Novel Environmentally-Friendly Process for Selective Extraction and Enrichment of DHA/EPA-Containing Phospholipids from Krill Oil via Differential Temperature-Controlled Crystallization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Separation and Purification of PL-DHA
2.2.1. Extraction Procedure
2.2.2. Purification Process
2.2.3. Experimental Design
2.2.4. Response Surface Statistical Analysis
2.2.5. Model Validation
2.3. Organic Solvent Extraction of PL-DHA/EPA
2.4. Lipidomic Analysis Determination
2.5. Peroxide Value Determination
2.6. Acid Value Determination
2.7. Anisidine Value Determination
2.8. Total Oxidation (TOTOX) Value Determination
2.9. Statistical Analysis
3. Results and Discussion
3.1. Single-Factor Analysis of Process Parameters
3.1.1. Effect of Liquid-to-Material Ratio on PL-DHA/EPA Extraction
3.1.2. Effect of Freezing Temperature on PL-DHA/EPA Extraction
3.1.3. Effect of Freezing Duration on PL-DHA/EPA Extraction
3.1.4. Effect of Rotary Evaporation Temperature on PL-DHA/EPA Extraction
3.2. Response Surface Analysis
Run | A | B (°C) | C (h) | D (°C) | PL-DHA/EPA Yield (g) |
---|---|---|---|---|---|
1 | 5 | −20 | 30 | 45 | 0.2910 |
2 | 6 | −20 | 25 | 45 | 0.3642 |
3 | 6 | −20 | 30 | 55 | 0.2831 |
4 | 6 | −20 | 20 | 55 | 0.2913 |
5 | 6 | −30 | 30 | 45 | 0.2347 |
6 | 6 | −30 | 25 | 55 | 0.2809 |
7 | 6 | −20 | 25 | 45 | 0.3542 |
8 | 5 | −20 | 25 | 35 | 0.3123 |
9 | 5 | −30 | 25 | 45 | 0.2472 |
10 | 7 | −30 | 25 | 45 | 0.2692 |
11 | 7 | −20 | 25 | 35 | 0.3287 |
12 | 6 | −30 | 20 | 45 | 0.2901 |
13 | 6 | −20 | 20 | 35 | 0.3213 |
14 | 5 | −20 | 20 | 45 | 0.2822 |
15 | 7 | −10 | 25 | 45 | 0.1199 |
16 | 6 | −20 | 30 | 35 | 0.3024 |
17 | 5 | −10 | 25 | 45 | 0.1464 |
18 | 6 | −20 | 25 | 45 | 0.3824 |
19 | 6 | −10 | 25 | 55 | 0.1373 |
20 | 7 | −20 | 30 | 45 | 0.2671 |
21 | 6 | −30 | 25 | 35 | 0.221 |
22 | 6 | −20 | 25 | 45 | 0.3756 |
23 | 6 | −10 | 30 | 45 | 0.1483 |
24 | 6 | −20 | 25 | 45 | 0.3923 |
25 | 6 | −10 | 25 | 35 | 0.1535 |
26 | 7 | −20 | 25 | 55 | 0.3324 |
27 | 6 | −10 | 20 | 45 | 0.1529 |
28 | 5 | −20 | 25 | 55 | 0.3129 |
29 | 7 | −20 | 20 | 45 | 0.2769 |
3.2.1. Interaction Effects of Liquid-to-Material Ratio and Freezing Duration on PL-DHA/EPA Extraction Efficiency
3.2.2. Interaction Effects of Liquid-to-Material Ratio and Freezing Temperature on PL-DHA/EPA Extraction Efficiency
3.2.3. Interaction Effects of Liquid-to-Material Ratio and Rotary Evaporation Temperature on PL-DHA/EPA Extraction Efficiency
3.2.4. Interaction Effects of Freezing Duration and Freezing Temperature on PL-DHA/EPA Extraction Efficiency
3.2.5. Interaction Effects of Freezing Duration and Rotary Evaporation Temperature on PL-DHA/EPA Extraction Efficiency
3.2.6. Interaction Effects of Freezing Temperature and Rotary Evaporation Temperature on PL-DHA/EPA Extraction Efficiency
3.3. PL-DHA/EPA Content and Phospholipid Composition Analysis
3.4. Principal Component Analysis
3.5. Molecular Species Distribution Analysis
3.6. Oxidative Stability Assessment
3.6.1. Peroxide Values Analysis
3.6.2. Acid Values Analysis
3.6.3. P-Anisidine Values Analysis
3.6.4. TOTOX Values Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef]
- Ahmmed, M.K.; Ahmmed, F.; Tian, H.; Carne, A.; Bekhit, A.E.D. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr. Rev. Food Sci. Food Saf. 2020, 19, 64–123. [Google Scholar] [CrossRef]
- Bradbury, J. Docosahexaenoic acid (DHA): An ancient nutrient for the modern human brain. Nutrients 2011, 3, 529–554. [Google Scholar] [CrossRef]
