Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein–Ligand Interactions
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Protein–Ligand Interactions
3.2. Ligand Concentrations “In Vivo”
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lumry, R. Uses of enthalpy-entropy compensation in protein research. Biophys. Chem. 2003, 105, 545–557. [Google Scholar] [CrossRef]
- Cooper, A. Thermodynamic analysis of biomolecular interactions. Curr. Opin. Chem. Biol. 1999, 3, 557–563. [Google Scholar] [CrossRef]
- Sharp, K. Entropy-Enthalpy compensation: Fact or artifact? Protein Sci. 2001, 10, 661–667. [Google Scholar] [CrossRef]
- Martin, S.F.; Clements, J.H. Correlating Structure and Energetics in Protein-Ligand Interactions: Paradigms and Paradoxes. Annu. Rev. Biochem. 2013, 82, 267–293. [Google Scholar] [CrossRef]
- Pan, A.; Kar, T.; Rakshit, A.K.; Moulik, S.P. Enthalpy–Entropy Compensation (EEC) Effect: Decisive Role of Free Energy. J. Phys. Chem. B 2016, 120, 10531–10539. [Google Scholar] [CrossRef]
- Fox, J.M.; Zhao, M.; Fink, M.J.; Kang, K.; Whitesides, G.M. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu. Rev. Biophys. 2018, 47, 223–250. [Google Scholar] [CrossRef]
- Peccati, F.; Jiménez-Osés, G. Enthalpy–Entropy Compensation in Biomolecular Recognition: A Computational Perspective. ACS Omega 2021, 6, 11122–11130. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.-G. Using Implicit-Solvent Potentials to Extract Water Contributions to Enthalpy-Entropy Compensation in Biomolecular Associations. J. Phys. Chem. B 2023, 127, 6825–6832. [Google Scholar] [CrossRef]
- Olsson, T.S.G.; Ladbury, J.E.; Pitt, W.R.; Williams, M.A. Extent of enthalpy–entropy compensation in protein–ligand interactions. Protein Sci. 2011, 20, 1607–1618. [Google Scholar] [CrossRef]
- Dunitz, J.D. Win some, lose some: Enthalpy-entropy compensation in weak intermolecular interactions. Chem. Biol. 1995, 2, 709–712. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. the Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDB bind Database for Protein-Ligand Complexes with known Three-Dimensional Structures. J. Med. Chem. 2004, 47, 2977–2980. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, B.; Zheng, H.; Zhuang, C.; Li, X.; Lu, X.; Quan, C.; Dong, Y.; Zheng, Z.; Xiu, Z. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes. Life Sci. 2017, 169, 52–64. [Google Scholar] [CrossRef]
- Ylilauri, M.; Mattila, E.; Nurminen, E.M.; Käpylä, J.; Niinivehmas, S.P.; Määttä, J.A.; Pentikäinen, U.; Ivaska, J.; Pentikäinen, O.T. Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone. Biochim. Et Biophys. Acta 2013, 1834, 1988–1997. [Google Scholar] [CrossRef]
- Aggarwal, S.; Tanwar, N.; Singh, A.; Munde, M. Formation of Protamine and Zn–Insulin Assembly: Exploring Biophysical Consequences. ACS Omega 2022, 7, 41044–41057. [Google Scholar] [CrossRef]
- Crisalli, A.M.; Cai, A.; Cho, B.P. Probing the Interactions of Perfluorocarboxylic Acids of Various Chain Lengths with Human Serum Albumin: Calorimetric and Spectroscopic Investigations. Chem. Res. Toxicol. 2023, 36, 703–713. [Google Scholar] [CrossRef]
