Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = entropy–enthalpy compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5811 KB  
Article
Thermodynamics of Molecular Transport Through a Nanochannel: Evidence of Energy–Entropy Compensation
by Changsun Eun
Int. J. Mol. Sci. 2025, 26(15), 7277; https://doi.org/10.3390/ijms26157277 - 28 Jul 2025
Viewed by 253
Abstract
In this work, the thermodynamics of molecular transport between two compartments connected by a nanochannel is investigated through an analysis of internal energy and entropy changes, with a focus on how these changes depend on intermolecular interaction strength. When interactions are weak, resembling [...] Read more.
In this work, the thermodynamics of molecular transport between two compartments connected by a nanochannel is investigated through an analysis of internal energy and entropy changes, with a focus on how these changes depend on intermolecular interaction strength. When interactions are weak, resembling gas-like behavior, entropy dominates and favors configurations in which molecules are evenly distributed between the two compartments, despite an increase in internal energy. In contrast, strong interactions, characteristic of liquid-like behavior, lead to dominant energetic contributions that favor configurations with molecules localized in a single compartment, despite entropy loss. Intermediate interaction strengths yield comparable entropic and energetic contributions that cancel each other out, resulting in oscillatory behavior between evenly distributed and localized configurations, as observed in previous work. This thermodynamic analysis reveals energy–entropy compensation, in which entropic and energetic contributions offset each other across different interaction strengths; notably, this compensatory relationship exhibits a linear trend. These findings provide insight into the thermodynamic origins of molecular transport behavior and highlight fundamental parallels between molecular transport and molecular binding, the latter being particularly relevant to molecular recognition and drug design. Full article
(This article belongs to the Special Issue Research on Molecular Dynamics: 2nd Edition)
Show Figures

Figure 1

19 pages, 4720 KB  
Review
Changes in Thermodynamic Parameters Induced by Pyrimidine Nucleic Bases Forming Complexes with Amino Acids and Peptides in a Buffer Solution at pH = 7.4
by Elena Yu. Tyunina, Vladimir P. Barannikov and Igor N. Mezhevoi
Liquids 2025, 5(3), 19; https://doi.org/10.3390/liquids5030019 - 22 Jul 2025
Viewed by 266
Abstract
This article presents a mini-review of the available data on the thermodynamics of the complexation of amino acids and peptides with some nucleic bases in a buffer medium. Data on changes in thermodynamic parameters (binding constants, Gibbs energy, enthalpy, entropy) during the complexation [...] Read more.
This article presents a mini-review of the available data on the thermodynamics of the complexation of amino acids and peptides with some nucleic bases in a buffer medium. Data on changes in thermodynamic parameters (binding constants, Gibbs energy, enthalpy, entropy) during the complexation of nucleic bases with amino acids and peptides as a function of physicochemical properties are given at T = 298.15 K. The effects of complexation on the volumetric properties of nucleic bases, including apparent molar volumes, standard molar volumes, and limiting molar expansibility, over a temperature range of 288.15 to 313.15 K are considered in detail. Differences in the behavior of amino acids and peptides caused by different modes of coordination with nucleic bases are noted. These manifest in the stoichiometry of the formed complexes, the relationship with the acid dissociation constants of carboxyl and amino groups, enthalpy–entropy compensation in the complexation process, the temperature dependence of the transfer volumes, and the effect of hydrophobicity on volumetric characteristics. Full article
Show Figures

Figure 1

13 pages, 913 KB  
Review
On Enthalpy–Entropy Compensation Characterizing Processes in Aqueous Solution
by Fiorella Mancini and Giuseppe Graziano
Entropy 2025, 27(7), 716; https://doi.org/10.3390/e27070716 - 2 Jul 2025
Viewed by 474
Abstract
The phenomenon of enthalpy–entropy compensation emerges as a ubiquitous feature of processes occurring in water, especially those involving biological macromolecules. In writing the present study, the aim was not to review most of the rationalizations proposed so far but to focus on a [...] Read more.
The phenomenon of enthalpy–entropy compensation emerges as a ubiquitous feature of processes occurring in water, especially those involving biological macromolecules. In writing the present study, the aim was not to review most of the rationalizations proposed so far but to focus on a general theory of hydration, partly developed and applied by one of us. This theory poses a physical condition for the occurrence of enthalpy–entropy compensation: the energetic strength of the solute–water attraction must be weak compared to that of water–water H-bonds. This condition is largely fulfilled in water due to the cooperativity of its three-dimensional H-bonded network. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

