Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = epoxy compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5628 KiB  
Article
Hygrothermal Stress Analysis of Epoxy Molding Compound in Fan-Out Panel-Level Package Based on Experimental Characterization and Structural Sensitivity
by Yu-Chi Sung, Chih-Ping Hu, Sheng-Jye Hwang, Ming-Hsien Shih, Wen-Hsiang Liao, Yong-Jie Zeng and Cheng-Tse Tsai
Polymers 2025, 17(15), 2034; https://doi.org/10.3390/polym17152034 - 25 Jul 2025
Viewed by 185
Abstract
As semiconductor devices demand higher input–output density and faster signal transmission, fan-out panel-level packaging has emerged as a promising solution for next-generation electronic systems. However, the hygroscopic nature of epoxy molding compounds raises critical reliability concerns under high-temperature and high-humidity conditions. This study [...] Read more.
As semiconductor devices demand higher input–output density and faster signal transmission, fan-out panel-level packaging has emerged as a promising solution for next-generation electronic systems. However, the hygroscopic nature of epoxy molding compounds raises critical reliability concerns under high-temperature and high-humidity conditions. This study investigates the hygrothermal stress of a single fan-out panel-level package unit through experimental characterization and numerical simulation. Thermal–mechanical analysis was conducted at 100 °C and 260 °C to evaluate the strain behavior of two commercial epoxy molding compounds in granule form after moisture saturation. The coefficient of moisture expansion was calculated by correlating strain variation with moisture uptake obtained under 85 °C and 85% relative humidity, corresponding to moisture sensitivity level 1 conditions. These values were directly considered into a moisture -thermal coupled finite element analysis. The simulation results under reflow conditions demonstrate accurate principal stress and failure location predictions, with stress concentrations primarily observed at the die corners. The results confirm that thermal effects influence stress development more than moisture effects. Finally, a structural sensitivity analysis of the single-package configuration showed that optimizing the thickness of the dies and epoxy molding compound can reduce maximum principal stress by up to 12.4%, providing design insights for improving package-level reliability. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

17 pages, 1956 KiB  
Article
Effect of Bio-Based Flame Retardants in Sustainable Epoxy Systems for the Development of Composite Materials
by Patricia Ares-Elejoste, Rubén Seoane-Rivero, Inaki Gandarias, Jesus Ballestero and Ane Libe Alonso-Amondarain
Polymers 2025, 17(15), 2001; https://doi.org/10.3390/polym17152001 - 22 Jul 2025
Viewed by 367
Abstract
The composite materials industry is increasingly seeking sustainable alternatives to mitigate the environmental impact of end-of-life materials. As a result, many sectors are transitioning toward bio-based or partially bio-based matrices (e.g., epoxy resins) to preserve material properties while improving sustainability. The transportation sector, [...] Read more.
The composite materials industry is increasingly seeking sustainable alternatives to mitigate the environmental impact of end-of-life materials. As a result, many sectors are transitioning toward bio-based or partially bio-based matrices (e.g., epoxy resins) to preserve material properties while improving sustainability. The transportation sector, in particular, demands materials that meet stringent mechanical and fire resistance standards. In this study, various epoxy systems with bio-based and/or recyclable content were investigated, along with renewable additives designed to enhance fire resistance through their functional groups and chemical structure. The research focused on developing formulations compatible with Sheet Moulding Compound (SMC) technology, which is widely used in transportation applications. Through extensive testing, materials with high bio-based content were successfully developed, exhibiting competitive mechanical properties and compliance with key fire safety requirements of the railway sector, as per the EN 45545-2 standard. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

