Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,551)

Search Parameters:
Keywords = equilibrium problem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4656 KiB  
Article
Improved Super-Twisting Sliding Mode Control of a Brushless Doubly Fed Induction Generator for Standalone Ship Shaft Power Generation Systems
by Xueran Fei, Minghao Zhou, Yingyi Jiang, Longbin Jiang, Yi Liu and Yan Yan
J. Mar. Sci. Eng. 2025, 13(7), 1358; https://doi.org/10.3390/jmse13071358 - 17 Jul 2025
Abstract
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused [...] Read more.
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused by the parameter perturbation of BDFIG systems, a mismatched uncertain model of the BDFIG is constructed. Additionally, an improved STSM control method is proposed to address the power load variation and compensate for the mismatched uncertainty through virtual control technology. Based on the direct vector control of the control winding (CW), the proposed method ensured that the voltage amplitude error of the power winding could converge to the equilibrium point rather than the neighborhood. Finally, in the experimental investigation of the BDFIG-based ship shaft independent power system, the dynamic performance in the startup and power load changing conditions were analyzed. The experimental results show that the proposed improved STSM controller has a faster dynamic response and higher steady-state accuracy than the proportional integral control and the linear sliding mode control, with strong robustness to the mismatched uncertainties caused by parameter perturbations. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

31 pages, 2957 KiB  
Article
Nash Equilibria in Four-Strategy Quantum Extensions of the Prisoner’s Dilemma Game
by Piotr Frąckiewicz, Anna Gorczyca-Goraj, Krzysztof Grzanka, Katarzyna Nowakowska and Marek Szopa
Entropy 2025, 27(7), 755; https://doi.org/10.3390/e27070755 - 15 Jul 2025
Viewed by 92
Abstract
The concept of Nash equilibria in pure strategies for quantum extensions of the general form of the Prisoner’s Dilemma game is investigated. The process of quantization involves incorporating two additional unitary strategies, which effectively expand the classical game. We consider five classes of [...] Read more.
The concept of Nash equilibria in pure strategies for quantum extensions of the general form of the Prisoner’s Dilemma game is investigated. The process of quantization involves incorporating two additional unitary strategies, which effectively expand the classical game. We consider five classes of such quantum games, which remain invariant under isomorphic transformations of the classical game. The resulting Nash equilibria are found to be more closely aligned with Pareto-optimal solutions than those of the conventional Nash equilibrium outcome of the classical game. Our results demonstrate the complexity and diversity of strategic behavior in the quantum setting, providing new insights into the dynamics of classical decision-making dilemmas. In particular, we provide a detailed characterization of strategy profiles and their corresponding Nash equilibria, thereby extending the understanding of quantum strategies’ impact on traditional game-theoretical problems. Full article
Show Figures

Figure 1

31 pages, 883 KiB  
Article
Pure Bayesian Nash Equilibria for Bayesian Games with Multidimensional Vector Types and Linear Payoffs
by Sébastien Huot and Abbas Edalat
Games 2025, 16(4), 37; https://doi.org/10.3390/g16040037 - 14 Jul 2025
Viewed by 126
Abstract
In this work, we study n-agent Bayesian games with m-dimensional vector types and linear payoffs, also called linear multidimensional Bayesian games. This class of games is equivalent with n-agent, m-game uniform multigames. We distinguish between games that have a [...] Read more.
In this work, we study n-agent Bayesian games with m-dimensional vector types and linear payoffs, also called linear multidimensional Bayesian games. This class of games is equivalent with n-agent, m-game uniform multigames. We distinguish between games that have a discrete type space and those with a continuous type space. More specifically, we are interested in the existence of pure Bayesian Nash equilibriums for such games and efficient algorithms to find them. For continuous priors, we suggest a methodology to perform Nash equilibrium searches in simple cases. For discrete priors, we present algorithms that can handle two-action and two-player games efficiently. We introduce the core concept of threshold strategy and, under some mild conditions, we show that these games have at least one pure Bayesian Nash equilibrium. We illustrate our results with several examples like the double-game prisoner’s dilemma (DGPD), the game of chicken, and the sustainable adoption decision problem (SADP). Full article
Show Figures

