Calculation of Hydrogen Bonding Enthalpy Using the Two-Parameter Abraham Equation
Abstract
:1. Introduction
2. Methodology
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joesten, M.D.; Schaad, L. Hydrogen Bonding; Marcel Dekker: New York, NY, USA, 1974; p. 599. [Google Scholar]
- Laurence, C.; Graton, J.; Berthelot, M.; Besseau, F.; Le Questel, J.-Y.; Luçon, M.; Ouvrard, C.; Planchat, A.; Renault, E. An enthalpic scale of hydrogen-bond basicity. 4. Carbon π bases, oxygen bases, and miscellaneous second-row, third-row, and fourth-row bases and a survey of the 4-fluorophenol affinity scale. J. Org. Chem. 2010, 75, 4105–4123. [Google Scholar] [CrossRef]
- Laurence, C.; Gal, J. Thermodynamic and spectroscopic scales of hydrogen-bond basicity and affinity. In Lewis Basicity and Affinity Scales: Data and Measurement; John Wiley & Sons, Ltd.: New York, NY, USA, 2009; pp. 111–227. [Google Scholar]
- Pimentel, G.C.; McClellan, A. Hydrogen bonding. Annu. Rev. Phys. Chem. 1971, 22, 347–385. [Google Scholar] [CrossRef]
- Drago, R.S.; O’Bryan, N.; Vogel, G.C. A frequency shift-enthalpy correlation for a given donor with various hydrogen-bonding acids. J. Am. Chem. Soc. 1970, 92, 3924–3929. [Google Scholar] [CrossRef]
- Raevsky, O.A.; Novikov, V.P. Unification of the donor-acceptor interaction characteristics to reveal structure-activity-relationships. Pharm. Chem. J. 1982, 16, 583–586. [Google Scholar]
- Raevsky, O.A.; Grigor’ev, V.Y.; Kireev, D.B.; Zefirov, N.S. Complete thermodynamic description of H-bonding in the framework of multiplicative approach. QSAR 1992, 11, 49–63. [Google Scholar] [CrossRef]
- Abraham, M.H.; Grellier, P.L.; Prior, D.V.; Taft, R.W.; Morris, J.J.; Taylor, P.J.; Laurence, C.; Berthelot, M.; Doherty, R.M. A general treatment of hydrogen bond complexation constants in tetrachloromethane. J. Am. Chem. Soc. 1988, 110, 8534–8536. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I. Can the hydrogen bonding enthalpy be calculated from the binding constant at 298.15 K? J. Mol. Liq. 2024, 409, 125353. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Khisamiev, M.B.; Yagofarov, M.I. Calculation of the formation enthalpies of charge-transfer complexes with iodine from the binding constants at 298.15 K. J. Mol. Liq. 2024, 411, 125690. [Google Scholar] [CrossRef]
- Arnett, E.M.; Joris, L.; Mitchell, E.; Murty, T.; Gorrie, T.; Schleyer, P.v.R. Hydrogen-bonded complex formation. III. Thermodynamics of complexing by infrared spectroscopy and calorimetry. J. Am. Chem. Soc. 1970, 92, 2365–2377. [Google Scholar] [CrossRef]
- Epley, T.D.; Drago, R.S. Calorimetric studies on some hydrogen-bonded adducts. J. Am. Chem. Soc. 1967, 89, 5770–5773. [Google Scholar] [CrossRef]
