Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,643)

Search Parameters:
Keywords = enrichment approaches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7030 KiB  
Article
Integrating HBIM and GIS Through Object-Relational Databases for the Conservation of Rammed Earth Heritage: A Multiscale Approach
by F. Javier Chorro-Domínguez, Paula Redweik and José Juan Sanjosé-Blasco
Heritage 2025, 8(8), 336; https://doi.org/10.3390/heritage8080336 (registering DOI) - 16 Aug 2025
Abstract
Historic earthen architecture—particularly rammed earth—is underrepresented in digital heritage initiatives despite its widespread historical use and vulnerability to degradation. This paper presents a novel methodology for integrating semantic, geometric, and geospatial information from earthen heritage into a unified digital environment, bridging Heritage Building [...] Read more.
Historic earthen architecture—particularly rammed earth—is underrepresented in digital heritage initiatives despite its widespread historical use and vulnerability to degradation. This paper presents a novel methodology for integrating semantic, geometric, and geospatial information from earthen heritage into a unified digital environment, bridging Heritage Building Information Modeling (HBIM) and Geographic Information Systems (GIS) through an object-relational database. The proposed workflow enables automated and bidirectional data exchange between Revit (via Dynamo scripts) and open-source GIS tools (QGIS and PostgreSQL/PostGIS), supporting semantic alignment and spatial coherence. The method was tested on seven fortified rammed-earth sites in the southwestern Iberian Peninsula, chosen for their typological and territorial diversity. Results demonstrate the feasibility of multiscale documentation and analysis, supported by a structured database populated with geometric, semantic, diagnostic, and environmental information, enabling enriched interpretations of construction techniques, material variability, and conservation status. The approach also facilitates the integration of HBIM datasets into broader territorial management frameworks. This work contributes to the development of scalable, open-source digital tools tailored to vernacular heritage, offering a replicable strategy for bridging the gap between building-scale and landscape-scale documentation in cultural heritage management. Full article
(This article belongs to the Section Architectural Heritage)
19 pages, 4994 KiB  
Article
The Role of Nutritional Environment in Cryptococcus gattii Titan Cells’ Ultrastructure, Biophysical Properties, Molecular Features, and Virulence in Cryptococcosis
by Igor Avellar-Moura, Glauber R. de S. Araujo, Juliana Godoy, Vinicius Alves, Iara Bastos de Andrade, Juliana Soares, Bruno Pontes and Susana Frases
Infect. Dis. Rep. 2025, 17(4), 101; https://doi.org/10.3390/idr17040101 (registering DOI) - 16 Aug 2025
Abstract
Background/Objectives: Cryptococcus gattii presents a significant threat to healthy individuals. Titan cell formation, a key virulence factor, is influenced by the nutritional environment and plays a critical role in immune evasion and stress resistance. This study investigates the molecular and biophysical changes in [...] Read more.
Background/Objectives: Cryptococcus gattii presents a significant threat to healthy individuals. Titan cell formation, a key virulence factor, is influenced by the nutritional environment and plays a critical role in immune evasion and stress resistance. This study investigates the molecular and biophysical changes in titanized C. gattii cells grown in nutrient-rich Neurobasal™ medium, a potent inducer of titan cells. Methods: An integrative approach was used, combining scanning electron microscopy, optical tweezers, fluorescence microscopy, and physicochemical methods to analyze C. gattii cells grown in Neurobasal™ medium and minimal media. Results: Cells grown in Neurobasal™ medium exhibited significant differences compared to those grown in minimal media. These included a thicker and more defined polysaccharide capsule, enhanced capsule elasticity, and the secretion of more elastic polysaccharides. Furthermore, cells grown in the enriched medium showed reduced susceptibility to antifungals and delayed mortality in infection models. Conclusions: C. gattii adapts to nutritional cues by forming titan cells, thereby enhancing its pathogenicity. Targeting nutritional sensing pathways may offer novel therapeutic strategies against cryptococcal infections. Full article
22 pages, 5692 KiB  
Article
RiceStageSeg: A Multimodal Benchmark Dataset for Semantic Segmentation of Rice Growth Stages
by Jianping Zhang, Tailai Chen, Yizhe Li, Qi Meng, Yanying Chen, Jie Deng and Enhong Sun
Remote Sens. 2025, 17(16), 2858; https://doi.org/10.3390/rs17162858 (registering DOI) - 16 Aug 2025
Abstract
The accurate identification of rice growth stages is critical for precision agriculture, crop management, and yield estimation. Remote sensing technologies, particularly multimodal approaches that integrate high spatial and hyperspectral resolution imagery, have demonstrated great potential in large-scale crop monitoring. Multimodal data fusion offers [...] Read more.
The accurate identification of rice growth stages is critical for precision agriculture, crop management, and yield estimation. Remote sensing technologies, particularly multimodal approaches that integrate high spatial and hyperspectral resolution imagery, have demonstrated great potential in large-scale crop monitoring. Multimodal data fusion offers complementary and enriched spectral–spatial information, providing novel pathways for crop growth stage recognition in complex agricultural scenarios. However, the lack of publicly available multimodal datasets specifically designed for rice growth stage identification remains a significant bottleneck that limits the development and evaluation of relevant methods. To address this gap, we present RiceStageSeg, a multimodal benchmark dataset captured by unmanned aerial vehicles (UAVs), designed to support the development and assessment of segmentation models for rice growth monitoring. RiceStageSeg contains paired centimeter-level RGB and 10-band multispectral (MS) images acquired during several critical rice growth stages, including jointing and heading. Each image is accompanied by fine-grained, pixel-level annotations that distinguish between the different growth stages. We establish baseline experiments using several state-of-the-art semantic segmentation models under both unimodal (RGB-only, MS-only) and multimodal (RGB + MS fusion) settings. The experimental results demonstrate that multimodal feature-level fusion outperforms unimodal approaches in segmentation accuracy. RiceStageSeg offers a standardized benchmark to advance future research in multimodal semantic segmentation for agricultural remote sensing. The dataset will be made publicly available on GitHub v0.11.0 (accessed on 1 August 2025). Full article
Show Figures