Figure 1

27 pages, 1017 KiB  
Article
Agency or Reselling? Multi-Product Sales Mode Selection on E-Commerce Platform
by Pengju Huo, Yujie Wang and Qihuan Chu
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 178; https://doi.org/10.3390/jtaer20030178 - 14 Jul 2025
Viewed by 130
Abstract
As environmental issues become increasingly prominent, the sustainable practices of enterprises, especially measures at the product level, have garnered widespread attention from scholars. Although numerous studies have explored suppliers’ sales strategies for green products, they often overlook the scenario where suppliers simultaneously sell [...] Read more.
As environmental issues become increasingly prominent, the sustainable practices of enterprises, especially measures at the product level, have garnered widespread attention from scholars. Although numerous studies have explored suppliers’ sales strategies for green products, they often overlook the scenario where suppliers simultaneously sell both green and non-green products.This study focuses on the sales mode selection strategies of suppliers when providing green and non-green products through e-commerce platforms. Utilizing a game model, we analyze the equilibrium strategies between suppliers and e-commerce platforms, and conduct sensitivity analyses to evaluate the impact of key parameters on decision-making. The results reveal that there are significant differences in the strategic preferences of suppliers and e-commerce platforms. However, when commission rates are moderate and green products incur high production costs, these preferences tend to align, leading to Pareto optimal outcomes. Additionally, our findings demonstrate that adopting differentiated sales modes for the two product types can effectively mitigate the problem of double marginalization, thereby enhancing the efficiencyof supply chains. These insights provide valuable guidance for e-commerce platform managers and suppliers in making decisions on sales models for managing multiple types of products. Full article
Show Figures

Figure 1

20 pages, 632 KiB  
Article
An Electricity Market Pricing Method with the Optimality Limitation of Power System Dispatch Instructions
by Zhiheng Li, Anbang Xie, Junhui Liu, Yihan Zhang, Yao Lu, Wenjing Zu, Yi Wang and Xiaobing Zhang
Processes 2025, 13(7), 2235; https://doi.org/10.3390/pr13072235 - 13 Jul 2025
Viewed by 179
Abstract
The electricity market can optimize the resource allocation in power systems by calculating the market clearing problem. However, in the market clearing process, various market operation requirements must be considered. These requirements might cause the obtained power system dispatch instructions to deviate from [...] Read more.
The electricity market can optimize the resource allocation in power systems by calculating the market clearing problem. However, in the market clearing process, various market operation requirements must be considered. These requirements might cause the obtained power system dispatch instructions to deviate from the optimal solutions of original market clearing problems, thereby compromising the economic properties of locational marginal price (LMP). To mitigate the adverse effects of such optimality limitations, this paper proposes a pricing method for improving economic properties under the optimality limitation of power system dispatch instructions. Firstly, the underlying mechanism through which optimality limitations lead to economic property distortions in the electricity market is analyzed. Secondly, an analytical framework is developed to characterize economic properties under optimality limitations. Subsequently, an optimization-based electricity market pricing model is formulated, where price serves as the decision variable and economic properties, such as competitive equilibrium, are incorporated as optimization objectives. Case studies show that the proposed electricity market pricing method effectively mitigates the economic property distortions induced by optimality limitations and can be adapted to satisfy different economic properties based on market preferences. Full article
Show Figures

Figure 1

22 pages, 986 KiB  
Article
Promoting Freight Modal Shift to High-Speed Rail for CO2 Emission Reduction: A Bi-Level Multi-Objective Optimization Approach
by Lin Li
Sustainability 2025, 17(14), 6310; https://doi.org/10.3390/su17146310 - 9 Jul 2025
Viewed by 205
Abstract
This paper investigates the optimal planning of high-speed rail (HSR) freight operations, pricing strategies, and government carbon tax policies. The primary objective is to enhance the market share of HSR freight, thereby reducing carbon dioxide (CO2) emissions associated with freight activities. [...] Read more.
This paper investigates the optimal planning of high-speed rail (HSR) freight operations, pricing strategies, and government carbon tax policies. The primary objective is to enhance the market share of HSR freight, thereby reducing carbon dioxide (CO2) emissions associated with freight activities. The modal shift problem is formulated as a bi-level multi-objective model and solved using a specifically designed hybrid algorithm. The upper-level model integrates multiple objectives of the government (minimizing tax while maximizing the emission reduction rate) and HSR operators (maximizing profits). The lower-level model represents shippers’ transportation mode choices through network equilibrium modeling, aiming to minimize their costs. Numerical analysis is conducted using a transportation network that includes seven major central cities in China. The results indicate that optimizing HSR freight services with carbon tax policies can achieve a 56.97% reduction in CO2 emissions compared to air freight only. The effectiveness of the government’s carbon tax policy in reducing CO2 emissions depends on shippers’ emphasis on carbon reduction and the intensity of the carbon tax. Full article
Show Figures