26 pages, 4351 KB  
Article
Practical Aspects of the Analysis of Thermal Dissociation and Pyrolysis Processes in Terms of Transition State Theory
by Andrzej Mianowski and Mateusz Szul
Energies 2025, 18(10), 2619; https://doi.org/10.3390/en18102619 - 19 May 2025
Viewed by 390
Abstract
The practical implementation of transition state theory (TST) commonly assumes equivalence between theoretical and experimentally determined rate constants, represented by Arrhenius parameters—the activation energy and pre-exponential factor. Here, we employed the General Rate Equation (GRE) to analyse solid–gas-phase thermolysis in two paradigms: mass [...] Read more.
The practical implementation of transition state theory (TST) commonly assumes equivalence between theoretical and experimentally determined rate constants, represented by Arrhenius parameters—the activation energy and pre-exponential factor. Here, we employed the General Rate Equation (GRE) to analyse solid–gas-phase thermolysis in two paradigms: mass loss (e.g., calcite decomposition) and mass gain (e.g., methane pyrolysis leading to solid carbon formation). By partitioning the Gibbs free energy of activation into forwards and reverse contributions, plus an additional term accounting for concurrent physical phenomena (notably nucleation and diffusion-viscosity effects), we derived an empirical universal expression relating both Arrhenius parameters and G+ across 500–1500 K. We further demonstrate the utility of the isokinetic temperature for interpreting cases where only Kinetic Compensation or Enthalpy–Entropy Compensation effects are observed. This framework unifies kinetic and thermodynamic descriptions of complex thermolysis processes. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 2341 KB  
Article
Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein Folding
by María J. Benítez and Juan S. Jiménez
Biophysica 2025, 5(1), 2; https://doi.org/10.3390/biophysica5010002 - 13 Jan 2025
Viewed by 2867
Abstract
The thermodynamic study of protein folding shows the generation of a narrow range of ΔG° values, as a net result of large changes in the ΔH° and TΔS° values of the folding process. The obvious consequence of this narrow range of values is [...] Read more.
The thermodynamic study of protein folding shows the generation of a narrow range of ΔG° values, as a net result of large changes in the ΔH° and TΔS° values of the folding process. The obvious consequence of this narrow range of values is that a linear enthalpy–entropy relationship, showing apparent enthalpy–entropy compensation (EEC), is clearly observed to be associated with the study of protein folding. Herein, we show the ΔH°, TΔS°, and ΔG° values for a set of 583 data from protein folding processes, at various temperatures, as calculated by using the Gibbs–Helmholtz equations. This set of thermodynamic data was calculated from the melting temperature (Tm), the melting enthalpy (ΔHm), and the change in heat capacity (ΔCp°) values, all of them associated with the heat-induced protein unfolding processes and included in the ProTherm Data Base. The average values of enthalpy (ΔH°av), entropy (TΔS°av), and free energy (ΔG°av) for the folding process were calculated within the range of temperature from 0 °C to the average value of Tm. The values and temperature dependency of TΔS°av within this temperature range are practically equal to those corresponding to ΔH°av, while ΔG°av remains small and displaying a curve with a minimum at about 10 °C and a value of ΔG° = −30.9 kJ/mol at the particular temperature of 25 °C. The large negative value of TΔS°av, together with the also large and negative value of ΔCp°av, suggests large conformational changes and important EEC, thus causing the small average value of ΔG° for protein folding, which is enough to guarantee both protein stability and molecular flexibility to allow for adaptation to the chemical potentials of the environment. Our analysis suggests that EEC may be the quantum-mechanical evolutive mechanism to make functional proteins adaptative to environmental temperature and metabolite concentrations. The analysis of protein folding data, compared with those of protein–ligand interaction, allows us to suggest strategies to overcome EEC in the design of new drugs. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