Figure 1

23 pages, 2275 KiB  
Article
Novel Environmentally-Friendly Process for Selective Extraction and Enrichment of DHA/EPA-Containing Phospholipids from Krill Oil via Differential Temperature-Controlled Crystallization
by Yi He, Yu Zhang, Jiangying Heng, Bo Liu, Xuan Ma, Jing Jin, Wenjie Yan and Feng Wang
Foods 2025, 14(16), 2841; https://doi.org/10.3390/foods14162841 (registering DOI) - 16 Aug 2025
Abstract
This study presents a novel environmentally-friendly process for the selective extraction and enrichment of DHA/EPA-containing phospholipids (PL-DHA/EPA) from krill oil. The methodology leverages differential crystallization behavior between phospholipids and triacylglycerols in ethanolic solutions, exploiting their distinct freezing point thresholds to achieve precise fractionation. [...] Read more.
This study presents a novel environmentally-friendly process for the selective extraction and enrichment of DHA/EPA-containing phospholipids (PL-DHA/EPA) from krill oil. The methodology leverages differential crystallization behavior between phospholipids and triacylglycerols in ethanolic solutions, exploiting their distinct freezing point thresholds to achieve precise fractionation. Response surface methodology optimization identified optimal extraction parameters: liquid-to-material ratio of 6:1 (v/w), freezing temperature of −20 °C, freezing duration of 25 h, and rotary evaporation temperature of 45 °C, yielding a final product with 39.40% PL-DHA/EPA content. Principal component analysis revealed substantial overlap in confidence ellipses among extraction methodologies, indicating effective preservation of core phospholipid signatures from the parent krill oil while maintaining critical structural characteristics and molecular species distribution. Comprehensive analysis of phospholipid fractions and heatmap analysis revealed distinctive molecular profiles compared to conventional organic solvent extraction, with selective enrichment of EPA-containing phospholipids, particularly PC-EPA and PI-EPA species. The green extraction method demonstrated comparable oxidative stability to conventional approaches, with superior protection against secondary oxidation as evidenced by significantly lower anisidine values. This sustainable approach achieves effective phospholipid enrichment while substantially reducing environmental impact through elimination of halogenated solvents, addressing the critical need for environmentally conscious technologies in marine lipid processing with potential applications in nutraceutical and functional food industries. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 3190 KiB  
Article
GC-MS Non-Target Metabolomics-Based Analysis of the Volatile Aroma in Cerasus humilis After Grafting with Different Rootstocks
by Gaixia Qiao, Jun Xie, Chun’e Zhang, Yujuan Liu, Xiaojing Guo, Qiaoxia Jia, Caixia Zhang and Meilong Xu
Horticulturae 2025, 11(8), 972; https://doi.org/10.3390/horticulturae11080972 (registering DOI) - 16 Aug 2025
Abstract
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas [...] Read more.
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas chromatography–mass spectrometry (GC-MS) was utilized to analyze the volatile differential metabolites between the rootstock–scion combinations and self-rooted seedlings. Furthermore, metabolic pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In total, 191,162 and 150 volatile differential metabolites were identified in different rootstock–scion combinations. The rootstock–scion combinations of ZG/MYT and ZG/BT could improve the volatile aroma in the fruit of C. humilis and made significant contributions to the rose and fruity flavors. KEGG pathway analysis indicated that the differential metabolites were mainly enriched in the butanoate metabolism and glycolysis/gluconeogenesis pathways, showing an increasing trend. Prunus tomentosa and Amygdalus communis can serve as preferred rootstocks for enhancing the aroma quality of C. humilis fruits. These results provide new insight into rootstock-based propagation and breeding and also offer some guidance for graft-based fruit production. Full article
(This article belongs to the Special Issue Genetic Breeding and Germplasm Resources of Fruit and Vegetable Crops)
Show Figures

