozańska, Magdalena Popczyk, Jadwiga Gabor and Andrzej Swinarew
Materials 2025, 18(8), 1835; https://doi.org/10.3390/ma18081835 - 16 Apr 2025
Viewed by 493
Abstract
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology [...] Read more.
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology of the oxides formed were determined. In addition, the paper presents the possibility of applying the technology of surfacing Fe40Al5Cr0.2TiB alloy on the surface of steel grade S235JR as a protective coating that is resistant to high temperatures. The process was carried out using the TIG method by direct current (DC). After the surfacing, the structure of the surfacing weld made of the tested material on the base of structural steel grade S235JR was determined. It was found that a protective Al2O3 oxide layer is formed on the surface of the oxidized alloy based on the intermetallic phase from the FeAl system, and the oxidation kinetics have a parabolic course. Moreover, it was found that the morphology of the oxides formed on the surface varies depending on the oxidation temperature, which clearly indicates a different mechanism of oxide layer formation. The formation of a stable α-Al2O3 oxide variety on the surface of the Fe40Al5Cr0.2TiB alloy protects the material from further corrosion, which favors the application of this alloy on structures and fittings operating at elevated temperatures. The aim of the research was to use the Fe40Al5Cr0.2TiB alloy with very good oxidation resistance as a layer overlay on ordinary quality S235JR steel. In this way, conditions were created that fundamentally changed the surface condition (structure and physicochemical properties) of the system: steel as a substrate—intermetallic phase Fe40Al5Cr0.2TiB as a surfacing layer, in order to increase resistance to high-temperature corrosion and erosion (in the environment of gases and solid impurities in gases) often occurring in corrosive environments, especially in the power industry (boilers, pipes, installation elbows) and the chemical industry (fittings). At the same time, the surfacing method used is one of the cheapest methods of changing the surface properties of the material and regenerating or repairing the native material with a material with better properties, especially for applications in high-temperature corrosion conditions. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

16 pages, 10429 KiB  
Article
Friction and Wear Performances and Mechanisms of Graphite/Copper Composites Under Electrical Contact in Marine Environments
by Nenghui Wang, Chuanfeng Wang, Wenhu Xu, Weiping Cheng, Haihong Wu and Hongsheng Li
Materials 2025, 18(7), 1516; https://doi.org/10.3390/ma18071516 - 28 Mar 2025
Cited by 1 | Viewed by 480
Abstract
Marine environment-induced apparatus failures have led to substantial losses in marine engineering. Graphite/copper composites, known for their excellent electrical conductivity and wear resistance, are extensively utilized in various electric contact devices. However, research on the current-carrying friction and wear behavior of graphite/copper composites [...] Read more.
Marine environment-induced apparatus failures have led to substantial losses in marine engineering. Graphite/copper composites, known for their excellent electrical conductivity and wear resistance, are extensively utilized in various electric contact devices. However, research on the current-carrying friction and wear behavior of graphite/copper composites in marine environments is still limited. This study investigates the effects of mating materials, graphite content (30 wt.% and 45 wt.%), and electric voltage on the friction and wear mechanisms of graphite/copper composites in seawater. The results show that under seawater coupled with electricity, no mass loss was observed in the 30 wt.% graphite composites after friction tests against different counterparts. Electric voltage (3 V) affects the composite’s damage mechanism, inducing delamination wear, arc erosion and accelerating corrosion. Specifically, the electricity factor promotes oxidation recreations while inhibiting chlorine formation. Notably, when the composite is paired with gold-coated copper, it undergoes electrochemical reactions, leading to the formation of needle-like copper oxide. These oxides alter the surface morphology, elevate the mass of worn composites, and raise the friction coefficient of the tribopair to approximately 0.3, an increase from 0.2. Full article
Show Figures