- Bannenberg, G.; Serhan, C.N. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim. Biophys. Acta 2010, 1801, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.A.; Zhang, J.; Aydin, D.; Xu, Y.; Andreone, B.J.; Langen, U.H.; Dror, R.O.; Gu, C.; Feng, L. Structure and mechanism of blood–brain-barrier lipid transporter MFSD2A. Nature 2021, 596, 444–448. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of animal and marine origin: Structure, function, and anti-inflammatory properties. Molecules 2017, 22, 1964. [Google Scholar] [CrossRef] [PubMed]
- Cong, B. Perspectives in food & medicine homology. Food Med. Homol. 2024, 1, 9420018. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Homan, R.; Pownall, H.J. Transbilayer diffusion of phospholipids: Dependence on headgroup structure and acyl chain length. Biochim. Biophys. Acta (BBA) Biomembr. 1988, 938, 155–166. [Google Scholar] [CrossRef]
- Lichtenberg, D.; Robson, R.J.; Dennis, E.A. Solubilization of phospholipids by detergents structural and kinetic aspects. Biochim. Biophys. Acta (BBA) Rev. Biomembr. 1983, 737, 285–304. [Google Scholar] [CrossRef]
- Pichot, R.; Watson, R.L.; Norton, I.T. Phospholipids at the interface: Current trends and challenges. Int. J. Mol. Sci. 2013, 14, 11767–11794. [Google Scholar] [CrossRef]
- Bojorges, H.; López-Rubio, A.; Martínez-Abad, A.; Fabra, M.J. Technology. Overview of alginate extraction processes: Impact on alginate molecular structure and techno-functional properties. Trends Food Sci. Technol. 2023, 140, 104142. [Google Scholar] [CrossRef]
- Leyland, D.; Chivavava, J.; Lewis, A.E. Investigations into ice scaling during eutectic freeze crystallization of brine streams at low scraper speeds and high supersaturation. Sep. Purif. Technol. 2019, 220, 33–41. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef]
- Seddon, J.M.; Cevc, G. Lipid polymorphism: Structure and Stability of Lyotropic Mesophases of Phospholipids. In Phospholipids Handbook; CRC Press: Boca Raton, FL, USA, 2018; pp. 402–454. [Google Scholar]
- Winter, R.; Dzwolak, W. Exploring the temperature–pressure configurational landscape of biomolecules: From lipid membranes to proteins. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2005, 363, 537–563. [Google Scholar] [CrossRef] [PubMed]
- Heerklotz, H.J. The microcalorimetry of lipid membranes. J. Phys. Condens. Matter 2004, 16, R441. [Google Scholar] [CrossRef]
- Zellmer, S.; Cevc, G.; Risse, P. Temperature-and pH-controlled fusion between complex lipid membranes. Examples with the diacylphosphatidylcholine/fatty acid mixed liposomes. Biochim. Biophys. Acta (BBA) Biomembr. 1994, 1196, 101–113. [Google Scholar] [CrossRef]
- Ribeiro, A.P.B.; Masuchi, M.H.; Miyasaki, E.K.; Domingues, M.A.F.; Stroppa, V.L.Z.; de Oliveira, G.M.; Kieckbusch, T.G. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 2015, 52, 3925–3946. [Google Scholar] [CrossRef]
- Van Vleet, M.J.; Weng, T.; Li, X.; Schmidt, J.R. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem. Rev. 2018, 118, 3681–3721. [Google Scholar] [CrossRef]
- Anderson, M.W.; Bennett, M.; Cedeno, R.; Cölfen, H.; Cox, S.J.; Cruz-Cabeza, A.J.; De Yoreo, J.J.; Drummond-Brydson, R.; Dudek, M.K.; Fichthorn, K.A.; et al. Understanding crystal nucleation mechanisms: Where do we stand? General discussion. Faraday Discuss. 2022, 235, 219–272. [Google Scholar] [CrossRef]
- Binder, W.H.; Barragan, V.; Menger, F.M. Domains and rafts in lipid membranes. Angew. Chem. Int. Ed. 2003, 42, 5802–5827. [Google Scholar] [CrossRef]