- Spencer, J.; Gleim, J.E.; Blevins, C.H.; Garrett, R.C.; Mayer, F.J. Enthalpies of solution and transfer enthalpies. An analysis of the pure base calorimetric method for the determination of hydrogen bond enthalpies. J. Phys. Chem. 1979, 83, 1249–1255. [Google Scholar] [CrossRef]
- Abraham, M.H.; Grellier, P.L.; Prior, D.V.; Duce, P.P.; Morris, J.J.; Taylor, P.J. Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane. J. Chem. Soc. Perkin Trans. 2 1989, 6, 699–711. [Google Scholar] [CrossRef]
- Abraham, M.H.; Grellier, P.L.; Prior, D.V.; Morris, J.J.; Taylor, P.J. Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. J. Chem. Soc. Perkin Trans. 2 1990, 4, 521–529. [Google Scholar] [CrossRef]
- Abraham, M.H. Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22, 73–83. [Google Scholar] [CrossRef]
- Abraham, M.H.; Gola, J.M.R.; Cometto-Muñiz, J.E.; Acree, W.E., Jr. Hydrogen Bonding between Solutes in Solvents Octan-1-ol and Water. J. Org. Chem. 2010, 75, 7651–7658. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E.; Earp, C.E.; Vladimirova, A.; Whaley, W.L. Studies on the hydrogen bond acidity, and other descriptors and properties for hydroxyflavones and hydroxyisoflavones. J. Mol. Liq. 2015, 208, 363–372. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E. Descriptors for the hydrogen halides, their solution properties and hydrogen- bonding acidity and basicity: Comparison of the latter with gas phase data. J. Mol. Liq. 2019, 275, 667–673. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I. Compensation relationship in Thermodynamics of solvation and vaporization: Features and applications. I. Non-hydrogen-bonded systems. J. Mol. Liq. 2022, 368, 120762. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I. Compensation relationship in thermodynamics of solvation and vaporization: Features and applications. II. Hydrogen-bonded systems. J. Mol. Liq. 2023, 372, 121205. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Novikov, V.B.; Varfolomeev, M.A.; Mileshko, N.M. A new method for the extraction of specific interaction enthalpy from the enthalpy of solvation. J. Phys. Org. Chem. 2005, 18, 49–61. [Google Scholar] [CrossRef]
- Gramstad, T. Studies of hydrogen bonding—Part VII: Hydrogen-bond association of phenol and pentachlorophenol with carbonyl compounds and ethers. Spectrochim. Acta 1963, 19, 497–508. [Google Scholar] [CrossRef]
- Perelygin, I.S.; Ahunov, T.F. IR spectra and hydrogen bonds of hydroxyls of chlorine-substituted phenols. I. Complexes with acetonitrile. Opt. Spektrosk. 1971, 30, 679–683, Chem. Abst. 75: 27627. [Google Scholar]