Figure 1

21 pages, 2243 KiB  
Article
An Adaptive Weight Collaborative Driving Strategy Based on Stackelberg Game Theory
by Zhongjin Zhou, Jingbo Zhao, Jianfeng Zheng and Haimei Liu
World Electr. Veh. J. 2025, 16(7), 386; https://doi.org/10.3390/wevj16070386 - 9 Jul 2025
Viewed by 128
Abstract
In response to the problem of cooperative steering control between drivers and intelligent driving systems, a master–slave Game-Based human–machine cooperative steering control framework with adaptive weight fuzzy decision-making is constructed. Firstly, within this framework, a dynamic weight approach is established. This approach takes [...] Read more.
In response to the problem of cooperative steering control between drivers and intelligent driving systems, a master–slave Game-Based human–machine cooperative steering control framework with adaptive weight fuzzy decision-making is constructed. Firstly, within this framework, a dynamic weight approach is established. This approach takes into account the driver’s state, traffic environment risks, and the vehicle’s global control deviation to adjust the driving weights between humans and machines. Secondly, the human–machine cooperative relationship with unconscious competition is characterized as a master–slave game interaction. The cooperative steering control under the master–slave game scenario is then transformed into an optimization problem of model predictive control. Through theoretical derivation, the optimal control strategies for both parties at equilibrium in the human–machine master–slave game are obtained. Coordination of the manipulation actions of the driver and the intelligent driving system is achieved by balancing the master–slave game. Finally, different types of drivers are simulated by varying the parameters of the driver models. The effectiveness of the proposed driving weight allocation scheme was validated on the constructed simulation test platform. The results indicate that the human–machine collaborative control strategy can effectively mitigate conflicts between humans and machines. By giving due consideration to the driver’s operational intentions, this strategy reduces the driver’s workload. Under high-risk scenarios, while ensuring driving safety and providing the driver with a satisfactory experience, this strategy significantly enhances the stability of vehicle motion. Full article
Show Figures

Figure 1

18 pages, 1085 KiB  
Article
Overcoming the Reversibility in the Diels–Alder Reaction of Bio-Based Electron-Poor Furans with Maleimides Through Liquid-to-Solid Phase Transition
by Konstantin I. Galkin, Daria V. Zakharova, Rinat R. Aysin, Anastasia A. Danshina, Alexandra M. Pak, Irina V. Sandulenko, Roman A. Novikov and Ksenia S. Egorova
Int. J. Mol. Sci. 2025, 26(14), 6550; https://doi.org/10.3390/ijms26146550 - 8 Jul 2025
Viewed by 214
Abstract
In the chemistry of bio-based furans, the Diels–Alder reaction plays an important role as a renewable route for the synthesis of fuels, fine chemicals, and monomers. Nonetheless, the unfavorable kinetic and thermodynamic parameters inherent to the Diels–Alder reaction involving furans as dienes often [...] Read more.
In the chemistry of bio-based furans, the Diels–Alder reaction plays an important role as a renewable route for the synthesis of fuels, fine chemicals, and monomers. Nonetheless, the unfavorable kinetic and thermodynamic parameters inherent to the Diels–Alder reaction involving furans as dienes often lead to the reversibility of cycloaddition, resulting in decreased equilibrium conversion and diastereoselectivity. In this study, we present a new strategy for overcoming the problem of reversibility in chemical reactions. We demonstrate that conducting the reaction under solvent-free conditions can facilitate the transition from a molten state formed by the initial reactants to a solid phase containing the reaction product along with an excess of the initial substrate. According to our results, such a liquid-to-solid transition of the reaction mixture can lead to exceptionally high conversion and diastereoselectivity in the furan–maleimide Diels–Alder reaction, particularly for challenging electron-poor furanic substrates. Our approach enables the reversible furan–maleimide Diels–Alder reaction to be performed in a cleaner and more environmentally friendly manner, free from the complexities associated with the use of solvents and the need for purification from side products. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