Figure 1

12 pages, 310 KiB  
Article
Development and Validation of an Educational Tool on Hypodermoclysis for Palliative Care Professionals
by Maria Vanessa Tomé Bandeira de Sousa, Carlos Laranjeira, José Mateus Pires, Isabela Melo Bonfim, Luís Carlos Carvalho Graça, Karla Maria Carneiro Rolim, Lara Anisia Menezes Bonates, Régia Christina Moura Barbosa Castro and Ana Fátima Carvalho Fernandes
Nurs. Rep. 2025, 15(8), 301; https://doi.org/10.3390/nursrep15080301 (registering DOI) - 16 Aug 2025
Abstract
Background/Objectives: Hypodermoclysis has gained increasing recognition as a safe, effective, and minimally invasive method for administering medication and fluids in palliative care. Despite its advantages, its adoption remains limited, primarily due to a lack of structured training resources for healthcare professionals. This [...] Read more.
Background/Objectives: Hypodermoclysis has gained increasing recognition as a safe, effective, and minimally invasive method for administering medication and fluids in palliative care. Despite its advantages, its adoption remains limited, primarily due to a lack of structured training resources for healthcare professionals. This study aimed to develop and validate an educational tool for training clinical nurses in hypodermoclysis administration in palliative care. Methods: This is a methodological study with a multi-methods approach. Study development involved a needs assessment with 48 professionals, a literature review, and the creation of a manual enriched with visual aids. Results: The material was validated by expert judges, technical reviewers, and the target audience. Organized into 21 chapters, the manual comprehensively addresses technical, theoretical, and ethical dimensions of the practice. Content validation by 14 experts yielded an outstanding global Content Validity Index (CVI) of 0.95. An independent evaluation of visual design by four communication specialists produced consistently high scores (91–96%), classifying the material as “superior” in quality. Feedback from target users (12 nurses) highlighted the manual’s clarity, applicability, and relevance. All constructive suggestions were incorporated into the final version. Conclusions: The resulting manual demonstrates strong validity as an educational resource, with significant potential to standardize and enhance hypodermoclysis training in palliative nursing, promoting both safety and humanized care. Full article
(This article belongs to the Special Issue Advances in Nursing Care for Cancer Patients)
Show Figures

