Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Preparation of Plant Extracts
2.4. Total Phenolic Content
2.5. Total Flavonoid Content
2.6. LC-MS/MS Analysis
2.6.1. Sample Preparation
2.6.2. LC-MS/MS Measurements and Method Validation Parameters
2.7. Reduction Capacity Assays
2.7.1. Fe3+ Reducing
2.7.2. Cu2+ Reducing Ability
2.7.3. Fe3+-TPTZ Reducing
2.8. Radical Scavenging Assays
2.8.1. DPPH Scavenging Activity
2.8.2. ABTS Scavenging Activity
2.9. Anti-Alzheimer’s Disease Studies
2.10. Antidiabetic Assay
2.11. Antiglaucoma Assay
2.12. Determination of IC50 Values
2.13. Statistical Analysis
3. Results
3.1. Analysis of Total Phenolics and Flavonoids
3.2. Chromatographic (LC-MS/MS) Phytochemical Analysis Results
3.3. Determination of Reducing and Scavenging Abilities of Extracts
3.3.1. Reducing Ability Results
3.3.2. Radical Scavenging Abilities
3.4. Enzyme Inhibition Results
3.4.1. Carbonic Anhydrase Inhibition Effects
3.4.2. AChE and BChE Inhibition Effects
3.4.3. α-Glycosidase Inhibition Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiran, Y.; Arikboga, G.; Dogan, G.; Eroğlu, H.; Pınar, S.M. Karyomorphological analysis of eight Allium L. (Amaryllidaceae) species from Turkey. Cytologia 2022, 87, 271–275. [Google Scholar] [CrossRef]
- Ceylan, O.; Alic, H. Antibiofilm, antioxidant, antimutagenic activities and phenolic compounds of Allium orientale BOISS. Brazilian Arch. Biol. Technol. 2015, 58, 935–943. [Google Scholar] [CrossRef]
- Kilic-Buyukkurt, O.; Kelebek, H.; Bordiga, M.; Keskin, M.; Selli, S. Changes in the aroma and key odorants from white garlic to black garlic using approaches of molecular sensory science: A review. Heliyon 2023, 9, e19056. [Google Scholar] [CrossRef] [PubMed]
- Aysu, T.; Durak, H. Catalytic effects of borax and iron (III) chloride on supercritical liquefaction of Anchusa azurea with methanol and isopropanol. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 1739–1749. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Albu, C.; Savin, S.; Radu, G.L. In vitro evaluation of antidiabetic and anti-inflammatory activities of polyphenolic-rich extracts from Anchusa officinalis and Melilotus officinalis. ACS Omega 2020, 5, 13014–13022. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Song, J.; Wang, R.; Gao, L.; Zhang, L.; Fang, L.; Lu, Y.; Du, G. Total flavonoids from Anchusa italica Retz. improve cardiac function and attenuate cardiac remodeling post myocardial infarction in mice. J. Ethnopharmacol. 2020, 257, 112887. [Google Scholar] [CrossRef]
- Boskovic, I.; Đukić, D.A.; Maskovic, P.; Mandić, L.; Perovic, S. Phytochemical composition and antimicrobial, antioxidant and cytotoxic activities of Anchusa officinalis L. extracts. Biologia. 2018, 73, 1035–1041. [Google Scholar] [CrossRef]
- Karaaslan, Ö.; Çöteli, E.; Karataş, F. Kenger (Gundelia tournefortii) bitkisindeki A, E, C Vitaminleri ile malondialdehit ve glutatyon miktarlarının araştırılması. EÜFBED-Fen Bilim. Enstitüsü Derg. 2014, 7, 159–168. [Google Scholar]
- Petreska Stanoeva, J.; Stefova, M.; Matevski, V. Extraction, Distribution and diversity of phenolic compounds in most widespread boraginaceae species from Macedonia. Chem. Biodivers. 2023, 20, e202201149. [Google Scholar] [CrossRef]