33 pages, 3482 KB  
Review
Literature Review on Thermodynamic and Kinetic Limitations of Thermal Decomposition of Methane
by Andrzej Mianowski, Mateusz Szul, Tomasz Radko, Aleksander Sobolewski and Tomasz Iluk
Energies 2024, 17(19), 5007; https://doi.org/10.3390/en17195007 - 8 Oct 2024
Cited by 4 | Viewed by 2337
Abstract
The state of the art in methane pyrolysis does not yet provide a definitive answer as to whether the concept of an elementary reaction is universally applicable to the apparently simple process of methane dissociation. Similarly, the literature currently lacks a comprehensive and [...] Read more.
The state of the art in methane pyrolysis does not yet provide a definitive answer as to whether the concept of an elementary reaction is universally applicable to the apparently simple process of methane dissociation. Similarly, the literature currently lacks a comprehensive and unambiguous description of the methane pyrolysis process and, in particular, a single model that would well represent its course at both the micro and macro scales. Given the wide range of conditions under which this reaction can occur—whether thermal or thermo-catalytic, in solid or fluidized bed reactors—it is crucial to evaluate the usefulness of different kinetic models and their compatibility with basic thermodynamic principles and design assumptions. To address these research gaps, the authors analysed the thermodynamic and kinetic dependencies involved in the thermal decomposition of methane, using the synthesis of methane from its elemental components and its reversibility as a basis for exploring suitable kinetic models. Using experimental data available in the literature, a wide range of kinetic models have been analysed to determine how they all relate to the reaction rate constant. It was found that regardless of whether the process is catalytic or purely thermal, for temperatures above 900 °C the reversibility of the reaction has a negligible effect on the hydrogen yield. This work shows how the determined kinetic parameters are consistent with the Kinetic Compensation Effect (KCE) and, by incorporating elements of Transition State Theory (TST), the possibility of the existence of Entropy–Enthalpy Compensation (EEC). The indicated correspondence between KCE and EEC is strengthened by the calculated average activation entropy at isokinetic temperature (SB=275.0 J·(mol·K)1). Based on these results, the authors also show that changes in the activation energy (E=20421 kJ·mol1) can only serve as an estimate of the optimal process conditions, since the isoconversion temperature (Tiso=12001450 K>Teq) is shown to depend not only on thermodynamic principles but also on the way the reaction is carried out, with temperature (T) and pressure (P) locally compensating each other. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

8 pages, 267 KB  
Article
Calculation of Hydrogen Bonding Enthalpy Using the Two-Parameter Abraham Equation
by Boris N. Solomonov, Mansur B. Khisamiev and Mikhail I. Yagofarov
Liquids 2024, 4(3), 624-631; https://doi.org/10.3390/liquids4030034 - 6 Sep 2024
Cited by 2 | Viewed by 1652
Abstract
In this work, an approach to the calculation of hydrogen bonding enthalpies is proposed. It employs the correlation proposed by M.H. Abraham, establishing the connection between the equilibrium constant (KHB) and acidity (α2H) and basicity ( [...] Read more.
In this work, an approach to the calculation of hydrogen bonding enthalpies is proposed. It employs the correlation proposed by M.H. Abraham, establishing the connection between the equilibrium constant (KHB) and acidity (α2H) and basicity (β2H) parameters: log KHB = 7.354 · α2H · β2H − 1.099. Hydrogen bonding enthalpy (ΔHBH) is found using the compensation relationship with Gibbs energy (ΔHBG): ΔHBG = 0.66 · ΔHBH + 2.5 kJ·mol−1. This relationship enables the calculation of the enthalpy, Gibbs energy and entropy of hydrogen bonding. The validity of this approach was tested against 122 experimental hydrogen bonding enthalpies values available from the literature. The root mean square deviation and average deviation equaled 1.6 kJ·mol−1 and 0.5 kJ·mol−1, respectively. Full article
19 pages, 8891 KB  
Article
NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na2SO4 and NaH2PO4
by Liang-Zhong Lim and Jianxing Song
Int. J. Mol. Sci. 2024, 25(16), 9091; https://doi.org/10.3390/ijms25169091 - 22 Aug 2024
Cited by 1 | Viewed by 1028
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This [...] Read more.
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy–entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 2nd Edition)
Show Figures