19 pages, 3110 KiB  
Article
A Stackelberg Game Approach to Model Reference Adaptive Control for Spacecraft Pursuit–Evasion
by Gena Gan, Ming Chu, Huayu Zhang and Shaoqi Lin
Aerospace 2025, 12(7), 613; https://doi.org/10.3390/aerospace12070613 - 7 Jul 2025
Viewed by 190
Abstract
A Stackelberg equilibrium–based Model Reference Adaptive Control (MSE) method is proposed for spacecraft Pursuit–Evasion (PE) games with incomplete information and sequential decision making under a non–zero–sum framework. First, the spacecraft PE dynamics under J2 perturbation are mapped to a dynamic Stackelberg game [...] Read more.
A Stackelberg equilibrium–based Model Reference Adaptive Control (MSE) method is proposed for spacecraft Pursuit–Evasion (PE) games with incomplete information and sequential decision making under a non–zero–sum framework. First, the spacecraft PE dynamics under J2 perturbation are mapped to a dynamic Stackelberg game model. Next, the Riccati equation solves the equilibrium problem, deriving the evader’s optimal control strategy. Finally, a model reference adaptive algorithm enables the pursuer to dynamically adjust its control gains. Simulations show that the MSE strategy outperforms Nash Equilibrium (NE) and Single–step Prediction Stackelberg Equilibrium (SSE) methods, achieving 25.46% faster convergence than SSE and 39.11% lower computational cost than NE. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

22 pages, 1425 KiB  
Article
Study on Multi-Objective Optimization of Construction of Yellow River Grand Bridge
by Jing Hu, Jinke Ji, Mengyuan Wang and Qingfu Li
Buildings 2025, 15(13), 2371; https://doi.org/10.3390/buildings15132371 - 6 Jul 2025
Viewed by 232
Abstract
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable [...] Read more.
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable climate, high sediment concentration, long construction duration, complicated process, strong dynamic, and many factors affecting construction. It often brings many problems, including low quality, waste of resources, and environmental pollution, which makes it difficult to achieve the balance of multiple objectives at the same time. Therefore, it is very important to carry out multi-objective optimization research on the construction of the Yellow River Grand Bridge. This paper takes the Yellow River Grand Bridge on a highway as the research object and combines the concept of “green construction” and the national policy of “carbon neutrality and carbon peaking” to construct six major construction projects, including construction time, cost, quality, environment, resources, and carbon emission. Then, according to the multi-attribute utility theory, the objectives of different attributes are normalized, and the multi-objective equilibrium optimization model of construction time-cost-quality-environment-resource-carbon emission of the Yellow River Grand Bridge is obtained; finally, in order to avoid the shortcomings of a single algorithm, the particle swarm optimization algorithm and the simulated annealing algorithm are combined to obtain the simulated annealing particle swarm optimization (SA-PSO) algorithm. The multi-objective equilibrium optimization model of the construction of the Yellow River Grand Bridge is solved. The optimization result is 108 days earlier than the construction period specified in the contract, which is 9.612 million yuan less than the maximum cost, 6.3% higher than the minimum quality level, 11.1% lower than the maximum environmental pollution level, 4.8% higher than the minimum resource-saving level, and 3.36 million tons lower than the maximum carbon emission level. It fully illustrates the effectiveness of the SA-PSO algorithm for solving multi-objective problems. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 1777 KiB  
Article
Phosphorus Control and Recovery in Anthropogenic Wetlands Using Their Green Waste—Validation of an Adsorbent Mixture Model
by Juan A. González, Jesús Mengual and Antonio Eduardo Palomares
Sustainability 2025, 17(13), 6153; https://doi.org/10.3390/su17136153 - 4 Jul 2025
Viewed by 224
Abstract
The deterioration of freshwater ecosystems in anthropogenic wetlands is intensified due to phosphorus inputs from fertilizers applied in agricultural areas. In addition, managing the excess green waste generated in these ecosystems increases the complexity of the problem. To move towards a sustainable society [...] Read more.
The deterioration of freshwater ecosystems in anthropogenic wetlands is intensified due to phosphorus inputs from fertilizers applied in agricultural areas. In addition, managing the excess green waste generated in these ecosystems increases the complexity of the problem. To move towards a sustainable society based on the circular economy, the use of controlled combustion of green waste to obtain bioenergy—followed by the application of the resulting ash for phosphorus removal from freshwater bodies via adsorption processes—should be considered. Furthermore, those ashes could be used as natural fertilizers and incorporated into the cultivated fields. This paper presents a deep study of the adsorption of phosphorus ions using ashes from the main green waste produced in wetlands. Various experiments were conducted to determine the effects of different variables in the removal process. A double kinetic model was necessary to explain the presence of two different removal processes. The Langmuir model described the equilibrium isotherm data of both adsorbents through an endothermic process. Acidic pH in the initial solutions was preferred because it promotes phosphorus removal by calcium dissolution. The alkalinity did not have a substantial effect on the adsorbent capacity. Calcium was the element that had a more significant influence on the overall process. Finally, a removal study using blended materials was performed. A combined model was proposed and validated based on the original isotherm models for the pure materials. Full article
Show Figures