- Mukemre, M. Wild-edible allium species from highlands of eastern anatolia: Phytochemical composition and in vitro biological activities. Plants 2024, 13, 1949. [Google Scholar] [CrossRef]
- Sirri, M.; Özaslan, C.; Fidan, M. Eruh (Siirt) ilçesinde gıda ve halk tababetinde kullanılan bazı doğal ve yabancı otlar 1. MAS J. Appl. Sci. 2021, 6, 1118–1129. [Google Scholar] [CrossRef]
- Kardaş, C. U sage of savage plants in the folk medicine in Muş. Lokman Hekim J. 2019, 9, 85–96. [Google Scholar] [CrossRef]
- Martínez Medina, J.J.; Naso, L.G.; Pérez, A.L.; Rizzi, A.; Ferrer, E.G.; Williams, P.A.M. Antioxidant and anticancer effects and bioavailability studies of the flavonoid baicalin and its oxidovanadium (IV) complex. J. Inorg. Biochem. 2017, 166, 150–161. [Google Scholar] [CrossRef]
- Gülçin, İ.; Gören, A.C.; Taslimi, P.; Alwasel, S.H.; Kılıc, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of anatolian pennyroyal (Mentha pulegium)-Analysis of its polyphenol contents by LC-MS/MS. Biocatal. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Atalar, M.N.; Köktürk, M.; Altındağ, F.; Ozhan, G.; Özen, T.; Demirtas, İ.; Gülçin, İ. LC-ESI-MS/MS Analysis of secondary metabolites of different St. John’s Wort (Hypericum perforatum) extracts used as food supplements and evaluation of developmental toxicity on zebrafish (Danio rerio) embryos and larvae. S. Afr. J. Bot. 2023, 159, 580–587. [Google Scholar] [CrossRef]
- Li, K.; Fan, H.; Yin, P.; Yang, L.; Xue, Q.; Li, X.; Sun, L.; Liu, Y. Structure-activity relationship of eight high content flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arab. J. Chem. 2018, 11, 159–170. [Google Scholar] [CrossRef]
- Mota, J.C.; Almeida, P.P.; Freitas, M.Q.; Stockler-Pinto, M.B.; Guimarães, J.T. Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem. 2023, 402, 134351. [Google Scholar] [CrossRef]
- Hatamnia, A.A.; Abbaspour, N.; Darvishzadeh, R. Antioxidant activity and phenolic profile of different parts of bene (Pistacia atlantica Subsp. Kurdica) fruits. Food Chem. 2014, 145, 306–311. [Google Scholar] [CrossRef]
- Bingol, Z.; Kızıltaş, H.; Gören, A.C.; Kose, L.P.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulcin, İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller Subsp.)-Profiling of phenolic compounds by LC-HRMS. Heliyon 2021, 7, e06986. [Google Scholar] [CrossRef]
- Bordoloi, S.; Pathak, K.; Devi, M.; Saikia, R.; Das, J.; Kashyap, V.H.; Das, D.; Ahmad, M.Z.; Abdel-Wahab, B.A. Some promising medicinal plants used in Alzheimer’s disease: An ethnopharmacological perspective. Discov. Appl. Sci. 2024, 6, 215. [Google Scholar] [CrossRef]
- Gülçin, İ.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; et al. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds—Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg. Chem. 2020, 103, 104171. [Google Scholar] [CrossRef]
- Durmaz, L.; Karagecili, H.; Gulcin, İ. Evaluation of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibition effects and antioxidant activity of baicalin hydrate. Life 2023, 13, 2136. [Google Scholar] [CrossRef] [PubMed]