Figure 1

8 pages, 648 KB  
Article
Molecular-Scale Liquid Density Fluctuations and Cavity Thermodynamics
by Attila Tortorella and Giuseppe Graziano
Entropy 2024, 26(8), 620; https://doi.org/10.3390/e26080620 - 24 Jul 2024
Viewed by 1332
Abstract
Equilibrium density fluctuations at the molecular level produce cavities in a liquid and can be analyzed to shed light on the statistics of the number of molecules occupying observation volumes of increasing radius. An information theory approach led to the conclusion that these [...] Read more.
Equilibrium density fluctuations at the molecular level produce cavities in a liquid and can be analyzed to shed light on the statistics of the number of molecules occupying observation volumes of increasing radius. An information theory approach led to the conclusion that these probabilities should follow a Gaussian distribution. Computer simulations confirmed this prediction across various liquid models if the size of the observation volume is not large. The reversible work required to create a cavity and the chance of finding no molecules in a fixed observation volume are directly correlated. The Gaussian formula for the latter probability is scrutinized to derive the changes in enthalpy and entropy, which arise from the cavity creation. The reversible work of cavity creation has a purely entropic origin as a consequence of the solvent-excluded volume effect produced by the inaccessibility of a region of the configurational space. The consequent structural reorganization leads to a perfect compensation of enthalpy and entropy changes. Such results are coherent with those obtained from Lee in his direct statistical mechanical study. Full article
(This article belongs to the Special Issue Thermodynamics and Anomalous Properties in Fluids)
Show Figures

Figure 1

12 pages, 1619 KB  
Article
Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein–Ligand Interactions
by Juan S. Jiménez and María J. Benítez
Biophysica 2024, 4(2), 298-309; https://doi.org/10.3390/biophysica4020021 - 14 Jun 2024
Cited by 8 | Viewed by 4193
Abstract
The thermodynamics of protein–ligand interactions seems to be associated with a narrow range of Gibbs free energy. As a consequence, a linear enthalpy–entropy relationship showing an apparent enthalpy–entropy compensation (EEC) is frequently associated with protein–ligand interactions. When looking for the most negative values [...] Read more.
The thermodynamics of protein–ligand interactions seems to be associated with a narrow range of Gibbs free energy. As a consequence, a linear enthalpy–entropy relationship showing an apparent enthalpy–entropy compensation (EEC) is frequently associated with protein–ligand interactions. When looking for the most negative values of ∆H to gain affinity, the entropy compensation gives rise to a barely noticeable increase in affinity, therefore negatively affecting the design and discovery of new and more efficient drugs capable of binding protein targets with a higher affinity. Originally attributed to experimental errors, compensation between ∆H and T∆S values is an observable fact, although its molecular origin has remained obscure and controversial. The thermodynamic parameters of a protein–ligand interaction can be interpreted in terms of the changes in molecular weak interactions as well as in vibrational, rotational, and translational energy levels. However, a molecular explanation to an EEC rendering a linear enthalpy–entropy relationship is still lacking. Herein, we show the results of a data search of ∆G values of 3025 protein–ligand interactions and 2558 “in vivo” ligand concentrations from the Protein Data Bank database and the Metabolome Database (2020). These results suggest that the EEC may be plausibly explained as a consequence of the narrow range of ∆G associated with protein–ligand interactions. The Gaussian distribution of the ∆G values matches very well with that of ligands. These results suggest the hypothesis that the set of ∆G values for the protein–ligand interactions is the result of the evolution of proteins. The conformation versatility of present proteins and the exchange of thousands (even millions) of minute amounts of energy with the environment may have functioned as a homeostatic mechanism to make the ∆G of proteins adaptive to changes in the availability of ligands and therefore achieve the maximum regulatory capacity of the protein function. Finally, plausible strategies to avoid the EEC consequences are suggested. Full article
(This article belongs to the Special Issue State-of-the-Art Biophysics in Spain 2.0)
Show Figures