- Ueda, I.; Yamanaka, M. Titration calorimetry of anesthetic-protein interaction: Negative enthalpy of binding and anesthetic potency. Biophys. J. 1997, 72, 1812–1817. [Google Scholar] [CrossRef]
- Hinz, H.J.; Steininger, G.; Schmid, F.; Jaenide, R. Studies on an energy structure-function relationship of dehydrogenases. II. Calorimetric investigations on the interaction of coenzyme fragments with pig skeletal muscle lactate dehydrogenase. FEBS Lett. 1978, 87, 83–86. [Google Scholar] [CrossRef]
- Mateo, P.L.; Baron, C.; Lopez-Mayorga, O.; Jimenez, J.S.; Cortijo, M. AMP and IMP binding to glycogen phosphorylase b. A calorimetric and equilibrium dialysis study. J. Biol. Chem. 1984, 259, 9384–9389. [Google Scholar] [CrossRef]
- Camero, S.; Benítez, M.J.; Cuadros, R.; Hernández, F.; Ávila, J.; Jiménez, J.S. Thermodynamics of the Interaction between Alzheimer’s Disease Related Tau Protein and DNA. PLoS ONE 2014, 9, e104690. [Google Scholar] [CrossRef]
- Fukada, H.; Sturtevant, J.M.; Quiocho, F.A. Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli. J. Biol. Chem. 1983, 258, 13193–13198. [Google Scholar] [CrossRef]
- Paketurytė, V.; Linkuvienė, V.; Krainer, G.; Chen, W.-Y.; Matulis, D. Repeatability, precision, and accuracy of the enthalpies and Gibbs energies of a protein-ligand binding reaction measured by isothermal titration calorimetry. Eur. Biophys. J. 2019, 48, 139–152. [Google Scholar] [CrossRef]
- Shi, J.-H.; Lou, Y.-Y.; Zhou, K.-L.; Pan, D.-Q. Elucidation of intermolecular interaction of bovine serum albumin with Fenhexamid: A biophysical prospect. J. Photochem. Photobiol. B Biol. 2018, 180, 125–133. [Google Scholar] [CrossRef]
- Sohrabi, Y.; Panahi-Azar, V.; Barzegar, A.; Dolatabadi, J.E.N.; Dehghan, P. Spectroscopic, thermodynamic and molecular docking studies of bovine serum albumin interaction with ascorbyl palmitate food additive. BioImpacts 2017, 7, 241–246. [Google Scholar] [CrossRef]
- Sobhany, M.; Negishi, M. Characterization of specific donor binding to α1,4Nacteylhexosaminyltransferase EXTL2 using Isothermal Titration Calorimetry. Methods Enzymol. 2006, 416, 3–12. [Google Scholar] [CrossRef]
- Clarke, C.; Woods, R.J.; Gluska, J.; Cooper, A.; Nutley, M.A.; Boons, G.-J. Involvement of Water in Carbohydrate-Protein Binding. J. Am. Chem. Soc. 2001, 123, 12238–12247. [Google Scholar] [CrossRef]
- Hamilton, P.D.; Andley, U.P. In vitro interactions of histones and α-crystallin. Biochem. Biophys. Rep. 2018, 15, 7–12. [Google Scholar] [CrossRef]
- Timmer, C.M.; Michmerhuizen, N.L.; Witte, A.B.; Van Winkle, M.; Zhou, D.; Sinniah, K. An Isothermal Titration and Differential Scanning Calorimetry Study of the G-Quadruplex DNA–Insulin Interaction. J. Phys. Chem. B 2014, 118, 1784–1790. [Google Scholar] [CrossRef]
- Honnappa, S.; Cutting, B.; Jahnke, W.; Seelig, J.; Steinmetz, M.O. Thermodynamics of the Op18/Stathmin-Tubulin Interaction. J. Biol. Chem. 2003, 278, 38926–38934. [Google Scholar] [CrossRef]