Figure 1

27 pages, 7464 KiB  
Article
Keel Petal Fusion in Soybean: Anatomical Insights and Transcriptomic Identification of Candidate Regulators
by Shun-Geng Jia, Li-Na Guo, Xiao-Fei Wang, De-Li Wang, Dan Chen, Wei-Cai Yang and Hong-Ju Li
Agronomy 2025, 15(8), 1971; https://doi.org/10.3390/agronomy15081971 - 15 Aug 2025
Abstract
The fusion of keel petals is a defining trait of Papilionoideae flowers, contributing to floral architecture and promoting self-pollination but hindering hybridization in crops like soybean. Here, we investigated the cellular and molecular basis of keel petal fusion in Glycine max (L.) Merr. [...] Read more.
The fusion of keel petals is a defining trait of Papilionoideae flowers, contributing to floral architecture and promoting self-pollination but hindering hybridization in crops like soybean. Here, we investigated the cellular and molecular basis of keel petal fusion in Glycine max (L.) Merr. cv. Jack using anatomical and transcriptomic approaches. Microscopy revealed that keel petal fusion involves marginal cell reshaping and postgenital adhesion with defective cuticle continuity, consistent with fusion modes in other Papilionoideae species. Comparative transcriptome analysis between fused and unfused petal stages identified 23,328 differentially expressed genes, with lipid and cuticle metabolism genes showing coordinated downregulation during fusion. A set of 384 keel-enriched genes was identified, among which a previously uncharacterized gene, KPEG1 (Keel Preferential Expression Gene 1), was preferentially expressed in fused keel petals. Protein interaction network analysis revealed that KPEG1 co-expresses with epigenetics-related genes, suggesting a regulatory role in fusion through chromatin-mediated mechanisms. These findings uncover the cellular dynamics and transcriptional reprogramming underlying keel petal fusion in soybean and provide a candidate regulator for further functional studies. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 26505 KiB  
Article
Advanced Electrospun Chitosan-(Polylactic Acid)-(Silver Nanoparticle)-Based Scaffolds for Facilitated Healing of Purulent Wounds: A Preclinical Investigation
by Yevhen Samokhin, Yuliia Varava, Anna Butsyk, Roman Moskalenko, Yevheniia Husak, Bohdan Dryhval, Valeriia Korniienko, Ihor Zhyvotovskyi, Vyacheslav Kukurika, Artem Shmatkov, Agne Ramanaviciute, Rafal Banasiuk, Maksym Pogorielov, Arunas Ramanavicius and Viktoriia Korniienko
Polymers 2025, 17(16), 2225; https://doi.org/10.3390/polym17162225 - 15 Aug 2025
Abstract
Biomaterials modified by antibacterial substances, including nanoparticles, open new opportunities for the effective treatment of infected wounds. Unfortunately, most publications focused only on experiments in vitro, with limited understanding of their potential for the clinic. This study evaluates the effectiveness in vivo of [...] Read more.
Biomaterials modified by antibacterial substances, including nanoparticles, open new opportunities for the effective treatment of infected wounds. Unfortunately, most publications focused only on experiments in vitro, with limited understanding of their potential for the clinic. This study evaluates the effectiveness in vivo of electrospun chitosan/polylactic acid (Ch/PLA) membranes enriched with silver nanoparticles (AgNPs) for purulent wound treatment. The composite biomaterial integrates chitosan’s biocompatibility and antimicrobial activity with PLA’s structural integrity, while AgNPs enhance antibacterial efficacy against major wound pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia aureus. A full-thickness purulent wound model was established in a rat model, and the animals were divided into three treatment groups: (i) Ch/PLA, (ii) Ch/PLA-AgNPs, and (iii) PLA-chlorhexidine (control). Wound healing was monitored over 21 days through macroscopic evaluation, histology, immunohistochemistry, and microbiological analysis. The Ch/PLA-AgNPs membranes significantly reduced bacterial colonization within 4–6 days, promoted granulation tissue formation, and accelerated epithelialization compared to the non-modified Ch/PLA scaffold. By day 15, complete wound closure was observed in the Ch/PLA-AgNPs group, comparable to PLA-chlorhexidine-treated wounds. Immunohistochemical analysis revealed a controlled inflammatory response with a balanced macrophage M1/M2 transition, supporting efficient tissue regeneration. Furthermore, systemic toxicity assessments indicated no significant adverse effects on internal organs. These findings demonstrate that electrospun Ch/PLA-AgNPs membranes effectively accelerate purulent wound healing by combining antimicrobial protection with biocompatible tissue support. This innovative approach presents a promising alternative to conventional wound dressings and paves the way for clinical applications in managing infected wounds. Full article
Show Figures