- Kashtoh, H.; Baek, K.H. Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes. Plants 2022, 11, 2722. [Google Scholar] [CrossRef] [PubMed]
- Hisar, O.; Beydemir, S.; Gülçin, I.; Küfrevioglu, O.I.; Supuran, C.T. Effects of low molecular weight plasma inhibitors of rainbow trout (Oncorhynchus mykiss) on human erythrocyte carbonic anhydrase-II isozyme activity in vitro and rat erythrocytes in vivo. J. Enzyme Inhib. Med. Chem. 2005, 20, 35–39. [Google Scholar] [CrossRef]
- Karagecili, H.; İzol, E.; Kirecci, E.; Gulcin, İ. Determination of antioxidant, anti-alzheimer, antidiabetic, antiglaucoma and antimicrobial effects of Zivzik pomegranate (Punica granatum)—A chemical profiling by LC-MS/MS). Life 2023, 13, 735. [Google Scholar] [CrossRef]
- Aslan, K.; Kiziltas, H.; Guven, L.; Karagecili, H.; Arslan, D.; Gulcin, İ. Enzyme inhibition property of different daisies from Asteraceae family; Calendula officinalis, Matricaria chamomilla, and Anthemis pseudocotula: Kinetics and molecular docking studies, Rec. Nat. Prod. 2025, 19, 247–262. [Google Scholar] [CrossRef]
- Guan, R.; Van Le, Q.; Yang, H.; Zhang, D.; Gu, H.; Yang, Y.; Sonne, C.; Lam, S.S.; Zhong, J.; Jianguang, Z.; et al. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 2021, 271, 129499. [Google Scholar] [CrossRef]
- Gulcin, I.; Tel, A.Z.; Kirecci, E. Antioxidant, antimicrobial, antifungal, and antiradical activities of Cyclotrichium niveum (BOISS.) Manden and Scheng. Int. J. Food Prop. 2008, 11, 450–471. [Google Scholar] [CrossRef]
- Karageçili, H.; Polat, T.; Yılmaz, M.A.; Fidan, M.; Karaismailoğlu, M.C.; Gülçin, İ. Evaluation of the antioxidant, antidiabetic and anti-Alzheimer effects of Capsella bursa-pastoris-Polyphenolic profiling by LC-MS/MS. Rec. Nat. Prod. 2024, 18, 643–662. [Google Scholar] [CrossRef]
- Aslan, K.; Kopar, E.E.; Kelle, K.; Karageçili, H.; Yilmaz, M.A.; Cakir, O.; Alwasel, S.; Gulcin, I. Phytochemical profile and bioactive properties of sage (Salvia fruticosa) and thyme (Thymus vulgaris) extracts. Int. J. Food Prop. 2025, 28, 2481148. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Gülçin, I.; Topal, F.; Çakmakçi, R.; Bilsel, M.; Gören, A.C.; Erdogan, U. Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J. Food Sci. 2011, 76, 585–593. [Google Scholar] [CrossRef]
- Gülçin, I.; Bursal, E.; Şehitoĝlu, M.H.; Bilsel, M.; Gören, A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2010, 48, 2227–2238. [Google Scholar] [CrossRef]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Karagecili, H.; Yılmaz, M.A.; Ertürk, A.; Kiziltas, H.; Güven, L.; Alwasel, S.H.; Gulcin, İ. Comprehensive metabolite profiling of berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules 2023, 28, 1739. [Google Scholar] [CrossRef] [PubMed]
- Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A.C.; Alwasel, S.H.; Köksal, E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 2017, 11, 556–566. [Google Scholar] [CrossRef]
- Apak, R.; Calokerinos, A.; Gorinstein, S.; Segundo, M.A.; Hibbert, D.B.; Gülçin, İ.; Demirci Çekiç, S.; Güçlü, K.; Özyürek, M.; Esin Çelik, S.; et al. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species. Pure Appl. Chem. 2022, 94, 87–144. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef]