Figure 1

13 pages, 1883 KiB  
Article
A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions
by Wenxuan Fu, Bo Li, Haipeng Wang, Haochen Gong and Xiang Lin
Technologies 2025, 13(7), 283; https://doi.org/10.3390/technologies13070283 - 3 Jul 2025
Viewed by 245
Abstract
This paper addresses the optimization problem for mobile jamming assistance schemes in cognitive covert communication (CR-CC), where cognitive users adopt the underlying mode for spectrum access, while an unmanned aerial vehicle (UAV) transmits the same-frequency noise signals to interfere with eavesdroppers. Leveraging the [...] Read more.
This paper addresses the optimization problem for mobile jamming assistance schemes in cognitive covert communication (CR-CC), where cognitive users adopt the underlying mode for spectrum access, while an unmanned aerial vehicle (UAV) transmits the same-frequency noise signals to interfere with eavesdroppers. Leveraging the inherent dynamic game-theoretic characteristics of covert communication (CC) systems, we propose a novel covert communication optimization algorithm based on generative adversarial networks (GAN-CCs) to achieve system-wide optimization under the constraint of maximum detection error probability. In GAN-CC, the generator simulates legitimate users to generate UAV interference assistance schemes, while the discriminator simulates the optimal signal detection of eavesdroppers. Through the alternating iterative optimization of these two components, the dynamic game process in CC is simulated, ultimately achieving the Nash equilibrium. The numerical results show that, compared with the commonly used multi-objective optimization algorithm or nonlinear programming algorithm at present, this algorithm exhibits faster and more stable convergence, enabling the derivation of optimal mobile interference assistance schemes for cognitive CC systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