Figure 1

13 pages, 1384 KiB  
Article
Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant
by Hema Sekhar Reddy Rajula, Cristina Piras, Karolina Krystyna Kopeć, Antonio Noto, Martina Spada, Katia Lilliu, Mirko Manchia, Michele Mussap, Luigi Atzori and Vassilios Fanos
Metabolites 2025, 15(8), 551; https://doi.org/10.3390/metabo15080551 - 15 Aug 2025
Abstract
Background: This study investigates metabolic perturbations in serum samples associated with different genotypes (AA, AC, and CC) of the schizophrenia susceptibility gene NOS1AP-rs12742393. Methods: Publicly available datasets acquired using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS) were analyzed by employing network and enrichment [...] Read more.
Background: This study investigates metabolic perturbations in serum samples associated with different genotypes (AA, AC, and CC) of the schizophrenia susceptibility gene NOS1AP-rs12742393. Methods: Publicly available datasets acquired using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS) were analyzed by employing network and enrichment approaches. Results: Key metabolites, including tryptophan, 2-aminobutyric acid, palmitic acid, and 5-hydroxytryptophan, were strongly linked to metabolic networks in genotypes AA-AC and AA. Enrichment analysis was conducted to identify metabolite sets differentially distributed across these genotypes, with a particular focus on genotype AA. Conclusions: The findings suggest that NOS1AP-rs12742393 contributes to complex metabolic alterations involving amino acids, organic compounds, fatty acids, and cholic acids. Moreover, serum metabolome analysis demonstrates sufficient sensitivity and specificity to provide insights into NOS1AP-rs12742393 genotype-associated metabolic profiles, supporting a network-based approach to understanding schizophrenia susceptibility. Full article
Show Figures

Figure 1

24 pages, 3925 KiB  
Article
Defense Responses in Prickly Pear (Cucumis metuliferus) to Meloidogyne incognita: Insights from Transcriptomics and Metabolomics Analysis
by Hao Zhang, Qigan Liang, Jihao Chen, Jiming Wang, Yuan Huang, Bin Liu, Xuejun Zhang and Bo Zhou
Agronomy 2025, 15(8), 1965; https://doi.org/10.3390/agronomy15081965 - 14 Aug 2025
Abstract
The root-knot nematode (Meloidogyne incognita) poses a major threat to global agriculture by impairing root function, reducing nutrient uptake, and ultimately limiting seed development and crop productivity. This study investigated the molecular and metabolic defense responses of Cucumis metuliferus (prickly [...] Read more.
The root-knot nematode (Meloidogyne incognita) poses a major threat to global agriculture by impairing root function, reducing nutrient uptake, and ultimately limiting seed development and crop productivity. This study investigated the molecular and metabolic defense responses of Cucumis metuliferus (prickly pear) to M. incognita infection. Gene expression and metabolic pathway reprogramming in M. incognita-infected roots were examined using integrated transcriptomics and metabolomics approaches. The identified genes were involved in stress responses and defense activation. Furthermore, metabolite profiling revealed significant shifts in secondary metabolite production, with an upregulation of defense-related compounds like jasmonic acid, salicylic acid, and prostaglandins. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis highlighted critical pathways such as biotin metabolism and nucleotide metabolism, underscoring the adaptive metabolic responses of C. metuliferus plants. GO (Gene Ontology) analysis from the integrated transcriptomics and metabolomics data highlighted significant upregulation of enzymatic pathways, transporter activities, and reorganization of cellular structures. Furthermore, KEGG pathway analysis revealed activation of secondary metabolite biosynthesis, immune-related signaling pathways, and metabolic reprogramming including increased carbon metabolism and nucleotide biosynthesis. This study provides a valuable molecular framework for breeding of M. incognita-resistant cultivars, ultimately supporting more stable seed distribution and agricultural productivity in M. incognita-prone regions. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