- Karageçili, H.; Izol, E.; Kireçci, E.; Gülçin, I. Antioxidant, antidiabetic, antiglaucoma, and anticholinergic effects of Tayfi grape (Vitis vinifera): A phytochemical screening by LC-MS/MS analysis. Open Chem. 2023, 21, 20230120. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Šavikin, K.; Živković, J.; Alimpić, A.; Zdunić, G.; Janković, T.; Duletić-Laušević, S.; Menković, N. Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties. Ind. Crops Prod. 2018, 113, 142–149. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, L.; Karageçili, H.; Erturk, A.; Ozden, E.M.; Taslimi, P.; Alwasel, S.; Gülçin, İ. Hamamelitannin’s antioxidant effect and its inhibition capability on α-glycosidase, carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase enzymes. Processes 2024, 12, 2341. [Google Scholar] [CrossRef]
- Durmaz, L.; Kiziltas, H.; Karagecili, H.; Alwasel, S.; Gulcin, İ. Potential antioxidant, anticholinergic, antidiabetic and antiglaucoma activities and molecular docking of spiraeoside as a secondary metabolite of onion (Allium cepa). Saudi Pharm. J. 2023, 31, 101760. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Kazancioglu, E.A.; Kazancioglu, M.Z.; Sağlamtaş, R.; Yalcin, G.; Gulcin, I.; Algul, O. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J. Mol. Struct. 2022, 1254, 132358. [Google Scholar] [CrossRef]
- Ozden, E.M.; Bingol, Z.; Mutlu, M.; Karagecili, H.; Köksal, E.; Goren, A.C.; Alwasel, S.H.; Gulcin, İ. Antioxidant, antiglaucoma, anticholinergic, and antidiabetic effects of kiwifruit (Actinidia deliciosa) oil: Metabolite profile analysis using LC-HR/MS, GC/MS and GC-FID. Life 2023, 13, 1939. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 67, 248–254. [Google Scholar] [CrossRef]
- Akbaba, Y.; Akincioglu, A.; Göçer, H.; Göksu, S.; Gülçin, I.; Supuran, C.T. Carbonic anhydrase inhibitory properties of novel sulfonamide derivatives of aminoindanes and aminotetralins. J. Enzyme Inhib. Med. Chem. 2014, 29, 35–42. [Google Scholar] [CrossRef]
- Tugrak, M.; Gul, H.I.; Bandow, K.; Sakagami, H.; Gulcin, I.; Ozkay, Y.; Supuran, C.T. Synthesis and biological evaluation of some new mono mannich bases with piperazines as possible anticancer agents and carbonic anhydrase inhibitors. Bioorg. Chem. 2019, 90, 103095. [Google Scholar] [CrossRef]
- Çetinkaya, Y.; Göçer, H.; Menzek, A.; Gülçin, I. Synthesis and antioxidant properties of (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives. Arch. Pharm. 2012, 345, 323–334. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Fe3+ reducing power as the most common assay for understanding the biological functions of antioxidants. Processes 2025, 13, 1296. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Singh, A.P. In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. JAMS J. Acupunct. Meridian Stud. 2012, 5, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Taslimi, P.; Köksal, E.; Gören, A.C.; Bursal, E.; Aras, A.; Kılıç, Ö.; Alwasel, S.; Gülçin, İ. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arab. J. Chem. 2020, 13, 4528–4537. [Google Scholar] [CrossRef]
- Kalın, P.; Gülçin, İ.; Gören, A.C. Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Rec. Nat. Prod. 2015, 9, 496–502. [Google Scholar]