- Catalan, J.; Gomez, J.; Couto, A.; Laynez, J. Toward a solvent basicity scale: The calorimetry of the pyrrole probe. J. Am. Chem. Soc. 1990, 112, 1678–1681. [Google Scholar] [CrossRef]
- Abraham, M.H.; Chadha, H.S.; Whiting, G.S.; Mitchell, R.C. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the Δlog P parameter of Seiler. J. Pharm. Sci. 1994, 83, 1085–1100. [Google Scholar] [CrossRef]
- Cebe, P.; Thomas, D.; Merfeld, J.; Partlow, B.P.; Kaplan, D.L.; Alamo, R.G.; Wurm, A.; Zhuravlev, E.; Schick, C. Heat of fusion of polymer crystals by fast scanning calorimetry. Polymer 2017, 126, 240–247. [Google Scholar] [CrossRef]
- Bolmatenkov, D.N.; Yagofarov, M.I.; Valiakhmetov, T.F.; Rodionov, N.O.; Solomonov, B.N. Vaporization enthalpies of benzanthrone, 1-nitropyrene, and 4-methoxy-1-naphthonitrile: Prediction and experiment. J. Chem. Thermodyn. 2022, 168, 106744. [Google Scholar] [CrossRef]
- Drago, R.S.; Wayland, B.B. A Double-Scale Equation for Correlating Enthalpies of Lewis Acid-Base Interactions. J. Am. Chem. Soc. 1965, 87, 3571–3577. [Google Scholar] [CrossRef]
- Vogel, G.C.; Drago, R.S. The ECW Model. J. Chem. Educ. 1996, 73, 701. [Google Scholar] [CrossRef]
Proton Donor | Proton Acceptor | a | a | b | Ref. | |
---|---|---|---|---|---|---|
Phenol | Benzene | 3.1 | 8.5 | 6.5 | 2.0 | [1] |
Toluene | 3.1 | 8.5 | 6.9 | 1.6 | [1] | |
m-Xylene | 3.6 | 9.2 | 8.7 | 0.5 | [1] | |
p-Xylene | 3.6 | 9.2 | 9.0 | 0.2 | [1] | |
Mesitylene | 4.3 | 10.4 | 9.2 | 1.2 | [1] | |
Acetophenone | 11.6 | 21.4 | 19.7 | 1.7 | [1] | |
11.6 | 21.4 | 21.1 | 0.3 | [1] | ||
Cyclohexanone | 13.7 | 24.5 | 22.7 | 1.8 | [22] | |
Butanone | 12.4 | 22.6 | 21.8 | 0.8 | [1] | |
Acetone | 11.9 | 21.8 | 19.7 | 2.1 | [23] | |
11.9 | 21.8 | 22.3 | −0.5 | [22] | ||
11.9 | 21.8 | 21.3 | 0.5 | [24] | ||
Methyl acetate | 10.9 | 20.3 | 18.8 | 1.5 | [1] | |
Ethyl acetate | 10.9 | 20.3 | 21.8 | −1.5 | [1] | |
Butyrolactone | 11.9 | 21.8 | 20.5 | 1.3 | [1] | |
Dimethylformamide | 18.2 | 31.4 | 28.7 | 2.7 | [1] | |
18.2 | 31.4 | 29.1 | 2.3 | [22] | ||
Propanal | 10.9 | 20.3 | 18.0 | 2.3 | [1] | |
Dimethylacetamide | 19.2 | 32.9 | 30.8 | 2.1 | [1] | |
19.2 | 32.9 | 30.3 | 2.6 | [22] | ||
Pyridine | 15.2 | 26.8 | 27.2 | −0.4 | [1] | |
15.2 | 26.8 | 26.8 | 0.0 | [22] | ||
Diethyl ether | 10.9 | 20.3 | 20.1 | 0.2 | [1] | |
Benzonitrile | 7.9 | 15.7 | 13.8 | 1.9 | [1] | |
7.9 | 15.7 | 19.3 | −3.6 | [1] | ||
Tetrahydrofuran | 11.6 | 21.4 | 22.1 | −0.7 | [1] | |
11.6 | 21.4 | 23.0 | −1.6 | [1] | ||
Chlorocyclohexane | 2.1 | 6.9 | 8.2 | −1.3 | [1] | |
1-Bromohexane | 2.6 | 7.7 | 6.7 | 1.0 | [1] | |
1-Chlorobutane | 2.1 | 6.9 | 7.2 | −0.2 | [1] | |
2.1 | 6.9 | 9.3 | −2.4 | [1] | ||
1-Bromobutane | 2.6 | 7.7 | 7.2 | 0.5 | [1] | |