45 pages, 5732 KiB  
Article
Tracing Heavy Metal Pollution in the Romanian Black Sea: A Multi-Matrix Study of Contaminant Profiles and Ecological Risk Across the Continental Shelf and Beyond
by Andra Oros, Dragos Marin, Gulten Reiz and Robert Daniel Nenita
Water 2025, 17(16), 2406; https://doi.org/10.3390/w17162406 - 14 Aug 2025
Abstract
This study provides a comprehensive six-year assessment (2018–2023) of heavy metal contamination in the Romanian Black Sea sector, integrating data from seawater, surface sediments, and benthic mollusks. Sampling was conducted across a broad spatial gradient, including transitional, coastal, shelf, and offshore waters beyond [...] Read more.
This study provides a comprehensive six-year assessment (2018–2023) of heavy metal contamination in the Romanian Black Sea sector, integrating data from seawater, surface sediments, and benthic mollusks. Sampling was conducted across a broad spatial gradient, including transitional, coastal, shelf, and offshore waters beyond 200 m depth. Concentrations of six potentially toxic metals, including cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), copper (Cu), and cobalt (Co), were measured to evaluate regional variability, potential sources, and ecological implications. Results indicate some exceedances of regulatory thresholds for Cd and Pb in transitional and coastal waters, associated with Danube River input and coastal pressures. Seabed substrate analysis revealed widespread enrichment in Ni, moderate levels of Cr, and sporadic Cd elevation in Danube-influenced areas, along with localized hotspots of Cu and Pb near port and industrial zones. Biological uptake patterns in mollusks (bivalves Mytilus galloprovincialis and Anadara inequivalvis and gastropod Rapana venosa) highlighted Cd among key metals of concern, with elevated Bioconcentration Factor (BCF) and Biota–Sediment Accumulation Factor (BAF). Offshore waters generally exhibited lower pollution levels. However, isolated exceedances, such as Cr outliers recorded in 2022, suggest that deep-sea inputs from atmospheric or maritime sources may be both episodic in nature and underrecognized due to limited monitoring coverage. The combined use of water, sediment, and biota data emphasize the strength of multi-matrix approaches in marine pollution evaluation, revealing persistent nearshore pressures and less predictable offshore anomalies. These findings contribute to a more complete understanding of heavy metal distribution in the northwestern Black Sea and provide a scientific basis for improving long-term environmental monitoring and risk management strategies in the region. Full article
Show Figures

Figure 1

15 pages, 1496 KiB  
Article
Simultaneous Reductions in NOx Emissions, Combustion Instability, and Efficiency Loss in a Lean-Burn CHP Engine via Hydrogen-Enriched Natural Gas
by Johannes Fichtner, Jan Ninow and Joerg Kapischke
Energies 2025, 18(16), 4339; https://doi.org/10.3390/en18164339 - 14 Aug 2025
Abstract
This study demonstrates that hydrogen enrichment in lean-burn spark-ignition engines can simultaneously improve three key performance metrics, thermal efficiency, combustion stability, and nitrogen oxide emissions, without requiring modifications to the engine hardware or ignition timing. This finding offers a novel control approach to [...] Read more.
This study demonstrates that hydrogen enrichment in lean-burn spark-ignition engines can simultaneously improve three key performance metrics, thermal efficiency, combustion stability, and nitrogen oxide emissions, without requiring modifications to the engine hardware or ignition timing. This finding offers a novel control approach to a well-documented trade-off in existing research, where typically only two of these factors are improved at the expense of the third. Unlike previous studies, the present work achieves simultaneous improvement of all three metrics without hardware modification or ignition timing adjustment, relying solely on the optimization of the air–fuel equivalence ratio λ. Experiments were conducted on a six-cylinder engine for combined heat and power application, fueled with hydrogen–natural gas blends containing up to 30% hydrogen by volume. By optimizing only the air–fuel equivalence ratio, it was possible to extend the lean-burn limit from λ1.6 to λ>1.9, reduce nitrogen oxide emissions by up to 70%, enhance thermal efficiency by up to 2.2 percentage points, and significantly improve combustion stability, reducing cycle-by-cycle variationsfrom 2.1% to 0.7%. A defined λ window was identified in which all three key performance indicators simultaneously meet or exceed the natural gas baseline. Within this window, balanced improvements in nitrogen oxide emissions, efficiency, and stability are achievable, although the individual maxima occur at different operating points. Cylinder pressure analysis confirmed that combustion dynamics can be realigned with original equipment manufacturer characteristics via mixture leaning alone, mitigating hydrogen-induced pressure increases to just 11% above the natural gas baseline. These results position hydrogen as a performance booster for natural gas engines in stationary applications, enabling cleaner, more efficient, and smoother operation without added system complexity. The key result is the identification of a λ window that enables simultaneous optimization of nitrogen oxide emissions, efficiency, and combustion stability using only mixture control. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy and Fuel Cell Technologies)
Show Figures