- Eruygur, N.; Koçyiğit, U.M.; Taslimi, P.; Ataş, M.; Tekin, M.; Gülçin, I. Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. S. Afr. J. Bot. 2019, 120, 141–145. [Google Scholar] [CrossRef]
- Artunc, T.; Menzek, A.; Taslimi, P.; Gulcin, I.; Kazaz, C.; Sahin, E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg. Chem. 2020, 100, 103884. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants-A comprehensive review. Arch. Toxicol. 2025, 99, 1893–1997. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods-An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Ozkan, G.; Sakarya, F.B.; Tas, D.; Yurt, B.; Ercisli, S.; Capanoglu, E. Effect of in vitro digestion on the phenolic content of herbs collected from Eastern Anatolia. ACS Omega 2023, 8, 12730–12738. [Google Scholar] [CrossRef]
- Kiziltaş, H. Antioxidant activity of lyophilized water extract of aerial parts of Italian bugloss (Anchusa azurea Mill.). J. Agric. Nat. 2022, 25, 1225–1233. [Google Scholar] [CrossRef]
- Emir, A.; Emir, C.; Yıldırım, H. Characterization of phenolic profile by LC-ESI-MS/MS and enzyme inhibitory activities of two wild edible garlic: Allium nigrum L. and Allium subhirsutum L. J. Food Biochem. 2020, 44, e13165. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Zhang, L.; Bocchi, S.; Giuberti, G.; Ak, G.; Elbasan, F.; Yıldıztugay, E.; Ceylan, R.; Picot-Allain, M.C.N.; Mahomoodally, M.F.; et al. The functional potential of nine allium species related to their untargeted phytochemical characterization, antioxidant capacity and enzyme inhibitory ability. Food Chem. 2022, 368, 130782. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Younis, T.; Ali, M.; Sarfraz, I.; Selamoglu, Z. Astragalin: A bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci. 2018, 2018, 9794625. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Padilla, X.; Ramón-Gallegos, E.; Díaz-Cedillo, F.; Silva-Torres, R. Astragalin identification in graviola pericarp indicates a possible participation in the anticancer activity of pericarp crude extracts: In vitro and in silico approaches. Arab. J. Chem. 2022, 15, 103720. [Google Scholar] [CrossRef]
- Buckner, C.A.; Lafrenie, R.M.; Dénommée, J.A.; Caswell, J.M.; Want, D.A.; Gan, G.G.; Leong, Y.C.; Bee, P.C.; Chin, E.; Teh, A.K.H.; et al. We are intechopen, the world’s leading publisher of open access books built by scientists, for scientists TOP 1%. Intech 2016, 11, 13. [Google Scholar]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Sargin, S.A. Plants used against obesity in Turkish folk medicine: A review. J. Ethnopharmacol. 2021, 270, 113841. [Google Scholar] [CrossRef]
- Shabbir, U.; Rubab, M.; Daliri, E.B.M.; Chelliah, R.; Javed, A.; Oh, D.H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota. Nutrients 2021, 13, 206. [Google Scholar] [CrossRef]
- Samimi, S.; Ardestani, M.S.; Dorkoosh, F.A. Preparation of carbon quantum dots- quinic acid for drug delivery of gemcitabine to breast cancer cells. J. Drug Deliv. Sci. Technol. 2021, 61, 102287. [Google Scholar] [CrossRef]