11 pages, 2537 KiB  
Article
Hydrosilylation vs. Piers–Rubinsztajn: Synthetic Routes to Chemically Cross-Linked Hybrid Phosphazene-Siloxane 3D-Structures
by Andrey S. Esin, Anna I. Chernysheva, Ekaterina A. Yurasova, Ekaterina A. Karpova, Vyacheslav V. Shutov, Igor S. Sirotin, Mikhail A. Soldatov, Mikhail V. Gorlov and Oleg A. Raitman
Polymers 2025, 17(14), 1967; https://doi.org/10.3390/polym17141967 - 17 Jul 2025
Viewed by 316
Abstract
Exploration of new ways for the direct preparation of cross-linked structures is a significant problem in terms of materials for biomedical applications, lithium batteries electrolytes, toughening of thermosets (epoxy, benzoxazine, etc.) with interpenetrating polymer network, etc. The possibility to utilize hydrosilylation and Piers–Rubinsztajn [...] Read more.
Exploration of new ways for the direct preparation of cross-linked structures is a significant problem in terms of materials for biomedical applications, lithium batteries electrolytes, toughening of thermosets (epoxy, benzoxazine, etc.) with interpenetrating polymer network, etc. The possibility to utilize hydrosilylation and Piers–Rubinsztajn reactions to obtain cross-linked model phosphazene compounds containing eugenoxy and guaiacoxy groups has been studied. It was shown that Piers–Rubinsztajn reaction cannot be used to prepare phosphazene-based tailored polymer matrix due to the catalyst deactivation by nitrogen atoms of main chain units. Utilizing the hydrosilylation reaction, a series of cross-linked materials were obtained, and their properties were studied by NMR spectroscopy, FTIR, DSC, and TGA. Rheological characterizations of the prepared tailored matrices were conducted. This work showed a perspective of using eugenoxy functional groups for the preparation of three-dimensional hybrid phosphazene/siloxane-based materials for various applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

34 pages, 3317 KiB  
Review
A Systematic Review of Epoxidation Methods and Mechanical Properties of Sustainable Bio-Based Epoxy Resins
by Manuel Álvarez, Anthony Reilly, Obey Suleyman and Caleb Griffin
Polymers 2025, 17(14), 1956; https://doi.org/10.3390/polym17141956 - 17 Jul 2025
Viewed by 483
Abstract
There has been a growing interest in polymer-based materials in recent years, and current research is focused on reducing fossil-derived epoxy compounds. This review examines the potential of epoxidised vegetable oils (EVOs) as sustainable alternatives to these systems. Epoxidation processes have been systematically [...] Read more.
There has been a growing interest in polymer-based materials in recent years, and current research is focused on reducing fossil-derived epoxy compounds. This review examines the potential of epoxidised vegetable oils (EVOs) as sustainable alternatives to these systems. Epoxidation processes have been systematically analysed and their influence on chemical, thermal, and mechanical properties has been assessed. Results indicate that basic, low-toxicity epoxidation methods resulted in resins with comparable performance to those obtained through more complex common/commercial procedures. In total, 5–7% oxirane oxygen content (OOC) was found to be optimal to achieve a balanced crosslink density, thus enhancing tensile strength. Furthermore, mechanical properties have been insufficiently studied, as less than half of the studies were conducted at least tensile or flexural strength. Reinforcement strategies were also explored, with nano-reinforcing carbon nanotubes (CBNTs) showing the best mechanical and thermal results. Natural fibres reported better mechanical performance when mixed with EVOs than conventional systems. On the other hand, one of the main constraints observed is the lack of consistency in reporting key chemical and mechanical parameters across studies. Environmental properties and end-of-life use are significant challenges to be addressed in future studies, as there remains a significant gap in understanding the end-of-life of these materials. Future research should focus on the exploration of eco-friendly epoxidation reagents and standardise protocols to compare and measure oil properties before and after being epoxidised. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

25 pages, 5693 KiB  
Review
Research Progress on Vegetable Oil-Based UV-Curing Resins
by Wei Wang, Zhengru Hu and Wen Lei
Polymers 2025, 17(14), 1890; https://doi.org/10.3390/polym17141890 - 8 Jul 2025
Viewed by 455
Abstract
As a large class of natural organic compounds, vegetable oil is generally composed of 95% fatty acid triglycerides and very few complex non-triglycerides. It has many advantages, such as sufficient yield, low price, distinct structural characteristics, and biodegradability. UV curing technology is known [...] Read more.
As a large class of natural organic compounds, vegetable oil is generally composed of 95% fatty acid triglycerides and very few complex non-triglycerides. It has many advantages, such as sufficient yield, low price, distinct structural characteristics, and biodegradability. UV curing technology is known as a new method for the green industry in the 21st century due to its high efficiency, economy, energy conservation, high adaptability, and environmental friendliness. Therefore, UV-curable resins based on UV-curing technology has attracted widespread attention, converting epoxy soybean oil, castor oil, tung oil and other vegetable oils into high-performance plant oil-based UV-curable resins with higher molecular weight, multi-rigid ring and high reactivity, and the curing performance has been greatly improved, and the technology has been widely used in the field of polymer materials such as coatings, inks and adhesives. In this article, the recent research progress on this topic was summarized, and emphasis was put on the research on the resins from soybean oil and castor oil. Full article
Show Figures