- Danesh, N.; Sedighi, Z.N.; Beigoli, S.; Sharifi-Rad, A.; Saberi, M.R.; Chamani, J. Determining the binding site and binding affinity of estradiol to human serum albumin and holo-transferrin: Fluorescence spectroscopic, isothermal titration calorimetry and molecular modeling approaches. J. Biomol. Struct. Dyn. 2018, 36, 1747–1763. [Google Scholar] [CrossRef]
- Khrapunov, S. The Enthalpy-entropy Compensation Phenomenon. Limitations for the Use of Some Basic Thermodynamic Equations. Curr. Protein Pept. Sci. 2018, 19, 1088–1091. [Google Scholar] [CrossRef]
- Cornish-Bowden, A. Enthalpy-entropy compensation and the isokinetic temperature in enzyme catalysis. J. Biosci. 2017, 42, 665–670. [Google Scholar] [CrossRef]
- Dragan, A.I.; Read, C.M.; Crane-Robinson, C. Enthalpy-entropy compensation: The role of solvation. Eur. Biophys. J. 2017, 46, 301–308. [Google Scholar] [CrossRef]
- Huang, R.; Lau, B.L. Biomolecule–nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry. Biochim. Et Biophys. Acta 2016, 1860, 945–956. [Google Scholar] [CrossRef]
- Kragelj, J.; Orand, T.; Delaforge, E.; Tengo, L.; Blackledge, M.; Palencia, A.; Jensen, M.R. Enthalpy-Entropy Compensation in the Promiscuous Interaction of an Intrinsically Disordered Protein with Homologous Protein Partners. Biomolecules 2021, 11, 1204. [Google Scholar] [CrossRef]
- Cavalcanti, I.D.L.; Junior, F.H.X.; Magalhães, N.S.S.; Nogueira, M.C.d.B.L. Isothermal titration calorimetry (ITC) as a promising tool in pharmaceutical nanotechnology. Int. J. Pharm. 2023, 641, 123063. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, J.M. Differential scanning calorimetry of proteins. Subcell. Biochem. 1995, 24, 133–176. [Google Scholar] [CrossRef]
- Liu, L.; Yang, C.; Guo, Q.-X. A study on the enthalpy-entropy compensation in protein unfolding. Biophys. Chem. 2000, 84, 239–251. [Google Scholar] [CrossRef]
- Yu, Y.B.; Privalov, P.L.; Hodges, R.S. Contribution of Translational and Rotational Motions to Molecular Association in Aqueous Solution. Biophys. J. 2001, 81, 1632–1642. [Google Scholar] [CrossRef]
- Lumry, R.; Rajender, S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: A ubiquitous properly of water. Biopolym. 1970, 9, 1125–1227. [Google Scholar] [CrossRef]
- Harano, Y.; Kinoshita, M. Translational-Entropy Gain of Solvent upon Protein Folding. Biophys. J. 2005, 89, 2701–2710. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M. Importance of Translational Entropy of Water in Biological Self-Assembly Processes like Protein Folding. Int. J. Mol. Sci. 2009, 10, 1064–1080. [Google Scholar] [CrossRef] [PubMed]
- Hyre, D.E.; Le Trong, I.; Merritt, E.A.; Eccleston, J.F.; Green, N.M.; Stenkamp, R.E.; Stayton, P.S. Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Sci. 2006, 15, 459–467. [Google Scholar] [CrossRef]
Protein + Ligand | ΔH° (kJ/mol) | ΔG° (kJ/mol) | TΔS° (kJ/mol) |
---|---|---|---|
PTP1b + Trivaric acid [13] | −189 | −21.8 | −167.2 |
TCPTP + Mitoxantrone [14] | −31.4 | −33.9 | 2.5 |
Insulin + Protamine [15] | −64 | −28 | −36 |
Human Serum Albumin + BA [16] | −4.5 | −26.3 | 21.8 |