- Mani, A.; Kushwaha, K.; Khurana, N.; Gupta, J. P-Coumaric acid attenuates high-fat diet-induced oxidative stress and nephropathy in diabetic rats. J. Anim. Physiol. Anim. Nutr. 2022, 106, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Xaviera, A.; Saleem, A.; Akhtar, M.F.; Alshammari, A.; Albekairi, N.A. Fumaric acid per Se and in combination with methotrexate arrests inflammation via moderating inflammatory and oxidative stress biomarkers in arthritic rats. Immunopharmacol. Immunotoxicol. 2024, 46, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Adedara, I.A.; Fasina, O.B.; Ayeni, M.F.; Ajayi, O.M.; Farombi, E.O. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem. Toxicol. 2019, 125, 170–181. [Google Scholar] [CrossRef]
- Hamid, A.A.; Aiyelaagbe, O.; Usman, L.A.; Oloduowo Ameen, M. Antioxidants: Its medicinal and pharmacological applications composition and bioactivities of essential oils view project. Afr. J. Pure Appl. 2010, 4, 142–151. [Google Scholar]
- Augustyniak, A.; Bartosz, G.; Čipak, A.; Duburs, G.; Horáková, L.; Łuczaj, W.; Majekova, M.; Odysseos, A.D.; Rackova, L.; Skrzydlewska, E.; et al. Natural and synthetic antioxidants: An updated overview. Free Radical Res. 2010, 44, 1216–1262. [Google Scholar] [CrossRef]
- Izol, E.; Temel, H.; Yilmaz, M.A.; Yener, I.; Olmez, O.T.; Kaplaner, E.; Fırat, M.; Hasimi, N.; Ozturk, M.; Ertas, A. A Detailed chemical and biological investigation of twelve allium species from eastern anatolia with chemometric studies. Chem. Biodivers. 2021, 18, e2000560. [Google Scholar] [CrossRef]
- Hasbal-Celikok, G.; Azami, F.T.; Celikok, Y.; Duranay, S.; Kocyigit, M.; Yilmaz-Ozden, T. Determination of the biological activities of endemic allium lazikkiyense and its phytochemical profile by LC-MS/MS analysis. Food Chem. 2025, 464, 141930. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G.; Aktumsek, A.; Ceylan, O.; Uysal, S. Screening of possible in vitro neuroprotective, skin care, antihyperglycemic, and antioxidative effects of Anchusa undulata L. Subsp. Hybrida (Ten.) coutinho from Turkey and its fatty acid profile. Int. J. Food Prop. 2015, 18, 1491–1504. [Google Scholar] [CrossRef]
- Kadyrbayeva, G.; Zagórska, J.; Grzegorczyk, A.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Ludwiczuk, A.; Czech, K.; Kumar, M.; Koch, W.; Malm, A.; et al. The phenolic compounds profile and cosmeceutical significance of two kazakh species of onions: Allium galanthum and a. Turkestanicum. Molecules 2021, 26, 5491. [Google Scholar] [CrossRef]
- Özel, H.B.; Baş Topcu, K.S.; Dere, S.; Genç, N.; Kisa, D. In vitro and in silico based assessment of biological activity of endemic allium species: LC-MS/MS analysis of onions. Food Biosci. 2024, 59, 104209. [Google Scholar] [CrossRef]
- Durmaz, L.; Erturk, A.; Akyüz, M.; Kose, L.P.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, İ. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules 2022, 27, 3091. [Google Scholar] [CrossRef] [PubMed]
- Imtaiyaz Hassan, M.; Shajee, B.; Waheed, A.; Ahmad, F.; Sly, W.S. Structure, function and applications of carbonic anhydrase isozymes. Bioorg. Med. Chem. 2013, 21, 1570–1582. [Google Scholar] [CrossRef]