Figure 1

26 pages, 2927 KB  
Article
Elements of Transition-State Theory in Relation to the Thermal Dissociation of Selected Solid Compounds
by Andrzej Mianowski, Tomasz Radko and Rafał Bigda
Energies 2024, 17(11), 2669; https://doi.org/10.3390/en17112669 - 30 May 2024
Cited by 4 | Viewed by 1019
Abstract
An analysis was carried out on the thermal dissociation of selected inorganic salts according to Transition-State Theory (TST). For this purpose, two possibilities were compared in the context of rate constants: in the first case using the Arrhenius constant directly from TST, and [...] Read more.
An analysis was carried out on the thermal dissociation of selected inorganic salts according to Transition-State Theory (TST). For this purpose, two possibilities were compared in the context of rate constants: in the first case using the Arrhenius constant directly from TST, and in the second, using the thermodynamic equilibrium constant of the reaction/process of active state formation. The determined relationships are presented in the form of temperature profiles. It was established that TST applies to reactions for which there is a formally and experimentally reversible reaction, in the literal sense or catalytic process. The importance of the isoequilibrium temperature, which results from the intersection of the thermodynamic temperature profile and the Gibbs free energy of activation, was demonstrated. Its values close to the equilibrium temperature are indicative of more dynamic kinetic qualities. As part of the discussion, the Kinetic Compensation Effect (KCE) was used to observe changes in the entropy of activation by comparing two kinetic characteristics of the same reaction. Enthalpy–Entropy Compensation (EEC) was shown to be the same law as KCE, just expressed differently. This was made possible by TST, specifically the entropy of activation at isokinetic temperature, by which the perspective of the relationship of energy effects changes. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 1325 KB  
Article
Physico-Chemical Aspects of Metal–Fulvic Complexation
by Martina Klučáková, Jitka Krouská and Michal Kalina
Processes 2024, 12(5), 989; https://doi.org/10.3390/pr12050989 - 13 May 2024
Cited by 2 | Viewed by 1612
Abstract
The interactions of metal ions with fulvic acids were investigated from the point of view of the thermodynamic aspects of complexation as well as the size and charge of the formed complexes. Thermodynamic aspects were studied by means of isothermal titration calorimetry. Particle [...] Read more.
The interactions of metal ions with fulvic acids were investigated from the point of view of the thermodynamic aspects of complexation as well as the size and charge of the formed complexes. Thermodynamic aspects were studied by means of isothermal titration calorimetry. Particle size distribution was determined by the method of dynamic light scattering and charge by the measurement of zeta potential. Complexation resulted in changes in particle size and charge. The particle size distribution was trimodal for fulvic acids and bimodal for fulvic complexes with calcium and magnesium, while copper–fulvic complexes had only one size fraction. The compensation of the negative charge of carboxylic and phenolic functional groups by positively charged metal ions resulted in an increase in zeta potential which became closer to zero in the case of copper–fulvic complexes. However, all metal–humic complexes behaved as colloidally unstable, which resulted in visually observable sedimentation. Calorimetric measurements provided positive values for changes in enthalpy, which indicated endothermic processes. In contrast, quantum chemical calculations as well as experiments with model compounds provided negative values indicating exothermic processes. Changes in Gibbs energy were determined as negative and changes in entropy as positive. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