Figure 1

17 pages, 627 KiB  
Article
An Analysis of the Role of Bisphenol A in Breast and Reproductive-System Cancers
by Maria Derkaczew, Kamila Zglejc-Waszak, Lukasz Dabrowski, Janusz Kocik, Adam Zdaniukiewicz, Michael Thoene, Marcin Jozwik, Slawomir Gonkowski and Joanna Wojtkiewicz
J. Clin. Med. 2025, 14(13), 4706; https://doi.org/10.3390/jcm14134706 - 3 Jul 2025
Viewed by 650
Abstract
Background/Objectives: Bisphenol A (BPA) is an organic compound used in producing polycarbonates and epoxy resins found in products such as food containers, disposable bottles, CDs, and DVDs. Its structure resembles that of endogenous estrogen, which classifies BPA as an endocrine-disrupting chemical (EDC). [...] Read more.
Background/Objectives: Bisphenol A (BPA) is an organic compound used in producing polycarbonates and epoxy resins found in products such as food containers, disposable bottles, CDs, and DVDs. Its structure resembles that of endogenous estrogen, which classifies BPA as an endocrine-disrupting chemical (EDC). BPA has been associated with various health abnormalities, including cancer and reproductive system cancer. In this study, we examine the association between BPA exposure, BPA levels in blood serum, and the occurrence of breast cancer and reproductive system cancer. Methods: A total of 84 females were included in this cross-sectional study. All participants completed a questionnaire assessing BPA exposure and underwent a blood test to measure BPA levels in serum. Results: Analysis of the lifestyle questionnaire revealed behavioral differences potentially associated with BPA exposure. A statistically significant difference was observed for responses to Question 13, related to food preparation methods, while responses to Questions 5, 6, and 17 showed trends approaching statistical significance in cancer groups. Serum BPA concentrations were significantly higher in patients with reproductive system cancer compared to the control group (p = 0.045), while a non-significant trend was observed between breast cancer patients and patients with reproductive system cancer (p = 0.0884). Conclusions: In summary, our study demonstrated significantly elevated serum BPA levels in patients with reproductive system cancer compared to controls. These results suggest the hypothesis that higher exposure to BPA may influence or be associated with the development of estrogen-dependent cancers such as breast and endometrial cancer. However, due to the cross-sectional design of the study, causality cannot be established, and further longitudinal studies are warranted. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 3235 KiB  
Article
Electrochemical Detection of Bisphenol S Based on Molecularly Imprinted Polymers Grafted on Functionalized Multiwalled Carbon Nanotubes: A Facile Sensor Fabrication Approach
by Christopher Mwanza, Lin Zhao, Qing Zhang and Shou-Nian Ding
Chemosensors 2025, 13(7), 236; https://doi.org/10.3390/chemosensors13070236 - 30 Jun 2025
Viewed by 411
Abstract
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In [...] Read more.
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In this work, we present a newly engineered electrochemical sensor designed for the sensitive and selective detection of BPS using a straightforward and effective fabrication approach. The sensor was constructed by grafting molecularly imprinted polymers (MIPs) onto vinyl-functionalized multiwalled carbon nanotubes (f-MWCNTs). Ethylene glycol dimethacrylate and acrylamide were used as the cross-linker and functional monomer, respectively, in the synthesis of the MIP layer. The resulting MIP@f-MWCNT nanocomposite was characterized using Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The MIP@f-MWCNT material was then combined with chitosan, a biocompatible binder, to fabricate the final MIP@f-MWCNT/chitosan-modified glassy carbon electrode (GCE). Electrochemical evaluation showed a broad linear detection range from 1 to 60 µM (R2 = 0.992), with a sensitivity of 0.108 µA/µM and a detection limit of 2.00 µM. The sensor retained 96.0% of its response after four weeks and exhibited high selectivity against structural analogues. In spiked plastic extract samples, recoveries ranged from 95.6% to 105.0%. This robust, cost-effective, and scalable sensing platform holds strong potential for environmental monitoring, food safety applications, and real-time electrochemical detection of endocrine-disrupting compounds like BPS. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrochemical Sensing)
Show Figures