Figure 1

17 pages, 567 KiB  
Study Protocol
Feasibility and Potential Effects of Multidomain Interventions to Improve the Cognitive and Functional Well-Being of Elderly Individuals in Residential Structures: The I-COUNT Pilot Study Protocol
by Zaira Romeo, Eleonora Macchia, Chiara Ceolin, Maria Devita, Alessandro Morandi, Marianna Noale and Stefania Maggi
Healthcare 2025, 13(16), 1999; https://doi.org/10.3390/healthcare13161999 - 14 Aug 2025
Abstract
Background/Objectives: Multidisciplinary approaches spanning the physical, cognitive, and social domains of geriatric evaluation are essential to promote functional well-being and reduce the aversive consequences of aging. The main objective of the pilot study, “Multidomain Interventions to improve the COgnitive and fUNctional well-being [...] Read more.
Background/Objectives: Multidisciplinary approaches spanning the physical, cognitive, and social domains of geriatric evaluation are essential to promote functional well-being and reduce the aversive consequences of aging. The main objective of the pilot study, “Multidomain Interventions to improve the COgnitive and fUNctional well-being of elderly individuals in residential sTructures” (I-COUNT), is to assess the feasibility of a 6-month multidomain intervention performed on older adults in Long-Term Care Facilities (LTCFs), compared with a group of residents following a traditional care approach. Methods: The intervention will involve two LTCFs in Italy and will include physical exercise and cognitive training, administered and monitored using wearable technologies, a nutritional program based on the Mediterranean diet enriched with selected functional foods, and the administration of the vaccinations recommended in the national vaccination plan. The I-COUNT study will assess the feasibility and acceptability of the defined protocol and provide information to determine the sample size for a definitive study. In relation to the potential health impact of multidomain interventions on older people living in LTCFs, the primary outcome will consider the change in microbiota composition assessed 3 months after the start of interventions, while secondary outcomes will include the evaluation of changes in selected biomarkers, physical performance, psychological health, cognitive functioning, and nutritional status at 6- and 9-month follow-up points. Conclusions: The I-COUNT study will allow us to assess the feasibility of delivering a multidomain intervention on elderly people. Exploratory findings on potential health effect will support the development of a larger-scale randomized controlled trial. Trial registration number: ClinicalTrials.gov ID NCT06820710. Full article
Show Figures

