Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,719)

Search Parameters:
Keywords = enhanced oil recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

25 pages, 2195 KB  
Article
Study on the Dual Enhancement Effect of Nanoparticle–Surfactant Composite Systems on Oil Recovery Rates
by Gen Li, Bin Huang, Yong Yuan, Cheng Fu and Keliang Wang
Nanomaterials 2026, 16(2), 102; https://doi.org/10.3390/nano16020102 - 12 Jan 2026
Abstract
Nanoparticle–surfactant composite flooding systems significantly enhance oil recovery through synergistic effects. When the optimal ratio of SiO2 nanoparticles to nonionic surfactant alkylphenol polyoxyethylene ether (OP-10) in the composite system is 3:2, the oil–water interfacial tension (IFT) decreases to 0.005 mN/m, and the [...] Read more.
Nanoparticle–surfactant composite flooding systems significantly enhance oil recovery through synergistic effects. When the optimal ratio of SiO2 nanoparticles to nonionic surfactant alkylphenol polyoxyethylene ether (OP-10) in the composite system is 3:2, the oil–water interfacial tension (IFT) decreases to 0.005 mN/m, and the contact angle changes from the original 128° to 42°, achieving effective wettability alteration. Core displacement experiments demonstrate that the recovery rate using nanoparticles alone is 46.8%, and using surfactant alone is 52.3%, while the composite system achieves 71.5%, representing a 39.2 percentage point improvement over water flooding. The composite system operates through multiple mechanisms including interfacial tension reduction, wettability alteration, stable emulsion formation, and enhanced sweep efficiency. The wedging effect of nanoparticles at pore throats and the interfacial activity of surfactants form significant synergistic enhancement, providing a new technical pathway for efficient development of low-permeability reservoirs. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

39 pages, 1731 KB  
Review
Analysis of Major Global Oil Spill Incidents: Part 1—Environmental and Ecological Impacts
by Panagiota Keramea, George Zodiatis and Georgios Sylaios
J. Mar. Sci. Eng. 2026, 14(2), 153; https://doi.org/10.3390/jmse14020153 - 11 Jan 2026
Viewed by 83
Abstract
Oil spills remain among the most severe anthropogenic threats to marine ecosystems, with consequences that span ecological, socio-economic, and human health domains. While numerous studies have investigated individual accidents such as Exxon Valdez, Prestige, and Deepwater Horizon, systematic comparative analyses across multiple large-scale [...] Read more.
Oil spills remain among the most severe anthropogenic threats to marine ecosystems, with consequences that span ecological, socio-economic, and human health domains. While numerous studies have investigated individual accidents such as Exxon Valdez, Prestige, and Deepwater Horizon, systematic comparative analyses across multiple large-scale incidents remain limited. This review addresses this critical gap by synthesizing findings from fourteen major oil spills worldwide. It examines the roles of oil type and environmental conditions, emphasizing impacts on fish, seabirds, shoreline habitats, and benthic organisms, as well as on long-term ecosystem recovery. Across cases, coastal waters, shorelines, and benthic communities consistently emerged as the most impacted habitats, reflecting both the persistence of oil in nearshore environments and the challenges of long-term restoration. Biologically, all trophic levels were affected: plankton, fish, seabirds, and benthic invertebrates were highly vulnerable, while marine mammals and reptiles suffered population-level effects. By integrating cross-case evidence, this review highlights recurring patterns, key uncertainties, and long-lasting ecosystem disruptions that persist decades after acute events. The Deepwater Horizon spill stands out as the most ecologically severe incident, whereas earlier spills such as Exxon Valdez, Erika, and Prestige remain benchmarks for ecological damage. Thus, this state-of-the-art review provides the most comprehensive comparative assessment of oil spill impacts to date and offers technical recommendations for enhancing preparedness, response, and resilience in the face of future spills. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