Graphical abstract

16 pages, 8686 KiB  
Article
Potential Natural Inhibitors of MRSA ABC Transporters and MecA Identified Through In Silico Approaches
by Benson Otarigho, Paul M. Duffin and Mofolusho O. Falade
Microorganisms 2025, 13(6), 1431; https://doi.org/10.3390/microorganisms13061431 - 19 Jun 2025
Viewed by 511
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant clinical challenge due to its resistance to multiple antibiotics. The urgent need for new therapeutic approaches has led to the exploration of natural compounds as potential treatments, particularly those targeting the key bacterial proteins involved in [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant clinical challenge due to its resistance to multiple antibiotics. The urgent need for new therapeutic approaches has led to the exploration of natural compounds as potential treatments, particularly those targeting the key bacterial proteins involved in antibiotic resistance. This study focused on the multidrug ABC transporter and MecA proteins, which play crucial roles in MRSA′s pathogenicity and resistance mechanisms. Using computational techniques and molecular docking methods, we assessed the interactions of 80 natural compounds with S. aureus multidrug ABC transporter SAV1866 (SAV1866) and MecA proteins. Our analysis revealed 14 compounds with robust binding to SAV1866 and one compound with a strong affinity for MecA. Notably, these compounds showed weaker affinities for the MgrA, MepR, and arlR proteins, suggesting specificity in their interactions. Among the 15 promising compounds identified, 1′,2-Binaphthalen-4-one-2′,3-dimethyl-1,8′-epoxy-1,4′,5,5′,8,8′-hexahydroxy-8-O-β-glucopyranosyl-5′-O-β-xylopyranosyl(1→6)-β-glucopyranoside; Cis-3,4-dihydrohamacanthin b; and Mamegakinone exhibited the highest binding affinities to S. aureus SAV1866. These compounds represent diverse chemical classes, including alkaloids, indole derivatives, naphthalenes, and naphthoquinones, offering a range of structural scaffolds for further drug development. Our findings provide valuable insights into potential new antibacterial agents targeting S. aureus SAV1866 and MecA proteins. These results lay the groundwork for future in vitro and in vivo studies to validate these compounds′ efficacy for combating MRSA infections, potentially leading to the development of novel therapeutic strategies against antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