- Asgar Pour, Z.; Alassmy, Y.A.; Sebakhy, K.O. A survey on zeolite synthesis and the crystallization process: Mechanism of nucleation and growth steps. Crystals 2023, 13, 959. [Google Scholar] [CrossRef]
- Bhattacharya, A. Lipid Metabolism in Plants Under Low-Temperature Stress: A Review. Physiological Processes in Plants Under Low Temperature Stress; Springer: Berlin/Heidelberg, Germany, 2022; pp. 409–516. [Google Scholar]
- Chapman, D. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 1975, 8, 185–235. [Google Scholar] [CrossRef] [PubMed]
- Smets, M. Exploring the Mechanism of Solid-State Phase Transitions in Molecular Crystals; Sl: Sn, 2018; Available online: https://hdl.handle.net/2066/195017 (accessed on 12 August 2025).
- Bayard, M.; Cansell, M.; Leal-Calderon, F. Crystallization of emulsified anhydrous milk fat: The role of confinement and of minor compounds. A DSC study. Food Chem. 2022, 373, 131605. [Google Scholar] [CrossRef]
- Wu, A.; Gao, Y.; Zheng, L. Zwitterionic amphiphiles: Their aggregation behavior and applications. Green Chem. 2019, 21, 4290–4312. [Google Scholar] [CrossRef]
- Foret, M.K.; Lincoln, R.; Do Carmo, S.; Cuello, A.C.; Cosa, G. Connecting the “dots”: From free radical lipid autoxidation to cell pathology and disease. Chem. Rev. 2020, 120, 12757–12787. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Prasad, A.; Srivastava, A.; Wang, T. Effect of thermal conductivity, compressive viscosity and radiative cooling on the phase shift of propagating slow waves with and without heating–cooling imbalance. Sol. Phys. 2021, 296, 105. [Google Scholar] [CrossRef]
- Dietzel, M.; Hardt, S. Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient. J. Fluid Mech. 2017, 813, 1060–1111. [Google Scholar] [CrossRef]
- Li, J.; Krause, M.E.; Chen, X.; Cheng, Y.; Dai, W.; Hill, J.J.; Huang, M.; Jordan, S.; LaCasse, D.; Narhi, L.; et al. Interfacial stress in the development of biologics: Fundamental understanding, current practice, and future perspective. AAPS J. 2019, 21, 44. [Google Scholar] [CrossRef]
- Andrade, J.; Hlady, V. Protein Adsorption and Materials Biocompatibility: A Tutorial Review and Suggested Hypotheses. Biopolymers/Non-Exclusion HPLC; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–63. [Google Scholar]
- Roby, M.H.; De Castro, V.C.; Targino, B.N.; Da Silva, P.H.A.; Mangavel, C.; Chretien, F.; Humeau, C.; Desobry, S. Oxidative stability of DHA phenolic ester. Food Chem. 2015, 169, 41–48. [Google Scholar] [CrossRef]
- Catalá, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 2009, 157, 1–11. [Google Scholar] [CrossRef]
- Nawar, W.W. Thermal degradation of lipids. J. Agric. Food Chem. 1969, 17, 18–21. [Google Scholar] [CrossRef]
- Sun, J.-K.; Sobolev, Y.I.; Zhang, W.; Zhuang, Q.; Grzybowski, B.A. Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature 2020, 579, 73–79. [Google Scholar] [CrossRef]
- Kulkarni, C.V. Lipid crystallization: From self-assembly to hierarchical and biological ordering. Nanoscale 2012, 4, 5779–5791. [Google Scholar] [CrossRef]
- Xu, M. Multi-Scale Analysis of Freezing Process in Mining Applications: From Equilibrium to Non-Equilibrium; McGill University: Montreal, QC, Canada, 2024. [Google Scholar]
- Shi, Q.; Zhang, C.; Su, Y.; Zhang, J.; Zhou, D.; Cai, T. Acceleration of crystal growth of amorphous griseofulvin by low-concentration poly (ethylene oxide): Aspects of crystallization kinetics and molecular mobility. Mol. Pharm. 2017, 14, 2262–2272. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Asare-Yeboah, K.; Bi, S. Binary solvent engineering for small-molecular organic semiconductor crystallization. Mater. Adv. 2023, 4, 769–786. [Google Scholar] [CrossRef]