1-Iodobutane | 3.3 | 8.8 | 5.4 | 3.4 | [1] | |
1-Iodohexane | 3.3 | 8.8 | 7.3 | 1.5 | [1] | |
Diethyl sulfide | 7.6 | 15.3 | 15.1 | 0.2 | [1] | |
Di-n-butyl sulfide | 7.6 | 15.3 | 14.2 | 1.1 | [1] | |
Benzaldehyde | 9.4 | 18.0 | 18.0 | 0.0 | [1] | |
4-Fluorophenol | Benzene | 3.3 | 8.7 | 7.3 | 1.4 | [3] |
3.3 | 8.7 | 7.7 | 1.0 | [3] | ||
Toluene | 3.3 | 8.7 | 7.9 | 0.8 | [3] | |
p-Xylene | 3.8 | 9.5 | 8.1 | 1.4 | [3] | |
Mesitylene | 4.6 | 10.7 | 8.8 | 1.9 | [3] | |
Pentamethylbenzene | 4.8 | 11.1 | 10.3 | 0.8 | [3] | |
Hexamethylbenzene | 5.1 | 11.5 | 10.8 | 0.7 | [3] | |
1-Heptene | 1.4 | 5.9 | 6.8 | −0.9 | [3] | |
Diethyl ether | 11.5 | 21.1 | 24.1 | −3.0 | [3] | |
11.5 | 21.1 | 22.7 | −1.6 | [3] | ||
Acetophenone | 12.2 | 22.3 | 20.8 | 1.5 | [3] | |
Acetone | 12.5 | 22.7 | 22.4 | 0.3 | [3] | |
Butanone | 13.0 | 23.6 | 21.1 | 2.5 | [3] | |
13.0 | 23.6 | 22.9 | 0.7 | [3] | ||
Cyclohexanone | 14.4 | 25.6 | 24.3 | 1.3 | [3] | |
Benzaldehyde | 9.9 | 18.7 | 18.6 | 0.1 | [3] | |
Methyl formate | 9.6 | 18.3 | 18.0 | 0.3 | [3] | |
Ethyl formate | 9.6 | 18.3 | 18.0 | 0.3 | [3] | |
Ethyl acetate | 11.5 | 21.1 | 20.8 | 0.3 | [3] | |
Methyl acetate | 11.5 | 21.1 | 20.8 | 0.3 | [3] | |
Nitrobenzene | 7.0 | 14.3 | 11.5 | 2.8 | [3] | |
Chlorocyclohexane | 2.2 | 7.1 | 8.7 | −1.6 | [1] | |
Bromocyclohexane | 3.8 | 9.5 | 8.2 | 1.3 | [1] | |
1-Chlorobutane | 2.2 | 7.1 | 8.1 | −1.0 | [1] | |
1-Bromobutane | 2.7 | 7.9 | 7.6 | 0.3 | [1] | |
1-Iodobutane | 3.5 | 9.1 | 6.5 | 2.6 | [1] | |
Benzonitrile | 8.3 | 16.3 | 17.5 | −1.2 | [3] | |
Dimethyl sulfide | 7.2 | 14.7 | 13.0 | 1.7 | [3] | |
Ethanethiol | 5.9 | 12.7 | 10.4 | 2.3 | [3] | |
Diethyl sulfide | 8.0 | 15.9 | 14.7 | 1.2 | [3] | |
Dibutyl sulfide | 8.0 | 15.9 | 15.5 | 0.4 | [3] | |
Pyridine | 16.0 | 28.0 | 29.6 | −1.6 | [3] | |
Chloroform | Pyridine | 3.5 | 9.0 | 10.0 | −1.0 | [1] |
Tetrahydrofuran | 2.6 | 7.7 | 9.2 | −1.5 | [22] | |
Triethylamine | 4.5 | 10.7 | 13.5 | −2.8 | [22] | |
Benzene | 0.4 | 4.4 | 7.1 | −2.7 | [1] | |
Diethyl ether | 2.4 | 7.4 | 7.2 | 0.2 | [22] | |
Acetone | 2.6 | 7.8 | 7.3 | 0.5 | [22] | |
Dimethylformamide | 4.2 | 10.2 | 11.8 | −1.6 | [22] | |
Dimethylacetamide | 4.5 | 10.6 | 13.0 | −2.4 | [1] | |
Dimethyl sulfoxide | 4.3 | 10.4 | 10.5 | −0.1 | [22] | |
Ethyl acetate | 2.4 | 7.4 | 7.7 | −0.3 | [1] | |
2.4 | 7.4 | 7.4 | 0.0 | [22] | ||
Diethyl sulfide | 1.6 | 6.2 | 7.1 | −0.9 | [1] | |
Acetonitrile | 1.5 | 6.1 | 4.9 | 1.2 | [22] | |
Nitromethane | 1.5 | 6.1 | 3.7 | 2.4 | [22] | |
Pyrrole | Acetonitrile | 4.0 | 9.8 | 10.3 | −0.5 | [25] |
Anisole | 3.7 | 9.4 | 7.4 | 2.0 | [25] | |
Benzene | 1.6 | 6.1 | 5.7 | 0.4 | [25] | |
Benzonitrile | 4.3 | 10.3 | 10.3 | 0.0 | [25] | |
Chlorobenzene | 0.6 | 4.6 | 4.1 | 0.5 | [25] | |