Human Serum Albumin + HxA [16] | −7.8 | −30.1 | 22.3 |
Human Serum Albumin + HpA [16] | −16.6 | −28 | 11.4 |
Human Serum Albumin + OA [16] | −20.3 | −32.6 | 12.3 |
Human Serum Albumin + NA [16] | −27.3 | −35.5 | 8.2 |
Human Serum Albumin + DA [16] | −214.9 | −24.7 | −190.2 |
Human Serum Albumin + PFBA [16] | −33.9 | −28.4 | −5.5 |
Human Serum Albumin + PFHxA [16] | −10.6 | −32.2 | 21.6 |
Human Serum Albumin + Genx [16] | −11.9 | −30.5 | 18.6 |
Human Serum Albumin + PFHpA [16] | −21 | −36.6 | 15.6 |
Human Serum Albumin + PFDA [16] | −23 | −30.9 | 7.9 |
Bovine Serum Albumin + Chloroform [17] | −10.4 | −19 | 8.6 |
Lactate Dehydrogenase + NADH [18] | −31.6 | −28.9 | −2.7 |
Lactate Dehydrogenase + AMP [18] | −16.9 | −14.6 | −2.3 |
Lactate Dehydrogenase + ADP [18] | −21.9 | −14.5 | −7.4 |
Phosphorylase b dimers + AMP [19] | −27 | −20.5 | −6.5 |
Phosphorylase b dimers + AMP [19] | −70 | −25.2 | −44.8 |
Phosphorylase b dimers + IMP [19] | −18 | −16.4 | −1.6 |
Phosphorylase b dimers + IMP [19] | −33 | −18.9 | −14.1 |
Tau protein + DNA [20] | −32 | −41.4 | 9.4 |
L-Arabinose binding protein + L-Arabinose [21] | −62.7 | −36.3 | −26.4 |
Carbonic Anhydrase II + Acetazolamide [22] | −59.5 | −43.3 | −16.2 |
Bovine Serum Albumin + Fenhexamid [23] | −61.6 | −25 | −36.6 |
Bovine Serum Albumin + Ascorbyl Palmitate [24] | 59.2 | −4.75 | 64 |
α1,4-N-acetylhexosaminyltransferase + UDP [25] | −25.3 | −27 | 1.7 |
α1,4-N-acetylhexosaminyltransferase + UDP-GalNAc [25] | −8.8 | −24.4 | 15.6 |
α1,4-N-acetylhexosaminyltransferase + UDP-GlcNac [25] | −8.3 | −24.5 | 16.2 |
Concavalin A + Trimannoside 1 [26] | −55.7 | −31.8 | −23.9 |
Concavalin A + Trimannoside 2 [26] | −46.1 | −26.8 | −19.3 |
α-Crystallin + Histones [27] | −26.3 | −36.5 | 10.2 |
α-Crystallin HS + Histones [27] | −7.6 | −43 | 35.4 |
βL-Crystallin + Histones [27] | −44.8 | −40.3 | −4.5 |
βL-Crystallin HS + Histones [27] | −37.1 | −35 | −2.1 |
γ- Crystallin + Histones [27] | −55.9 | −39.4 | −16.5 |
γ- Crystallin HS + Histones [27] | −65.9 | −39.9 | −26 |
Insulin + G-Quaduplex DNA [28] | −10.8 | −27.7 | 16.9 |
Tubulin-GTP + Stathmin [29] | 7.1 | −40.5 | 47.6 |
Human Serum Albumin + Estradiol [30] | −231.7 | −41.4 | −190.3 |
Holo-Transferrin + Estradiol [30] | −147.2 | −44.3 | −102.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, J.S.; Benítez, M.J. Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein–Ligand Interactions. Biophysica 2024, 4, 298-309. https://doi.org/10.3390/biophysica4020021
Jiménez JS, Benítez MJ. Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein–Ligand Interactions. Biophysica. 2024; 4(2):298-309. https://doi.org/10.3390/biophysica4020021
Chicago/Turabian StyleJiménez, Juan S., and María J. Benítez. 2024. "Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein–Ligand Interactions" Biophysica 4, no. 2: 298-309. https://doi.org/10.3390/biophysica4020021
APA StyleJiménez, J. S., & Benítez, M. J. (2024). Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein–Ligand Interactions. Biophysica, 4(2), 298-309. https://doi.org/10.3390/biophysica4020021