- Kundo, N.K.; Manik, M.I.N.; Biswas, K.; Khatun, R.; Al-Amin, M.Y.; Alam, A.H.M.K.; Tanaka, T.; Sadik, G. Identification of polyphenolics from Loranthus globosus as Potential inhibitors of cholinesterase and oxidative stress for Alzheimer’s disease treatment. Biomed Res. Int. 2021, 2021, 9154406. [Google Scholar] [CrossRef]
- Emir, C.; Emir, A. Chemical analysis and enzyme inhibitory activities of essential oil obtained from Allium proponticum Subsp. Proponticum, an endemic species. J. Res. Pharm. 2022, 26, 574–580. [Google Scholar] [CrossRef]
- Emir, C.; Emir, A. Phytochemical analyses with LC-MS/MS and in vitro enzyme inhibitory activities of an endemic species “Allium stylosum O. Schwarz” (Amaryllidaceae). S. Afr. J. Bot. 2021, 136, 70–75. [Google Scholar] [CrossRef]
- Takim, K.; Yigin, A.; Koyuncu, I.; Kaya, R.; Gülçin, İ. Anticancer, anticholinesterase and antidiabetic activities ofTunceli garlic (Allium tuncelianum): Determining its phytochemical content by LC–MS/MS analysis. J. Food Meas. Charact. 2021, 15, 3323–3335. [Google Scholar] [CrossRef]
- Khursheed, R.; Singh, S.K.; Wadhwa, S.; Kapoor, B.; Gulati, M.; Kumar, R.; Ramanunny, A.K.; Awasthi, A.; Dua, K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur. J. Pharmacol. 2019, 862, 172625. [Google Scholar] [CrossRef]
- van de Laar, F.A. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag. 2008, 4, 1189–1195. [Google Scholar] [CrossRef]
Extracts | Extraction Yield (%) | Total Phenolics (mg GAE/g) | Total Flavonoids (mg QE/g) |
---|---|---|---|
EEAA | 22.14 | 327.35 ± 5.24 | 234.03 ± 4.98 |
EEAK | 35.25 | 445.52 ± 13.50 | 332.88 ± 2.76 |
WEAA | 18.12 | 96.22 ± 3.22 | 60.19 ± 0.89 |
WEAK | 32.70 | 405.98 ± 9.63 | 297.65 ± 3.78 |
No | Analytes | Extract Quantity (mg/g Extract) | |||
---|---|---|---|---|---|
EEAA | EEAK | WEAA | WEAK | ||
1 | Quinic acid | <LOD | 1.784 | 0.290 | 5.094 |
2 | Fumaric acid | <LOD | 1.264 | <LOD | 1.415 |
3 | Aconitic acid | <LOD | 0.113 | <LOD | 0.569 |
6 | Protocatechuic acid | 0.149 | 1.053 | <LOD | 0.520 |
14 | 4-OHBenzoic acid | <LOD | 0.629 | <LOD | <LOD |
17 | Caffeic acid | 0.092 | 0.643 | <LOD | 0.117 |
24 | p-Coumaric acid | <LOD | 2.237 | <LOD | 0.125 |
29 | Salicylic acid | <LOD | <LOD | 0.032 | <LOD |
30 | Cynaroside | 0.039 | <LOD | <LOD | <LOD |
33 | Rutin | <LOD | 0.099 | <LOD | 0.093 |
34 | Isoquercitrin | <LOD | 13.256 | <LOD | 10.642 |
35 | Hesperidin | <LOD | 0.068 | <LOD | 0.074 |
38 | Rosmarinic acid | <LOD | <LOD | <LOD | 0.022 |
42 | Astragalin | 0.033 | 20.045 | <LOD | 11.212 |
47 | Quercetin | <LOD | 6.637 | <LOD | 0.522 |
48 | Naringenin | <LOD | 0.026 | <LOD | <LOD |
49 | Hesperetin | <LOD | 0.432 | <LOD | 0.035 |
50 | Luteolin | <LOD | 0.136 | <LOD | <LOD |
51 | Genistein | <LOD | <LOD | <LOD | <LOD |
52 | Kaempferol | <LOD | 7.263 | <LOD | 0.131 |
53 | Apigenin | <LOD | 0.006 | <LOD | <LOD |
Antioxidants | Cu2+ Reducing | Fe3+ Reducing | Fe3+-TPTZ Reducing | |||
---|---|---|---|---|---|---|
A (450 nm) | r2 | A (700 nm) | r2 | A (4593 nm) | r2 | |
BHA | 1.58 ± 0.016 | 0.9912 | 1.76 ± 0.026 | 0.9988 | 1.75 ± 0.040 | 0.9825 |
BHT | 2.15 ± 0.068 | 0.9990 | 2.08 ± 0.062 | 0.9950 | 1.50 ± 0.080 | 0.9685 |
α-Tocopherol | 1.47 ± 0.044 | 0.9922 | 0.94 ± 0.059 | 0.9885 | - | - |
Trolox | 1.04 ± 0.102 | 0.9882 | 1.45 ± 0.005 | 0.9822 | 0.84 ± 0.010 | 0.9635 |