- Lee, W.J.; Wang, Y. Blending, Hydrogenation, Fractionation and Interesterification Processing. In Recent Advances in Edible Fats and Oils Technology: Processing, Health Implications, Economic and Environmental Impact; Springer: Berlin/Heidelberg, Germany, 2022; pp. 189–234. [Google Scholar]
- Zhou, D.-D.; Zhang, J.-P. On the role of flexibility for adsorptive separation. Acc. Chem. Res. 2022, 55, 2966–2977. [Google Scholar] [CrossRef] [PubMed]
- Dervichian, D.G. The physical chemistry of phospholipids. Prog. Biophys. Mol. Biol. 1964, 14, 263-IN3. [Google Scholar] [CrossRef]
- Zhou, L. Development of Oxidation Models and Analytical Techniques Specific to Phospholipids and Their Degradation Products in Functional Foods. Doctoral Thesis, Université de Strasbourg, Strasbourg, France, November 2012. [Google Scholar]
- Musakhanian, J.; Rodier, J.-D.; Dave, M. Oxidative stability in lipid formulations: A review of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech 2022, 23, 151. [Google Scholar] [CrossRef]
- Shahidi, F.; Wanasundara, P. Extraction and Analysis of Lipids. In Food Lipids; CRC Press: Boca Raton, FL, USA, 2002; pp. 152–187. [Google Scholar]
- Bunjes, H.; Koch, M.H. Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. J. Control. Release 2005, 107, 229–243. [Google Scholar] [CrossRef]
- Skoda, W.; Van den Tempel, M. Crystallization of emulsified triglycerides. J. Colloid Sci. 1963, 18, 568–584. [Google Scholar] [CrossRef]
- Klaus, A. Solubility of Triglycerides in Water Using an Extended Surfactant. Doctoral Thesis, University of Regensburg, Regensburg, Germany, March 2011. [Google Scholar]
- Ruelle, P. Understanding the volume–solubility dependence: The mobile order and disorder view. J. Phys. Org. Chem. 1999, 12, 769–786. [Google Scholar] [CrossRef]
- Timms, R.E. Fractional crystallisation–the fat modification process for the 21st century. Eur. J. Lipid Sci. Technol. 2005, 107, 48–57. [Google Scholar] [CrossRef]
- Dai, C.; Li, Z.; Zheng, K.; Zhang, J.-H.; Dai, R.; Luo, D.; Gao, H.; Thabet, H.K.; El-Bahy, Z.M.; Pan, L.; et al. Strategic design of porous interfacial evaporators: A comprehensive review unveiling the significant role of pore engineering. Nano Energy 2024, 131, 110244. [Google Scholar] [CrossRef]
- Polok, K.; Subba, N.; Gadomski, W.; Sen, P. Search for the origin of synergistic solvation in methanol/chloroform mixture using optical Kerr effect spectroscopy. J. Mol. Liq. 2022, 345, 117013. [Google Scholar] [CrossRef]
- Goncalves Cardoso, R.A. Tunable and Stable Swollen Surfactant Lamellar Phases for Hair-Care Applications. Ph.D. Thesis, Nanyang Technological University, Singapore, August 2019. [Google Scholar]
- Weatherly, C.A. Advances in Separation Methodologies: Fatty Acid, Fatty Amine, Water, and Ethanol Determination by Ionic Liquid Gas Chromatography and D-Amino Acid Evaluation in Mammalian Brain by Liquid Chromatography. Ph.D. Thesis, The University of Texas at Arlington, Arlington, TX, USA, August 2016. [Google Scholar]
- Luo, J.; Yang, Y.; Wang, T.; Huang, Z.; Zhu, X.; Xie, L.; Li, Y.; Ke, J.; Wang, X.; Jin, J.; et al. Factors Influencing the Oxidative Stability of Antarctic Krill Oil and Improvement Measures: A Review with Current Knowledge. In Food and Bioprocess Technology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–20. [Google Scholar]