22 pages, 323 KiB  
Article
Bridge, Reverse Bridge, and Their Control
by Andrea Baldassarri and Andrea Puglisi
Entropy 2025, 27(7), 718; https://doi.org/10.3390/e27070718 - 2 Jul 2025
Viewed by 182
Abstract
We investigate the bridge problem for stochastic processes, that is, we analyze the statistical properties of trajectories constrained to begin and terminate at a fixed position within a time interval τ. Our primary focus is the time-reversal symmetry of these trajectories: under [...] Read more.
We investigate the bridge problem for stochastic processes, that is, we analyze the statistical properties of trajectories constrained to begin and terminate at a fixed position within a time interval τ. Our primary focus is the time-reversal symmetry of these trajectories: under which conditions do the statistical properties remain invariant under the transformation tτt? To address this question, we compare the stochastic differential equation describing the bridge, derived equivalently via Doob’s transform or stochastic optimal control, with the corresponding equation for the time-reversed bridge. We aim to provide a concise overview of these well-established derivation techniques and subsequently obtain a local condition for the time-reversal asymmetry that is specifically valid for the bridge. We are specifically interested in cases in which detailed balance is not satisfied and aim to eventually quantify the bridge asymmetry and understand how to use it to derive useful information about the underlying out-of-equilibrium dynamics. To this end, we derived a necessary condition for time-reversal symmetry, expressed in terms of the current velocity of the original stochastic process and a quantity linked to detailed balance. As expected, this formulation demonstrates that the bridge is symmetric when detailed balance holds, a sufficient condition that was already known. However, it also suggests that a bridge can exhibit symmetry even when the underlying process violates detailed balance. While we did not identify a specific instance of complete symmetry under broken detailed balance, we present an example of partial symmetry. In this case, some, but not all, components of the bridge display time-reversal symmetry. This example is drawn from a minimal non-equilibrium model, namely Brownian Gyrators, that are linear stochastic processes. We examined non-equilibrium systems driven by a "mechanical” force, specifically those in which the linear drift cannot be expressed as the gradient of a potential. While Gaussian processes like Brownian Gyrators offer valuable insights, it is known that they can be overly simplistic, even in their time-reversal properties. Therefore, we transformed the model into polar coordinates, obtaining a non-Gaussian process representing the squared modulus of the original process. Despite this increased complexity and the violation of detailed balance in the full process, we demonstrate through exact calculations that the bridge of the squared modulus in the isotropic case, constrained to start and end at the origin, exhibits perfect time-reversal symmetry. Full article
(This article belongs to the Special Issue Control of Driven Stochastic Systems: From Shortcuts to Optimality)
20 pages, 17822 KiB  
Article
A Lattice Boltzmann BGK Model with an Amending Function for Two-Dimensional Second-Order Nonlinear Partial Differential Equations
by Xiaohua Bi, Junbo Lei, Demei Li, Lindong Lai, Huilin Lai and Zhipeng Liu
Entropy 2025, 27(7), 717; https://doi.org/10.3390/e27070717 - 2 Jul 2025
Viewed by 204
Abstract
A mesoscopic lattice Boltzmann method based on the BGK model is proposed to solve a class of two-dimensional second-order nonlinear partial differential equations by incorporating an amending function. The model provides an efficient and stable framework for simulating initial value problems of second-order [...] Read more.
A mesoscopic lattice Boltzmann method based on the BGK model is proposed to solve a class of two-dimensional second-order nonlinear partial differential equations by incorporating an amending function. The model provides an efficient and stable framework for simulating initial value problems of second-order nonlinear partial differential equations and is adaptable to various nonlinear systems, including strongly nonlinear cases. The numerical characteristics and evolution patterns of these nonlinear equations are systematically investigated. A D2Q4 lattice model is employed, and the kinetic moment constraints for both local equilibrium and correction distribution functions are derived in the four velocity directions. Explicit analytical expressions for these distribution functions are presented. The model is verified to recover the target macroscopic equations in the continuous limit via Chapman–Enskog analysis. Numerical experiments using exact solutions are performed to assess the model’s accuracy and stability. The results show excellent agreement with exact solutions and demonstrate the model’s robustness in capturing nonlinear dynamics. Full article
(This article belongs to the Special Issue Mesoscopic Fluid Mechanics)
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Embedding 1D Euler Beam in 2D Classical Continua
by Armine Ulukhanyan, Luca Placidi, Anil Misra, Roberto Fedele, Raimondo Luciano and Francesco Fabbrocino
Fibers 2025, 13(7), 88; https://doi.org/10.3390/fib13070088 - 1 Jul 2025
Viewed by 151
Abstract
In this contribution, the classical Cauchy first-gradient elastic theory is used to solve the equilibrium problem of a bidimensional (2D) reinforced elastic structure under small displacements and strains. Such a 2D first-gradient continuum is embedded with a reinforcement, which is modeled as a [...] Read more.
In this contribution, the classical Cauchy first-gradient elastic theory is used to solve the equilibrium problem of a bidimensional (2D) reinforced elastic structure under small displacements and strains. Such a 2D first-gradient continuum is embedded with a reinforcement, which is modeled as a zero-thickness interface endowed with the elastic properties of an extensional Euler–Bernoulli 1D beam. Modeling the reinforcement as an interface eliminates the need for a full geometric representation of the reinforcing bar with finite thickness in the 2D model, and the associated mesh discretization for numerical analysis. Thus, the effects of the 1D beam-like reinforcements are described through proper and generalized boundary conditions prescribed to contiguous continuum regions, deduced from a standard variational approach. The novelty of this work lies in the formulation of an interface model coupling 1D and 2D continua, based on weak formulation and variational derivation, capable of accurately capturing stress distributions without requiring full geometric resolution of the reinforcement. The proposed framework is therefore illustrated by computing, with finite element simulations, the response of the reinforced structural element under uniform bending. Numerical results reveal the presence of jumps for some stress components in the vicinity of the reinforcement tips and demonstrate convergence under mesh refinement. Although the reinforcement beams possess only axial stiffness, they significantly influence the equilibrium configuration by causing a redistribution of stress and enhancing stress transfer throughout the structure. These findings offer a new perspective on the effective modeling of fiber-reinforced structures, which are of significant interest in engineering applications such as micropiles in foundations, fiber-reinforced concrete, and advanced composite materials. In these systems, stress localization and stability play a critical role. Full article
Show Figures

Figure 1

Back to TopTop