24 pages, 4082 KiB  
Article
Epoxy-Functionalized Isatin Derivative: Synthesis, Computational Evaluation, and Antibacterial Analysis
by Deepanjali Shukla, Iqbal Azad, Mohd Arsh Khan, Ziaul Husain, Azhar Kamal, Sabahat Yasmeen Sheikh, Ibrahim Alotibi, Varish Ahmad and Firoj Hassan
Antibiotics 2025, 14(6), 595; https://doi.org/10.3390/antibiotics14060595 - 9 Jun 2025
Viewed by 2115
Abstract
Background/Objectives: The current need for new antibacterial compounds that target non-classical pathways is highlighted by the emergence of multidrug-resistant Klebsiella pneumoniae. In the development of antibiotics, DNA adenine methyltransferase (Dam), a key regulator of bacterial gene expression and pathogenicity, is still underutilized. [...] Read more.
Background/Objectives: The current need for new antibacterial compounds that target non-classical pathways is highlighted by the emergence of multidrug-resistant Klebsiella pneumoniae. In the development of antibiotics, DNA adenine methyltransferase (Dam), a key regulator of bacterial gene expression and pathogenicity, is still underutilized. Epoxy-functionalized analogues of isatin derivatives have not been adequately investigated for their antibacterial activity, particularly as Dam inhibitors. In the pursuit of antimicrobial agents, this study synthesized an epoxy-functionalized isatin derivative (L3) using a one-pot reaction. The compound was characterized using FT-IR, ¹H-NMR, 13C-NMR, HR-MS, and UV–Vis spectroscopy. Methods: In silico evaluation performed by using ADMETlab3 and SwissADME. While molecular docking studies were achieved by AutoDock and Vina to find L3’s interaction with potential antibacterial target (Dam protein in K. pneumoniae). In addition, the antibacterial potential of L3 was evaluated using minimum inhibitory concentration (MIC) assays against Bacillus cereus, Bacillus pumilus, Escherichia coli, and K. pneumoniae. Results: Among these, L3 exhibited potential inhibitory activity against K. pneumoniae, with a MIC value of 93.75 μg/mL. In silico evaluations confirmed L3’s favorable drug-like properties, including potential oral bioavailability, blood–brain barrier (BBB) permeability, and low plasma protein binding (PPB). The compound satisfied Lipinski’s and other drug-likeness rules as well as getting a quantitative estimate of drug-likeness (QED) score of 0.52. Here, a homology model of Dam protein in K. pneumoniae was generated using the SWISS-MODEL server and validated using computational tools. Targeted docking analysis revealed that L3 exhibited significant potential binding affinity against Dam protein, with binding energies of −6.4 kcal/mol and −4.85 kcal/mol, as determined by Vina and AutoDock, respectively. The associated inhibition constant was calculated as 280.35 µM. Further interaction analysis identified the formation of hydrogen bonds with TRP7 and PHE32, along with Van der Waals’ interactions involving GLY9, ASP51, and ASP179. Conclusions: These findings highlight L3 as a promising scaffold for antimicrobial drug development, particularly in targeting Dam protein in K. pneumoniae. Furthermore, the ADMET profiling and physicochemical properties of L3 support its potential as a drug-like candidate. Full article
Show Figures

Figure 1

16 pages, 8279 KiB  
Article
An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor
by Ikuko Miyazaki, Chiharu Nishiyama, Takeru Nagoshi, Akane Miyako, Suzuka Ono, Ichika Misawa, Aika Isse, Kana Tomimoto, Kaori Masai, Kazumasa Zensho and Masato Asanuma
NeuroSci 2025, 6(2), 53; https://doi.org/10.3390/neurosci6020053 - 6 Jun 2025
Viewed by 556
Abstract
Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an [...] Read more.
Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE·2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE·2H2O (1–100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE·2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE·2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE·2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER. Full article
Show Figures

Graphical abstract

17 pages, 11231 KiB  
Article
Biopolymer/Suture Polymer Interaction: Is It a Key of Bioprosthetic Calcification?
by Irina Yu. Zhuravleva, Anna A. Dokuchaeva, Andrey A. Vaver, Ludmila V. Kreiker, Elena V. Kuznetsova and Rostislav I. Grek
Polymers 2025, 17(11), 1576; https://doi.org/10.3390/polym17111576 - 5 Jun 2025
Viewed by 490
Abstract
The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of [...] Read more.
The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of the synthetic reinforced polymer REPEREN® was chosen as a control material. Samples of the material (sutured or non-sutured with each of the three types of surgical sutures) were implanted subcutaneously in 45 young rats for 30, 60, and 90 days. The calcium content of the explants was quantified using atomic absorption spectrometry, a histological examination was performed using hematoxylin and eosin and von Kossa staining, and the structure of the calcium phosphate deposits was studied using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) with color field mapping. The results demonstrated the absence of calcification in the non-sutured BP and in all the REPEREN® groups. In the sutured BP samples, a dynamic increase in the Ca content and the Ca/P ratio to 1.67–1.7 (crystalline hydroxyapatite) was observed by the 90th day. The minimum Ca content among the sutured BP groups was detected in samples where the PET thread was used. The cellular reaction to BP was significantly more pronounced than the reaction to REPEREN® throughout the entire observation period; collagen homogenization was noted near the sutures. It can be concluded that all the studied suture materials provoke BP calcification. PET has the minimal negative effect. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Drug Delivery and Biomedical Applications)
Show Figures