Figure 1

25 pages, 10008 KiB  
Article
Enhanced Erosion Resistance of Cr3C2-TiC-NiCrCoMo Coatings: Experimental and Numerical Investigation of Erosion Mechanisms
by Jiawei Wang, Linwen Wang, Haiyang Lu, Jiyu Du, Xiaoxia Qi, Laixiao Lu, Yanhua Zhao, Ziwu Liu and Weiyun Meng
Coatings 2025, 15(3), 294; https://doi.org/10.3390/coatings15030294 - 3 Mar 2025
Cited by 2 | Viewed by 957
Abstract
To enhance the erosion resistance of typical Cr3C2-NiCr coatings, the Cr3C2-TiC-NiCrCoMo (NCT) coating was developed and deposited by high-velocity oxygen fuel spray (HVOF). The erosion resistance and mechanisms of the coating were investigated using numerical [...] Read more.
To enhance the erosion resistance of typical Cr3C2-NiCr coatings, the Cr3C2-TiC-NiCrCoMo (NCT) coating was developed and deposited by high-velocity oxygen fuel spray (HVOF). The erosion resistance and mechanisms of the coating were investigated using numerical simulations and experimental methods. A comprehensive calculation model for the coating erosion rate was developed, incorporating factors such as the properties of the eroded particles, the characteristics of the coating, and the conditions of erosion. The erosion rate of the NCT coating was calculated and predicted by the model, and the accuracy of these predictions was validated through experiments. The NCT1 (87.3 wt.% Cr3C2-NiCrCoMo/3 wt.% TiC)coating demonstrated exceptional erosion resistance compared to the original Cr3C2-NiCrCoMo (NCC) coatings with reduced erosion rates of 23.64%, 20.45%, and 16.22% at impact angles of 30°, 60°, and 90°, respectively. The addition of nano-TiC particles into the NCT1 coating enhances the yield strength, impeding the intrusion of erosive particles at low angles and supporting the metal binder phase, eventually reducing fatigue fracture under repeated erosion. However, excessive nano-TiC content degrades the erosion resistance due to the increase in pores and cracks within the coating. Full article
(This article belongs to the Special Issue Laser Technology of Thin Film and Coatings)
Show Figures

Figure 1

13 pages, 4804 KiB  
Article
Cavitation Erosion of Protective Coating Based on Cordierite Filler and Epoxy Matrix
by Marko Pavlović, Marina Dojčinović, Jasmina Nikolić, Stanko Aleksić, Nedeljko Tucović, Zoran Čeganjac and Saša Drmanić
Materials 2025, 18(5), 1034; https://doi.org/10.3390/ma18051034 - 26 Feb 2025
Cited by 1 | Viewed by 644
Abstract
The goal of this study is to investigate the surface morphology changes induced by the cavitation erosion of a coating based on cordierite with an epoxy matrix for an aluminum substrate. The literature review shows a certain lack of knowledge regarding the coating’s [...] Read more.
The goal of this study is to investigate the surface morphology changes induced by the cavitation erosion of a coating based on cordierite with an epoxy matrix for an aluminum substrate. The literature review shows a certain lack of knowledge regarding the coating’s resistance to wearing induced by water flow, which is a highly important property of the material immersed in or in contact with water streams. The main idea behind the investigation is that such a protective coating will also improve the cavitation erosion resistance of metal substrates. The protective coatings were based on cordierite filler (88 wt.%) and epoxy resin (7 wt.%). The filler, made of a mixture of kaolin, alumina, and talc, is obtained by a sintering procedure that took place at 1350 °C. X-ray diffraction analysis and scanning electron microscopy were employed in the characterization of the produced filler. The adherence of the obtained epoxy-based protective coating and resistance to water flow were tested by the ultrasonic vibration method (i.e., cavitation erosion testing). Scanning electron microscopy was used for analysis of the coating’s morphology upon cavitation erosion. Based on the value of the cavitation erosion rate and the analyzed final surface damage, it was assessed that the investigated protective coating is resistant to cavitation erosion. Full article
Show Figures

Figure 1

Back to TopTop