- Valls-Bellés, V. Oxidative Stress and Antioxidants in Nutrition; Chemistry and Biochemistry of Food; De Gruyter: Berlin, Germany; Boston, MA, USA, 2024; pp. 341–372. [Google Scholar] [CrossRef]
- Focsan, A.L.; Polyakov, N.E.; Kispert, L.D. Photo protection of Haematococcus pluvialis algae by astaxanthin: Unique properties of astaxanthin deduced by EPR, optical and electrochemical studies. Antioxidants 2017, 6, 80. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 2017, 8, 613. [Google Scholar] [CrossRef]
- Duché, G.; Sanderson, J.M. The chemical reactivity of membrane lipids. Chem. Rev. 2024, 124, 3284–3330. [Google Scholar] [CrossRef]
- Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Mitochondrial oxidative stress: Implications for cell death. Annu. Rev. Pharmacol. Toxicol 2007, 47, 143–183. [Google Scholar] [CrossRef] [PubMed]
- Aloulou, A.; Ali, Y.B.; Bezzine, S.; Gargouri, Y.; Gelb, M.H. Phospholipases: An Overview. Lipases and Phospholipases: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2012; pp. 63–85. [Google Scholar]
- Balboa, M.A.; Balsinde, J. Phospholipases: From structure to biological function. Biomolecules 2021, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Nie, B.; Arnold, R.D.; Cummings, B.S. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed. Chromatogr. 2016, 30, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Kikugawa, K.; Beppu, M. Involvement of lipid oxidation products in the formation of fluorescent and cross-linked proteins. Chem. Phys. Lipids 1987, 44, 277–296. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Gerothanassis, I.P. Analytical and structural tools of lipid hydroperoxides: Present state and future perspectives. Molecules 2022, 27, 2139. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, A.; Kuksis, A.; Shaikh, N.; Jackowski, G. Preparation of Schiff base adducts of phosphatidylcholine core aldehydes and aminophospholipids, amino acids, and myoglobin. Lipids 1997, 32, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.F. Analysis of the Structural Changes that Occur During the Oxidation of Human Low Density Lipoproteins. Ph.D. Thesis, University of London, Royal Free Hospital School of Medicine, London, UK, 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhang, Y.; Heng, J.; Liu, B.; Ma, X.; Jin, J.; Yan, W.; Wang, F. Novel Environmentally-Friendly Process for Selective Extraction and Enrichment of DHA/EPA-Containing Phospholipids from Krill Oil via Differential Temperature-Controlled Crystallization. Foods 2025, 14, 2841. https://doi.org/10.3390/foods14162841
He Y, Zhang Y, Heng J, Liu B, Ma X, Jin J, Yan W, Wang F. Novel Environmentally-Friendly Process for Selective Extraction and Enrichment of DHA/EPA-Containing Phospholipids from Krill Oil via Differential Temperature-Controlled Crystallization. Foods. 2025; 14(16):2841. https://doi.org/10.3390/foods14162841
Chicago/Turabian StyleHe, Yi, Yu Zhang, Jiangying Heng, Bo Liu, Xuan Ma, Jing Jin, Wenjie Yan, and Feng Wang. 2025. "Novel Environmentally-Friendly Process for Selective Extraction and Enrichment of DHA/EPA-Containing Phospholipids from Krill Oil via Differential Temperature-Controlled Crystallization" Foods 14, no. 16: 2841. https://doi.org/10.3390/foods14162841
APA StyleHe, Y., Zhang, Y., Heng, J., Liu, B., Ma, X., Jin, J., Yan, W., & Wang, F. (2025). Novel Environmentally-Friendly Process for Selective Extraction and Enrichment of DHA/EPA-Containing Phospholipids from Krill Oil via Differential Temperature-Controlled Crystallization. Foods, 14(16), 2841. https://doi.org/10.3390/foods14162841