Figure 1

52 pages, 4685 KiB  
Review
Epoxy Resins and Their Hardeners Based on Phosphorus–Nitrogen Compounds
by Pavel Yudaev, Bakary Tamboura, Anastasia Konstantinova, Heeralal Vignesh Babu and Krishnamurthi Muralidharan
J. Compos. Sci. 2025, 9(6), 277; https://doi.org/10.3390/jcs9060277 - 29 May 2025
Cited by 1 | Viewed by 1172
Abstract
This review examines the fire-retardant properties of compositions that incorporate various classes of phosphorus–nitrogen compounds. Specifically, it focuses on nitrogen-containing derivatives of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phosphinates, phosphorus–nitrogen salts, and aryloxycyclophosphazenes. The findings indicate that these classes of fire retardants enhance the limiting oxygen index, decrease [...] Read more.
This review examines the fire-retardant properties of compositions that incorporate various classes of phosphorus–nitrogen compounds. Specifically, it focuses on nitrogen-containing derivatives of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phosphinates, phosphorus–nitrogen salts, and aryloxycyclophosphazenes. The findings indicate that these classes of fire retardants enhance the limiting oxygen index, decrease heat and smoke emission indices in epoxy compositions, and facilitate the creation of self-extinguishing materials. Notably, aryloxycyclophosphazenes with reactive functional groups emerge as the most effective fire retardants, particularly in terms of their impact on the mechanical properties of epoxy compositions and compatibility with epoxy resin. This review would be a valuable resource for engineers, chemical engineers, materials scientists, and researchers engaged in the development of non-combustible polymer composites and organoelement compounds. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

17 pages, 4788 KiB  
Article
Preparation of Phenolic Epoxy-Based Electronic Packaging Materials with High Thermal Conductivity by Creating an Interfacial Heat Conduction Network
by Minghao Ye, Jing Jiang, Lin Zhao, Hongyu Zhu, Junjie Wang, Zicai Sun, Dewei Zhang, Ming Li and Yagang Zhang
Polymers 2025, 17(11), 1507; https://doi.org/10.3390/polym17111507 - 28 May 2025
Viewed by 448
Abstract
As one of the most widely used packaging materials, epoxy composite (EP) offers excellent insulation properties; however, its intrinsic low thermal conductivity (TC) limits its application in high-frequency and high-power devices. To enhance the TC of EP, six highly thermally conductive inorganic fillers, [...] Read more.
As one of the most widely used packaging materials, epoxy composite (EP) offers excellent insulation properties; however, its intrinsic low thermal conductivity (TC) limits its application in high-frequency and high-power devices. To enhance the TC of EP, six highly thermally conductive inorganic fillers, namely, Al2O3, MgO, ZnO, Si3N4, h-BN, and AlN, were incorporated into the EP matrix at varying contents (60–90 wt.%). The resulting epoxy molding compounds (EMCs) demonstrated significant improvement in thermal conductivity coefficient (λ) at high filler contents (90 wt.%), ranging from 0.67 W m−1 K−1 to 1.19 W m−1 K−1, compared to the pristine epoxy composite preform (ECP, 0.36 W m−1 K−1). However, it was found that the interfacial thermal resistance (ITR) between EP and filler materials is a major hindrance restricting TC improvement. In order to address this challenge, graphene nanosheets (GNSs) and carbon nanotubes (CNTs) were introduced as additives to reduce the ITR. The experimental results indicated that CNTs were effective in enhancing the TC, with the optimized EMC achieving a λ value of 1.14 W m−1 K−1 using 60 wt.% Si3N4 + 2 wt.% CNTs. Through the introduction of a small amount of CNT (2 wt.%), the inorganic filler content was significantly reduced from 90 wt.% to 60 wt.% while still maintaining high thermal conductivity (1.14 W m−1 K−1). We propose that the addition of CNTs helps in the construction of a partial heat conduction network within the EP matrix, thereby facilitating interfacial heat transfer. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