Graphical abstract

28 pages, 6451 KiB  
Article
Widely Targeted Metabolomic and Network Pharmacology Analyses of Active Compounds Enriched from Ethanolic Extract of Oudemansiella raphanipes
by Zhi Wu, Jin Zhao, Shuang Zhu, Mengxing Chen, Dan Wu, Yiyou Wu, Junbin Lin, Renyun Miao, Rencai Feng, Xiang Li, Bingcheng Gan and Tao Wang
Foods 2025, 14(16), 2820; https://doi.org/10.3390/foods14162820 - 14 Aug 2025
Abstract
Oudemansiella raphanipes ethanolic extract (ORE) was prepared via ultrasonication-assisted ethanolic extraction and enriched through silica gel and macroporous adsorption resin chromatography to afford a non-/weakly polar fraction (ORE-S) and a polar fraction (ORE-N), respectively. This study aimed to (1) quantify major bioactive components [...] Read more.
Oudemansiella raphanipes ethanolic extract (ORE) was prepared via ultrasonication-assisted ethanolic extraction and enriched through silica gel and macroporous adsorption resin chromatography to afford a non-/weakly polar fraction (ORE-S) and a polar fraction (ORE-N), respectively. This study aimed to (1) quantify major bioactive components (e.g., polyphenols, alkaloids, and terpenes) in ORE-S and ORE-N, (2) assess their antioxidant activities, (3) correlate compositional differences with antioxidant function, and (4) identify key antioxidant compounds along with their potential mechanisms of action. By integrating widely targeted metabolomics with network pharmacology, we not only elucidated how enrichment methods influence the antioxidant properties of ORE but also demonstrated the potential of ORE-N as a valuable source of bioactive compounds and natural antioxidants. Full article
(This article belongs to the Special Issue Mushroom Biotechnology in Food Industry: 2nd Edition)
Show Figures

Figure 1

21 pages, 980 KiB  
Article
Remediation of Heavy Metal-Contaminated Soils Using Phosphate-Enriched Sewage Sludge Biochar
by Protogene Mbasabire, Yves Theoneste Murindangabo, Jakub Brom, Protegene Byukusenge, Jean de Dieu Marcel Ufitikirezi, Josine Uwihanganye, Sandra Nicole Umurungi, Marie Grace Ntezimana, Karim Karimunda and Roger Bwimba
Sustainability 2025, 17(16), 7345; https://doi.org/10.3390/su17167345 - 14 Aug 2025
Viewed by 17
Abstract
Heavy metals represent long-lasting contaminants that pose significant risks to both human health and ecosystem integrity. Originating from both natural and anthropogenic activities, they bioaccumulate in organisms through the food web, leading to widespread and long-lasting contamination. Industrialization, agriculture, and urbanization have exacerbated [...] Read more.
Heavy metals represent long-lasting contaminants that pose significant risks to both human health and ecosystem integrity. Originating from both natural and anthropogenic activities, they bioaccumulate in organisms through the food web, leading to widespread and long-lasting contamination. Industrialization, agriculture, and urbanization have exacerbated soil and water contamination through activities such as mining, industrial production, and wastewater use. In response to this challenge, biochar produced from waste materials such as sewage sludge has emerged as a promising remediation strategy, offering a cost-effective and sustainable means to immobilize heavy metals and reduce their bioavailability in contaminated environments. Here we explore the potential of phosphate-enriched biochar, derived from sewage sludge, to adsorb and stabilize heavy metals in polluted soils. Sewage sludge was pyrolyzed at various temperatures to produce biochar. A soil incubation experiment was conducted by adding phosphate-amended biochar to contaminated soil and maintaining it for one month. Heavy metals were extracted using a CaCl2 extraction method and analyzed using atomic absorption spectrophotometry. Results demonstrated that phosphate amendment significantly enhanced the biochar’s capacity to immobilize heavy metals. Amending soils with 2.5 wt% phosphate-enriched sewage sludge biochar led to reductions in bioavailable Cd (by 65–82%), Zn (40–75%), and Pb (52–88%) across varying pyrolysis temperatures. Specifically, phosphate-amended biochar reduced the mobility of Cd and Zn more effectively than unamended biochar, with a significant decrease in their concentrations in soil extracts. For Cu and Pb, the effectiveness varied with pyrolysis temperature and phosphate amendment, highlighting the importance of optimization for specific metal contaminants. Biochar generated from elevated pyrolysis temperatures (500 °C) showed an increase in ash content and pH, which improved their ability to retain heavy metals and limit their mobility. These findings suggest that phosphate-amended biochar reduces heavy metal bioavailability, minimizing their entry into the food chain. This supports a sustainable approach for managing hazardous waste and remediating contaminated soils, safeguarding ecosystem health, and mitigating public health risks. Full article
Show Figures

Figure 1

Back to TopTop