Cyclohexanone | 7.5 | 15.2 | 13.7 | 1.5 | [25] | |
Dimethylformamide | 10.1 | 19.1 | 16.6 | 2.5 | [25] | |
Dimethyl sulfoxide | 10.4 | 19.5 | 18.0 | 1.5 | [25] | |
Ethyl acetate | 6.0 | 12.8 | 13.1 | −0.3 | [25] | |
HMPA c | 13.8 | 24.7 | 24.0 | 0.7 | [25] | |
Nitrobenzene | 3.6 | 9.2 | 8.8 | 0.4 | [25] | |
Nitromethane | 4.0 | 9.8 | 8.8 | 1.0 | [25] | |
Pyridine | 8.4 | 16.5 | 16.2 | 0.3 | [25] | |
Tetrahydrofuran | 6.4 | 13.5 | 15.2 | −1.7 | [25] | |
Toluene | 1.6 | 6.1 | 6.1 | 0.0 | [25] | |
N-methylaniline | Dimethylformamide | 4.8 | 11.1 | 9.9 | 1.2 | [22] |
Dimethyl sulfoxide | 5.0 | 11.3 | 9.9 | 1.4 | [22] | |
Ethyl acetate | 2.8 | 8.0 | 5.4 | 2.6 | [22] | |
Pyridine | 4.0 | 9.8 | 8.5 | 1.3 | [22] | |
Methanol | Benzylamine | 12.6 | 22.8 | 22.3 | 0.5 | [22] |
Triethylamine | 13.8 | 24.7 | 24.1 | 0.6 | [22] | |
Butan-1-ol | Dimethylformamide | 11.0 | 20.5 | 19.2 | 1.3 | [1] |
Dimethylacetamide | 11.7 | 21.5 | 18.7 | 2.8 | [1] | |
Triethylamine | 11.8 | 21.7 | 23.1 | −1.4 | [1] | |
Pyridine | 9.2 | 17.7 | 18.4 | −0.7 | [1] | |
Diethyl ether | 6.5 | 13.7 | 16.3 | −2.6 | [1] | |
6.5 | 13.7 | 13.6 | 0.1 | [22] | ||
Anisole | 4.1 | 9.9 | 7.1 | 2.8 | [1] | |
Tetrahydrofuran | 7.0 | 14.4 | 12.8 | 1.6 | [1] | |
Acetophenone | 7.0 | 14.4 | 15.9 | −1.5 | [1] | |
Butanone | 7.5 | 15.1 | 12.8 | 2.3 | [1] | |
Cyclohexanone | 8.3 | 16.3 | 17.2 | −0.9 | [1] | |
2-methylbutan-2-ol | Dimethylformamide | 9.19 | 17.7 | 15.1 | 2.6 | [22] |
Dimethyl sulfoxide | 9.45 | 18.1 | 15.0 | 3.1 | [22] | |
Ethyl acetate | 5.41 | 12.0 | 9.3 | 2.7 | [22] | |
Triethylamine | 9.84 | 18.7 | 19.7 | −1.0 | [22] | |
Hexanol | Benzylamine | 10.7 | 20.1 | 21.3 | −1.2 | [22] |
Pyridine | 9.2 | 17.7 | 15.6 | 2.1 | [22] | |
Tetrahydrofuran | 7.0 | 14.4 | 12.3 | 2.1 | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solomonov, B.N.; Khisamiev, M.B.; Yagofarov, M.I. Calculation of Hydrogen Bonding Enthalpy Using the Two-Parameter Abraham Equation. Liquids 2024, 4, 624-631. https://doi.org/10.3390/liquids4030034
Solomonov BN, Khisamiev MB, Yagofarov MI. Calculation of Hydrogen Bonding Enthalpy Using the Two-Parameter Abraham Equation. Liquids. 2024; 4(3):624-631. https://doi.org/10.3390/liquids4030034
Chicago/Turabian StyleSolomonov, Boris N., Mansur B. Khisamiev, and Mikhail I. Yagofarov. 2024. "Calculation of Hydrogen Bonding Enthalpy Using the Two-Parameter Abraham Equation" Liquids 4, no. 3: 624-631. https://doi.org/10.3390/liquids4030034
APA StyleSolomonov, B. N., Khisamiev, M. B., & Yagofarov, M. I. (2024). Calculation of Hydrogen Bonding Enthalpy Using the Two-Parameter Abraham Equation. Liquids, 4(3), 624-631. https://doi.org/10.3390/liquids4030034