23 pages, 2945 KiB  
Article
Improved Rubber Performance Through Phenolic Resin-Modified Silica: A Novel Coupling Mechanism for Enhanced Recyclability
by Pilar Bernal-Ortega, Rafal Anyszka, Raffaele di Ronza, Claudia Aurisicchio and Anke Blume
Polymers 2025, 17(11), 1437; https://doi.org/10.3390/polym17111437 - 22 May 2025
Viewed by 869
Abstract
Passenger car tires (PCTs) usually consist of a silica/silane-filled Butadiene Rubber (BR) or Solution Styrene Butadiene (SSBR) tread compound. This system is widely used due to improvements observed in rolling resistance (RR) as well as wet grip compared to carbon black-filled compounds. However, [...] Read more.
Passenger car tires (PCTs) usually consist of a silica/silane-filled Butadiene Rubber (BR) or Solution Styrene Butadiene (SSBR) tread compound. This system is widely used due to improvements observed in rolling resistance (RR) as well as wet grip compared to carbon black-filled compounds. However, the covalent bond that couples silica via silane with the rubber increases the challenge of recycling these products. Furthermore, this strong covalent bond is unable to reform once it is broken, leading to a deterioration in tire properties. This work aims to improve these negative aspects of silica-filled compounds by developing a novel coupling system based on non-covalent interactions, which exhibit a reversible feature. The formation of this new coupling was accomplished by reacting silica with silane and a phenolic resin in order to obtain simultaneous π–π interactions and hydrogen bonding. The reaction was performed using two different silanes (amino and epoxy silane) and an alkyl phenol–formaldehyde resin. The implementation of the new coupling resulted in improved crosslink density, better mechanical performance, superior fatigue behavior, and a similar rolling resistance indicator. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

17 pages, 3763 KiB  
Article
Epoxy–Aminated Lignin Impregnation Combined with Densification for Enhanced Mechanical Properties and Deformation Fixation of Wood
by Zhizun Gao, Jiayi Sun, Zhenke Wei, Fanjun Yu, Zhe Qiu, Zefang Xiao and Yonggui Wang
Polymers 2025, 17(10), 1406; https://doi.org/10.3390/polym17101406 - 20 May 2025
Viewed by 544
Abstract
Hot-pressing densification is an effective method to enhance the mechanical properties of wood; however, excessively high pressing temperatures can cause thermal degradation of wood components, compromising these improvements. In this study, aminated lignin (AL), with improved water solubility and reactive amino groups facilitating [...] Read more.
Hot-pressing densification is an effective method to enhance the mechanical properties of wood; however, excessively high pressing temperatures can cause thermal degradation of wood components, compromising these improvements. In this study, aminated lignin (AL), with improved water solubility and reactive amino groups facilitating crosslinking, was utilized as a bio-based amine curing agent for the water-soluble, low-molecular-weight epoxy compound polyethylene glycol diglycidyl ether (PEGDGE). The PEGDGE-AL modifier was applied for wood impregnation, followed by hot-pressing densification at a relatively low temperature of 120 °C, to enhance the mechanical properties of wood. The chemical composition of AL was analyzed using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and X-ray photoelectron spectroscopy (XPS). The gelation and curing behavior of the PEGDGE-AL modifier demonstrated its ability to readily form a network structure at both room temperature and elevated temperatures. The impact strength of densified wood (DW) modified with 12 wt% PEGDGE and 8 wt% AL, denoted as 12PEGDGE+8AL-DW, exhibited an impact strength of 15.2 kJ/m2, representing a 72% increase compared to untreated wood (UW). The modulus of rupture (MOR) and modulus of elasticity (MOE) reached 241.1 MPa and 14.6 GPa, respectively, corresponding to 60% and 75% improvements over UW. Furthermore, the 24 h water uptake and thickness swelling of 12PEGDGE+8AL-DW were 45.2% and 24.7%, which were 11% and 43% lower than those of water-impregnated and hot-pressed densified wood (W-DW), respectively. This study provides a low-temperature route for wood densification while contributing to the valorization of lignin in high-performance material applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop