Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = enzyme-rich foods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 (registering DOI) - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 184
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

17 pages, 1195 KiB  
Article
Phytochemical Profiling, Antioxidant Capacity, and α-Amylase/α-Glucosidase Inhibitory Effects of 29 Faba Bean (Vicia faba L.) Varieties from China
by Ying Li, Zhihua Wang, Chengkai Mei, Wenqi Sun, Xingxing Yuan, Jing Wang and Wuyang Huang
Biology 2025, 14(8), 982; https://doi.org/10.3390/biology14080982 (registering DOI) - 2 Aug 2025
Viewed by 226
Abstract
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography [...] Read more.
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and quantified via high-performance liquid chromatography (HPLC). Antioxidant capacity was evaluated, including DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging activity, and ferric reducing antioxidant power (FRAP), along with α-amylase/α-glucosidase inhibitory effects. Twenty-five phenolics were identified, including L-DOPA (11.96–17.93 mg/g, >70% of total content), seven phenolic acids, and seventeen flavonoids. L-DOPA showed potent enzyme inhibition (IC50 values of 22.45 μM for α-amylase and 16.66 μM for α-glucosidase) but demonstrated limited antioxidant effects. Lincan 13 (Gansu) exhibited the strongest antioxidant activity (DPPH, 16.32 μmol trolox/g; ABTS, 5.85 μmol trolox/g; FRAP, 21.38 mmol Fe2+/g), which correlated with it having the highest flavonoid content (40.51 mg rutin/g), while Yican 4 (Yunnan) showed the strongest α-amylase inhibition (43.33%). Correlation analysis confirmed flavonoids as the primary antioxidants, and principal component analysis (PCA) revealed geographical trends (e.g., Jiangsu varieties were particularly phenolic-rich). These findings highlight faba beans’ potential as functional foods and guide genotype selection in targeted breeding programs aimed at enhancing health benefits. Full article
Show Figures

Figure 1

18 pages, 1289 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 114
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 284
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

23 pages, 2164 KiB  
Article
Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea
by Veysel Tahiroglu, Hasan Karagecili, Kubra Aslan and İlhami Gulcin
Life 2025, 15(8), 1209; https://doi.org/10.3390/life15081209 - 29 Jul 2025
Viewed by 372
Abstract
The genera Allium (Liliaceae) and Anchusa (Boraginaceae) are flowering plant genera with a rich diversity, also including the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species. The antioxidant, anti-Alzheimer’s disease (AD), antidiabetic, and antiglaucoma effects of [...] Read more.
The genera Allium (Liliaceae) and Anchusa (Boraginaceae) are flowering plant genera with a rich diversity, also including the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species. The antioxidant, anti-Alzheimer’s disease (AD), antidiabetic, and antiglaucoma effects of the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species, which are commonly eaten foods in the Southeast of Türkiye in the treatment of several diseases, were studied. To interpret the antioxidant capacities of ethanol extract of two plant species, aerial parts were analyzed by ABTS and DPPH assays. The IC50 values of A. kharputense and A. azurea ethanol and water extracts for ABTS•+ activities were recorded in the range of 30.93 to 33.94 µg/mL and 33.45 to 33.78 µg/mL, respectively. Also, DPPH activities were measured at 30.78 to 36.87 µg/mL and 31.67 to 32.45 µg/mL, respectively. The best of the IC50 values was measured in the ethanol extract of A. kharputense as 30.78 µg/mL for DPPH scavenging activity. The total phenolic and flavonoid quantities in A. kharputense and A. azurea plants were measured. The highest phenolic and flavonoid contents of A. kharputense and A. azurea species were recorded in amounts of 445.52 and 327.35 mg GAE/g in ethanol extracts, respectively, and 332.88 and 234.03 mg QE/g in ethanol extracts, respectively. The effects of A. kharputense and A. azurea on diabetes, AD, and glaucoma were studied on the target enzymes of diseases. The most efficient IC50 values were recorded at 10.72 μg/mL against α-glycosidase, 35.01 μg/mL against AChE, 38.05 μg/mL against BChE, 9.21 μg/mL towards hCA I, and 81.02 μg/mL towards hCA II isoenzymes. The kinds and amounts of phenolic compounds in A. kharputense and A. azurea were determined using LC-MS/MS against 53 standards. A. kharputense and A. azurea plants have prospective use in enhancing glaucoma, diabetes, AD, Parkinson’s disease, epilepsy, and cancerous disorders. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

17 pages, 5515 KiB  
Article
Hypoglycemic Effects of Silphium perfoliatum L. In Vitro and In Vivo and Its Active Composition Identification by UPLC-Triple-TOF-MS/MS
by Guoying Zhang, Liying Liu, Wenjing Jia, Luya Wang, Jihong Tao, Wei Zhang, Huilan Yue, Dejun Zhang and Xiaohui Zhao
Pharmaceuticals 2025, 18(8), 1087; https://doi.org/10.3390/ph18081087 - 23 Jul 2025
Viewed by 260
Abstract
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal [...] Read more.
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal medicine of North American Indigenous tribes, has efficacy of treating metabolic diseases, but its hypoglycemic activity and bioactive components have not been fully studied. Methods: In vitro α-glucosidase inhibition and in vivo sucrose/maltose/starch tolerance assays were performed to assess the hypoglycemic effects of SP extracts, and UPLC-Triple-TOF-MS/MS analysis was used to tentatively identify its chemical structure composition. In vitro enzyme inhibition and molecular docking were used to verify the effective ingredients. Results: In vitro hypoglycemic activities of four extracts of SP (SP-10/SP-40/SP-60/SP-C) showed that SP-10 exhibited strong α-glucosidase (sucrase and maltase) inhibitory effects with IC50 of 67.81 μg/mL and 62.99 μg/mL, respectively. Carbohydrate tolerance assays demonstrated that SP-10 could significantly reduce the PBG levels of diabetic mice, with a significant hypoglycemic effect at a dosage of 20 mg/kg. A total of 26 constituents, including 11 caffeoylquinic acids (CQAs) and 15 flavonol glycosides, were tentatively identified by mainly analyzing secondary MS fragmentation. Moreover, three CQAs rich in SP-10, namely chlorogenic acid (CGA), neochlorogenic acid (NCGA), and cryptochlorogenic acid (CCGA), may be the main hypoglycemic substances, as evidenced by their inhibitory effects on sucrase and maltase. Conclusions: The α-glucosidase inhibitory effects of SP extract both in vitro and in vivo and its active ingredients were systematically studied for the first time. Results indicated that SP extract, rich in CQAs, had significant hypoglycemic activity, supporting the considerable potential of SP as hypoglycemic functional food or cost-effective therapeutic agents for diabetes treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

27 pages, 1900 KiB  
Review
A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives
by Feng Tian, Yiwen Wang, Yawen Zhao, Ruyu Sun, Man Qi, Suqing Wu and Li Wang
Water 2025, 17(15), 2184; https://doi.org/10.3390/w17152184 - 22 Jul 2025
Viewed by 261
Abstract
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis [...] Read more.
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis conditions, it may contain potentially harmful substances. Industrial wastes such as fly ash, steel slag, red mud, and phosphogypsum are rich in minerals and show potential for soil improvement, but direct application may pose environmental risks. The co-application of biochar with these wastes can produce composite amendments that enhance pH buffering capacity, nutrient availability, and pollutant immobilization. Therefore, a review of biochar-industrial waste composites as soil amendments is crucial for addressing soil degradation and promoting resource utilization of wastes. In this study, the literature was retrieved from Web of Science, Scopus, and Google Scholar using keywords including biochar, fly ash, steel slag, red mud, phosphogypsum, combined application, and soil amendment. A total of 144 articles from 2000 to 2025 were analyzed. This review summarizes the physicochemical properties of biochar and representative industrial wastes, including pH, electrical conductivity, surface area, and elemental composition. It examines their synergistic mechanisms in reducing heavy metal release through adsorption, complexation, and ion exchange. Furthermore, it evaluates the effects of these composites on soil health and crop productivity, showing improvements in soil structure, nutrient balance, enzyme activity, and metal immobilization. Finally, it identifies knowledge gaps as well as future prospects and recommends long-term field trials and digital agriculture technologies to support the sustainable application of these composites in soil management. Full article
Show Figures

Figure 1

23 pages, 8387 KiB  
Article
Solvent Fractionation of Polygonum cuspidatum Sieb. et Zucc. for Antioxidant, Biological Activity, and Chromatographic Characterization
by Yuchen Cheng, Yuri Kang and Woonjung Kim
Int. J. Mol. Sci. 2025, 26(14), 7011; https://doi.org/10.3390/ijms26147011 - 21 Jul 2025
Viewed by 330
Abstract
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were [...] Read more.
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were determined, and their antioxidant activities were evaluated using DPPH, ABTS, and FRAP assays. Additionally, the anti-diabetic potential was assessed via α-glucosidase inhibitory activity, while anti-obesity activity was evaluated using lipase inhibitory activity. The fractions were also tested for tyrosinase and elastase inhibitory activities to assess their skin-whitening and anti-wrinkle potential, and their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was determined using the agar diffusion method. Finally, bioactive compounds were identified and quantified using HPLC and GC–MSD. The results showed that the ethyl acetate fraction possessed the highest total polyphenol content (0.53 ± 0.01 g GAE/g) and total flavonoid content (0.19 ± 0.02 g QE/g). It also exhibited strong antioxidant activity, with the lowest DPPH radical scavenging IC50 (0.01 ± 0.00 mg/mL), ABTS radical scavenging IC50 (0.06 ± 0.00 mg/mL), and the highest FRAP value (6.02 ± 0.30 mM Fe2+/mg). Moreover, it demonstrated potent enzyme inhibitory activities, including tyrosinase inhibitory activity (67.78 ± 2.50%), elastase inhibitory activity (83.84 ± 1.64%), α-glucosidase inhibitory activity (65.14 ± 10.29%), and lipase inhibitory activity (85.79 ± 1.04%). In the antibacterial activity, the ethyl acetate fraction produced a clear inhibitory zone of 19.50 mm against Staphylococcus aureus, indicating notable antibacterial activity. HPLC-PDA and GC–MSD analyses identified tannic acid and emodin as the major bioactive constituents. These findings suggest that the ethyl acetate fraction of P. cuspidatum extract, rich in polyphenol and flavonoid compounds, is a promising natural source of bioactive ingredients for applications in the food, pharmaceutical, and cosmetic industries. Further research is needed to explore its mechanisms and therapeutic applications. Full article
Show Figures

Figure 1

21 pages, 3692 KiB  
Article
Anti-Obesity Effects of Rosa rugosa Thunb. Flower Bud Extracts on Lipid Metabolism Regulation in 3T3-L1 Adipocytes and Sprague Dawley Rats
by Jung Min Kim, Kyoung Kon Kim, Hye Rim Lee, Jae Cheon Im and Tae Woo Kim
Int. J. Mol. Sci. 2025, 26(14), 6963; https://doi.org/10.3390/ijms26146963 - 20 Jul 2025
Viewed by 278
Abstract
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., [...] Read more.
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., dietary modifications and weight gain-suppressing functional foods. In this context, plant-derived metabolites are extensively investigated for their beneficial anti-obesity effects. In this study, we evaluated how Rosa rugosa Thunb. flower bud extract affects fat metabolism in 3T3-L1 preadipocyte cells. The extract significantly inhibited adipocyte differentiation and intracellular triglyceride accumulation in 3T3-L1 cells, enhanced lipolysis, suppressed lipogenesis, and promoted energy metabolism in differentiated adipocytes. In vivo, it reduced body and organ weights and fat mass in high-fat diet-induced obese rats, along with marked adipocyte size and hepatic lipid accumulation reductions. In the epididymal adipose tissue, the extract similarly enhanced lipolytic activity, suppressed lipogenic enzyme expression, and stimulated energy expenditure. Taken together, our results demonstrate the potential of R. rugosa Thunb. flower bud extract in reducing fat accumulation through lipid metabolism modulation both in cellular and animal models. Further studies are warranted to identify the active constituents and evaluate the safety and efficacy of the extract in clinical applications. Full article
(This article belongs to the Special Issue High Fat Diet Metabolism and Diseases)
Show Figures

Figure 1

41 pages, 1524 KiB  
Review
Metabolic Adaptations in Cancer Progression: Optimization Strategies and Therapeutic Targets
by Agnieszka Dominiak, Beata Chełstowska and Grażyna Nowicka
Cancers 2025, 17(14), 2341; https://doi.org/10.3390/cancers17142341 - 15 Jul 2025
Viewed by 803
Abstract
As tumor research has deepened, the deregulation of cellular metabolism has emerged as yet another recognized hallmark of cancer. Tumor cells adapt different biochemical pathways to support their rapid growth, proliferation, and invasion, resulting in distinct anabolic and catabolic activities compared with healthy [...] Read more.
As tumor research has deepened, the deregulation of cellular metabolism has emerged as yet another recognized hallmark of cancer. Tumor cells adapt different biochemical pathways to support their rapid growth, proliferation, and invasion, resulting in distinct anabolic and catabolic activities compared with healthy tissues. Certain metabolic shifts, such as altered glucose and glutamine utilization and increased de novo fatty acid synthesis, are critical early on, while others may become essential only during metastasis. These metabolic adaptations are closely shaped by, and in turn remodel, the tumor microenvironment, creating favorable conditions for their spread. Anticancer metabolic strategies should integrate pharmacological approaches aimed at inhibiting specific biochemical pathways with well-defined dietary interventions as adjunctive therapies, considering also the role of gut microbiota in modulating diet and treatment responses. Given the established link between the consumption of foods rich in saturated fatty acids and sugars and an increased cancer risk, the effects of diet cannot be ignored. However, current evidence from controlled and multicenter clinical trials remains insufficient to provide definitive clinical recommendations. Further research using modern omics methods, such as metabolomics, proteomics, and lipidomics, is necessary to understand the changes in the metabolic profiles of various cancers at different stages of their development and to determine the potential for modifying these profiles through pharmacological agents and dietary modifications. Therefore, clinical trials should combine standard treatments with novel approaches targeting metabolic reprogramming, such as inhibition of specific enzymes and transporters or binding proteins, alongside the implementation of dietary restrictions that limit nutrient availability for tumor growth. However, to optimize therapeutic efficacy, a precision medicine approach should be adopted that balances the destruction of cancer cells with the protection of healthy ones. This approach, among others, should be based on cell type-specific metabolic profiling, which is crucial for personalizing oncology treatment. Full article
(This article belongs to the Special Issue Cancer Cells Fostered Microenvironment in Metastasis)
Show Figures

Graphical abstract

17 pages, 2953 KiB  
Article
Effects of Aronia melanocarpa-Based Fruit Juices on Metabolic Dysfunction-Associated Fatty Liver Disease in Rats
by Antoaneta Georgieva, Miroslav Eftimov, Nadezhda Stefanova, Maria Tzaneva, Petko Denev and Stefka Valcheva-Kuzmanova
Gastroenterol. Insights 2025, 16(3), 23; https://doi.org/10.3390/gastroent16030023 - 8 Jul 2025
Viewed by 423
Abstract
Background/Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined by the presence of hepatic steatosis, and is associated with obesity, diabetes, and other metabolic alterations. Feeding rats with a high-fat high-fructose (HFHF) diet is a reproducible experimental model of obesity/metabolic syndrome and [...] Read more.
Background/Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined by the presence of hepatic steatosis, and is associated with obesity, diabetes, and other metabolic alterations. Feeding rats with a high-fat high-fructose (HFHF) diet is a reproducible experimental model of obesity/metabolic syndrome and the related MAFLD. Aronia melanocarpa, Rosa canina, and Alchemilla vulgaris are polyphenol-rich plants with proven health benefits. The aim of this study was to reveal the effects of four Aronia melanocarpa-based fruit juices (AMBFJs) in HFHF-fed rats. Methods: The AMBFJs were AM20 and AM60 (produced from aronia berries at 20 °C and 60 °C, respectively), AMRC (aronia juice with Rosa canina), and AMAV (aronia juice with Alchemilla vulgaris). Male Wistar rats were allocated to 6 groups. Except for the Control, the rest of the groups were fed an HFHF diet for 60 days. Throughout the experiment, each of the AMBFJs was administered to one HFHF-fed group. Results: HFHF-fed rats had an increased calorie intake on the background of increased liquid and decreased food consumption. At the end of the experiment, they had similar body weights, slightly increased fat indices, increased levels of blood lipids and liver enzymes, as well as typical histopathological changes in liver and adipose tissue. AMBFJs-treated animals showed improvement in most of these parameters, especially in triglyceride levels, liver enzymes, and the histopathological changes in the liver and fat. AMAV, the juice with the highest polyphenolic content, had the highest effect on adiposity. Conclusion: In HFHF-fed rats, AMBFJs exerted beneficial effects on MAFLD probably due to their polyphenolic ingredients. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Graphical abstract

15 pages, 274 KiB  
Article
In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower
by Imelda N. Monroy-García, Laura Lucely González-Galván, Catalina Leos-Rivas, Mayra Z. Treviño-Garza, Eduardo Sánchez-García and Ezequiel Viveros-Valdez
Foods 2025, 14(13), 2375; https://doi.org/10.3390/foods14132375 - 4 Jul 2025
Viewed by 372
Abstract
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During [...] Read more.
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During in vitro digestion (oral, gastric, and intestinal), the total phenolic content of A. inaequidens significantly decreased from 138 to 21 mg GAE/100 g DW (15.22% bioaccessibility), while total flavonoid content dropped from 8 to 4.6 mg CE/100 g DW (57.5% bioaccessibility). Consequently, antioxidant activity, assessed by ABTS, DPPH, and hemolysis inhibition assays, also declined post-digestion. Interestingly, the digestive process modulated the flower’s inhibitory activity against digestive enzymes before and after in vitro digestion: α-amylase inhibition slightly decreased (IC50 1.8 to 2.1 mg/mL), but α-glucosidase (IC50 2.7 to 1.6 mg/mL) and lipase (IC50 > 3 to 1.4 mg/mL) inhibition increased. The A. inaequidens flower is a good source of fiber and low in fat. These findings underscore its potential as a functional food ingredient, offering bioaccessible phenolic compounds with antioxidant and enzyme inhibitory properties. Full article
23 pages, 3357 KiB  
Article
Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion
by Hai-Xiang Zhou, Shi-Ning Cao, Chu-Shu Zhang, Mian Wang, Yue-Yi Tang, Jing Chen, Li-Fei Zhu, Jie Sun, Qing-Biao Meng, Jing Chen and Jian-Cheng Zhang
Beverages 2025, 11(4), 99; https://doi.org/10.3390/beverages11040099 - 1 Jul 2025
Viewed by 583
Abstract
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to [...] Read more.
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to be the most secure and environmentally friendly strategy. Although numerous microbial tannases have been identified and used in food processing, they are predominantly mesophilic with compromised heat tolerance, which limit their application in high-temperature tea extraction processing. Computer-assisted rational design and site-directed mutagenesis has emerged as a promising strategy in enzyme engineering to improve the thermostability of industrial enzymes. Nevertheless, relevant studies for tannase thermostability improvement remain lacking. In the present study, a novel thermophilic tannase called TanPL1 from marine fungus Penicillium longicatenatum strain SM102 was expressed in the food-grade host Yarrowia lipolytica. After purification and characterization, the thermostability of this enzyme was improved through site-directed mutagenesis guided by computer-aided rational design and molecular dynamics simulations. Then the thermostable mutant MuTanPL1 was applied in green tea processing for both polyphenol extraction and ester catechin hydrolysis. The tannase yield and specific activity values of 166.4 U/mL and 1059.3 U/mg, respectively, were achieved. The optimum pH and temperature of recombinant TanPL1 were determined to be 5.5 and 55 °C, respectively, and the enzyme exhibited high activity toward various gallic acid ester substrates. The site-directed mutagenesis method successfully generated a single-point mutant, MuTanPL1, with significantly enhanced thermostability and a higher optimum temperature of 60 °C. After 2 h of detannification by MuTanPL1, nearly all gallated catechins in green tea infusion were biotransformed. This resulted in a 202.4% and 12.1-fold increase in non-ester catechins and gallic acid levels, respectively. Meanwhile, the quality of the tea infusion was also markedly improved. Sensory evaluation and antioxidant activity assays revealed notable enhancements in these properties, while turbidity was reduced considerably. Additionally, the α-amylase inhibition activity of the tannase-treated tea infusion declined from 50.49% to 8.56%, revealing a significantly lower anti-nutritional effect. These findings suggest that the thermostable tannase MuTanPL1 holds strong application prospects in tea beverage processing. Full article
Show Figures

Figure 1

15 pages, 1530 KiB  
Article
Melatonin Priming Increases the Tolerance of Tartary Buckwheat Seeds to Abiotic Stress
by Liwei Zhu, Guohong Tang, Xiaoyu An, Hongyou Li and Qingfu Chen
Agronomy 2025, 15(7), 1606; https://doi.org/10.3390/agronomy15071606 - 30 Jun 2025
Viewed by 348
Abstract
Increasing abiotic stress, particularly salinity, poses a significant threat to the germination and seedling development of Tartary buckwheat, thereby limiting its yield potential and broader cultivation. Given Tartary buckwheat’s rich nutritional profile and inherent stress adaptability, enhancing seed tolerance to abiotic stress is [...] Read more.
Increasing abiotic stress, particularly salinity, poses a significant threat to the germination and seedling development of Tartary buckwheat, thereby limiting its yield potential and broader cultivation. Given Tartary buckwheat’s rich nutritional profile and inherent stress adaptability, enhancing seed tolerance to abiotic stress is essential for ensuring food security and the development of functional food resources. To investigate the role of melatonin in mitigating abiotic stress, seeds of the cultivar ‘Jinqiaomai 2’ were primed with varying melatonin concentrations (with water as the control) at multiple time points. The effects of salt stress on germination and seedling quality were evaluated to determine optimal priming conditions. Subsequent analyses examined seed vigor and physiological and biochemical responses during storage under high temperature and humidity, room temperature, and low-temperature conditions. The results showed that a 3 h melatonin priming consistently resulted in high germination rates (98.7–100.0%). Notably, melatonin at 50 μmol·L−1 was identified as the optimal concentration, significantly improving seedling growth under salinity stress, with increases of 61.1% in seedling length, 59.3% in root length, and 38.9% in root fresh weight compared with the control. Across all storage environments, melatonin-primed seeds exhibited superior vigor and enhanced antioxidant enzyme activity relative to water-primed controls. In conclusion, melatonin priming at an appropriate concentration and duration effectively enhanced the vigor of Tartary buckwheat seeds and alleviated the adverse effects of salinity on germination and storage resilience. However, improved seeds may possess a limited safe storage window and should be sown promptly rather than stored long-term. Full article
Show Figures

Figure 1

Back to TopTop