EEAA | 0.94 ± 0.103 | 0.9731 | 1.02 ± 0.013 | 0.9940 | 0.74 ± 0.010 | 0.9969 |
EEAK | 2.27 ± 0.194 | 0.9779 | 2.83 ± 0.033 | 0.9862 | 0.97 ± 0.030 | 0.9910 |
WEAA | 0.65 ± 0.024 | 0.9981 | 0.95 ± 0.026 | 0.9909 | 0.09 ± 0.004 | 0.9635 |
WEAK | 0.54 ± 0.009 | 0.9982 | 2.20 ± 0.100 | 0.9970 | 0.68 ± 0.003 | 0.9943 |
Pearson | Phenolics (mg/mL) | Flavonoids (mg/mL) | Fe3+ Reducing § | Cu2+ Reducing § | Fe3+-TPTZ Reducing § | |
---|---|---|---|---|---|---|
Total phenolics | Pearson correlation | 1.000 | 1.000 ** | 0.806 | 0.530 | 0.959 * 0.041 |
Sig. (2-tailed) | - | 0.000 | 0.194 | 0.470 | 0.9950 | |
Total flavonoids | Pearson correlation | 1.000 ** | 1.000 | 0.821 | 0.546 | 0.959 * |
Sig. (2-tailed) | 0.000 | 0.179 | 0.454 | 0.041 | ||
Fe3+ reducing § | Pearson correlation | 0.806 | 0.821 | 1.000 | 0.675 | 0.716 |
Sig. (2-tailed) | 0.194 | 0.179 | 0.325 | 0.284 | ||
Cu2+ reducing § | Pearson correlation | 0.530 | 0.546 | 0.675 | 1.000 | 0.663 |
Sig. (2-tailed) | 0.470 | 0.454 | 0.325 | 0.337 | ||
Fe3+-TPTZ reducing § | Pearson correlation | 0.959 * | 0.959 * | 0.716 | 0.663 | 1.000 |
Sig. (2-tailed) | 0.041 | 0.041 | 0.284 | 0.337 | - |
Antioxidants | ABTS•+ Scavenging | DPPH• Scavenging | ||
---|---|---|---|---|
IC50 | r2 | IC50 | r2 | |
BHA | 38.59 ± 0.130 | 0.9130 | 23.87 ± 0.097 | 0.9949 |
BHT | 32.00 ± 0.100 | 0.9454 | 13.34 ± 0.011 | 0.9729 |
α-Tocopherolol | 25.12 ± 0.070 | 0.9756 | 30.29 ± 0.056 | 0.9521 |
Trolox | 53.26 ± 0.070 | 0.9414 | 20.98 ± 0.016 | 0.9658 |
Ascorbic acid | 28.79 ± 0.120 | 0.9401 | 18.61 ± 0.120 | 0.9828 |
EEAA | 33.94 ± 0.097 | 0.9415 | 36.87 ± 0.064 | 0.9875 |
EEAK | 30.93 ± 0.074 | 0.9436 | 30.78 ± 0.116 | 0.9807 |
WEAA | 33.78 ± 0.020 | 0.9973 | 31.67 ± 0.033 | 0.9915 |
WEAK | 33.45 ± 0.080 | 0.9716 | 32.45 ± 0.210 | 0.9988 |
Samples | IC50 (μg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
hCA I | r2 | hCA II | r2 | AChE | r2 | BChE | r2 | α-Glycosidase | r2 | |
EEAA | 41.30 | 0.9938 | 146.40 | 0.9545 | 191.3 | 0.9732 | 65.27 | 0.9646 | 38.46 | 0.9640 |
EEAK | 9.21 | 0.9845 | 194.70 | 0.9248 | 96.14 | 0.9275 | 44.77 | 0.9787 | 24.36 | 0.9925 |
WEAA | 59.93 | 0.9768 | 138.10 | 0.9448 | 35.01 | 0.9593 | 64.54 | 0.9834 | 78.90 | 0.9878 |
WEAK | 23.51 | 0.9907 | 81.02 | 0.9108 | 40.08 | 0.9966 | 38.05 | 0.9802 | 10.72 | 0.9958 |
References | 55.10 | 0.9963 | 49.80 | 0.9957 | 12.22 | 0.9996 | 8.82 | 0.9836 | 25.43 | 0.9656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahiroglu, V.; Karagecili, H.; Aslan, K.; Gulcin, İ. Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea. Life 2025, 15, 1209. https://doi.org/10.3390/life15081209
Tahiroglu V, Karagecili H, Aslan K, Gulcin İ. Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea. Life. 2025; 15(8):1209. https://doi.org/10.3390/life15081209
Chicago/Turabian StyleTahiroglu, Veysel, Hasan Karagecili, Kubra Aslan, and İlhami Gulcin. 2025. "Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea" Life 15, no. 8: 1209. https://doi.org/10.3390/life15081209
APA StyleTahiroglu, V., Karagecili, H., Aslan, K., & Gulcin, İ. (2025). Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea. Life, 15(8), 1209. https://doi.org/10.3390/life15081209