10 pages, 1602 KB  
Article
Hydrogenation Thermodynamics of Ti16V60Cr24−xFex Alloys (x = 0, 4, 8, 12, 16, 20, 24)
by Francia Ravalison and Jacques Huot
Hydrogen 2024, 5(1), 29-38; https://doi.org/10.3390/hydrogen5010003 - 26 Jan 2024
Cited by 1 | Viewed by 8250
Abstract
The effect of the partial substitution of Cr with Fe on the thermodynamic parameters of vanadium-rich Ti16V60Cr24-xFex alloys (x = 0, 4, 8, 12, 16, 20, 24) was investigated. For each composition, a pressure–concentration isotherm (PCI) [...] Read more.
The effect of the partial substitution of Cr with Fe on the thermodynamic parameters of vanadium-rich Ti16V60Cr24-xFex alloys (x = 0, 4, 8, 12, 16, 20, 24) was investigated. For each composition, a pressure–concentration isotherm (PCI) was registered at 298, 308, and 323 K. The PCI curves revealed a reduction in plateau pressure and a decrease in desorbed hydrogen capacity with an increasing amount of Fe. For all alloys, about 50% or less of the initial hydrogen capacity was desorbed for all chosen temperatures. Entropy (ΔS) and enthalpy (ΔH) values were deducted from corresponding Van’t Hoff plots of the PCI curves: the entropy values ranged from −150 to −57 J/K·mol H2, while the enthalpy values ranged from −44 to −21 kJ/mol H2. They both decreased with an increasing amount of Fe. Plotting ΔS as function of ΔH showed a linear variation that seems to indicate an enthalpy–entropy compensation. Moreover, a quality factor analysis demonstrated that the present relationship between entropy and enthalpy is not of a statistical origin at the 99% confidence level. Full article
(This article belongs to the Topic Metal Hydrides: Fundamentals and Applications)
Show Figures

Figure 1

17 pages, 2171 KB  
Article
Sorption Isotherms and Thermodynamic Characteristics of Gelatin Powder Extracted from Whitefish Skin: Mathematical Modeling Approach
by Mohammad Fikry, Soottawat Benjakul, Saleh Al-Ghamdi, Ajay Mittal, Krisana Nilsuwan, Ronnel Fulleros and Mokhtar Dabbour
Foods 2024, 13(1), 92; https://doi.org/10.3390/foods13010092 - 26 Dec 2023
Cited by 9 | Viewed by 2205
Abstract
Moisture adsorption and desorption isotherms of gelatin extracted from whitefish skin powder (FSGP) at different temperatures across a wide range of water activity were determined along with their thermodynamic properties. Nine mathematical models were utilized for fitting the experimental data and simulating the [...] Read more.
Moisture adsorption and desorption isotherms of gelatin extracted from whitefish skin powder (FSGP) at different temperatures across a wide range of water activity were determined along with their thermodynamic properties. Nine mathematical models were utilized for fitting the experimental data and simulating the adsorption and desorption behavior. The thermodynamic properties were determined and fitted to the experimental data. The results showed that Peleg and GAB models were the best fit for FSGP. The energies involved in the adsorption and desorption process of FSGP indicated a stronger dependence on equilibrium moisture content (Xe). When Xe decreased, there was a consistent trend of increasing thermodynamic properties. Both the moisture adsorption and desorption behaviors of FSGP were, therefore, non-spontaneous processes. Linear correlations between the changes in enthalpy and entropy for adsorption and desorption were observed, indicating the presence of enthalpy–entropy compensation for FSGP. For preserving FSGP quality, it should be stored with Xw ≤ 8 (gw/gdm, d.b.) at temperatures below 53 °C and an RH of 50% to avoid it becoming rubbery. These findings are crucial for providing insight into the optimal drying and storage conditions. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

11 pages, 3644 KB  
Article
Entropy-Enthalpy Compensation in Ti-V-Mn-Cr BCC Alloys Used as Hydrogen Storage Materials
by Chourouk Kefi and Jacques Huot
Inorganics 2023, 11(12), 479; https://doi.org/10.3390/inorganics11120479 - 14 Dec 2023
Cited by 1 | Viewed by 2390
Abstract
In this paper, we report the effect of the Cr/Mn ratio on the thermodynamic properties of Ti30V60Mn(10−x)Crx (x = 0, 3.3, 6.6 and 10) + 4 wt.% Zr alloys. It was found that the enthalpy and [...] Read more.
In this paper, we report the effect of the Cr/Mn ratio on the thermodynamic properties of Ti30V60Mn(10−x)Crx (x = 0, 3.3, 6.6 and 10) + 4 wt.% Zr alloys. It was found that the enthalpy and entropy change with the Cr/MN ratio and that the entropy and entropy variation is coupled in an enthalpy-entropy compensation fashion. Using a compensation quality factor, it was established that the enthalpy-entropy compensation is not due to a statistical origin, with a confidence of more than 95%. Full article
Show Figures

Graphical abstract

Back to TopTop