17 pages, 2618 KB  
Article
Experimental Study on Mechanism of Using Complex Nanofluid Dispersions to Enhance Oil Recovery in Tight Offshore Reservoirs
by Zhisheng Xing, Xingyuan Liang, Guoqing Han, Fujian Zhou, Kai Yang and Shuping Chang
J. Mar. Sci. Eng. 2026, 14(2), 126; https://doi.org/10.3390/jmse14020126 - 7 Jan 2026
Viewed by 175
Abstract
Horizontal wells combined with multi-stage fracturing are key techniques for extracting tight oil formation. However, due to the ultra-low permeability and porosity of reservoirs, energy depletion occurs rapidly, necessitating external supplements to sustain production. During the hydraulic fracturing process, large volumes of fracturing [...] Read more.
Horizontal wells combined with multi-stage fracturing are key techniques for extracting tight oil formation. However, due to the ultra-low permeability and porosity of reservoirs, energy depletion occurs rapidly, necessitating external supplements to sustain production. During the hydraulic fracturing process, large volumes of fracturing fluid are injected into reservoirs, increasing its pressure to a certain extent. However, due to the oil-wet nature of the formation, the fracturing fluid cannot penetrate the rock, failing to enhance oil recovery during the shut-in period. Surfactant-based nanofluids have been introduced as fracturing fluid additives to reverse rock wettability, thereby boosting imbibition-driven recovery. Although the imbibition has been studied to inspire the tight oil recovery, few studies have demonstrated the imbibition in enhanced fossil hydrogen energy, which further promotes the imbibition recovery. In this paper, complex nanofluid dispersions (CND) have been proved to enhance the tight reservoir pressure. Through contact angle and imbibition experiments, it is shown that CND can transform oil-wet rock to water-wet, reduce the adhesion of oil, and improve the ultimate oil recovery through the imbibition effect. Then, core flow testing experiments were conducted to show CND can decrease the flow resistance and improve the swept area of the injected fluid. In the end, pressure transmission tests were conducted to show CND can enhance the formation energy and production after fracturing. Results demonstrate that CND enables the fracturing fluid to travel further away from the hydraulic fractures, thus decreasing the depletion of tight formation pressure and maintaining a higher oil production rate. Results help optimize the design of the hydraulic fracturing of tight offshore reservoirs. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

15 pages, 4352 KB  
Article
Development of the CO2-Resistant Gel by Designing a Novel CO2-Responsive Polymer for Channel Control in Low-Permeability Reservoirs
by Xiangjuan Meng, Xinjie Xu, Yining Wu, Zhenfeng Ma, Herui Fan, Ziyi Wang, Wenhao Ren, Zhongzheng Xu and Mingwei Zhao
Gels 2026, 12(1), 57; https://doi.org/10.3390/gels12010057 - 7 Jan 2026
Viewed by 168
Abstract
To address the problem of serious gas channeling during CO2 flooding in low-permeability reservoirs, which leads to poor oil recovery, this study developed a CO2-resistant gel using a novel CO2-responsive polymer (ADA) for gas channel control. The ADA [...] Read more.
To address the problem of serious gas channeling during CO2 flooding in low-permeability reservoirs, which leads to poor oil recovery, this study developed a CO2-resistant gel using a novel CO2-responsive polymer (ADA) for gas channel control. The ADA polymer was synthesized via free-radical copolymerization of acrylamide (AM), dimethylaminopropyl methacrylamide (DMAPMA), and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), which introduced protonatable tertiary-amine groups and sulfonate moieties into the polymer backbone. Comprehensive characterizations confirmed the designed structure and adequate thermal stability of the ADA polymer. Rheological tests demonstrated that the ADA polymer solution exhibits significant CO2-triggered viscosity enhancement and excellent shear resistance. When crosslinked with phenolic resin, the resulting ADA gel showed outstanding CO2 tolerance under simulated reservoir conditions (110 °C, 10 MPa). After 600 s of CO2 exposure, the ADA gel retained over 99% of its initial viscosity, whereas a conventional HPAM-based industrial gel degraded to 61% of its original viscosity. The CO2-resistance mechanism involves protonation of tertiary amines to form quaternary ammonium salts, which electrostatically interact with sulfonate groups, creating a reinforced dual-crosslinked network that effectively protects the gel from H+ ion attack. Core flooding experiments confirmed its ability to enhance oil recovery by plugging high-permeability channels and diverting flow, achieving a final recovery of up to 48.5% in heterogeneous cores. This work provides a novel gel system for improving sweep efficiency and storage security during CO2 flooding in low-permeability reservoirs. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

21 pages, 2888 KB  
Article
Physics-Informed Neural Network (PINNs) for Flow Simulation in Polymer-Assisted Hot Water Flooding
by Siyuan Chen, Xi Ouyang and Xiang Rao
Processes 2026, 14(2), 197; https://doi.org/10.3390/pr14020197 - 6 Jan 2026
Viewed by 169
Abstract
Polymer-assisted hot water flooding (PAHWF) is an important enhanced oil recovery technique involving strongly coupled thermal, chemical, and multiphase flow processes. Accurate prediction of water saturation, polymer concentration, and temperature evolution in PAHWF is challenging due to the highly nonlinear and multiscale governing [...] Read more.
Polymer-assisted hot water flooding (PAHWF) is an important enhanced oil recovery technique involving strongly coupled thermal, chemical, and multiphase flow processes. Accurate prediction of water saturation, polymer concentration, and temperature evolution in PAHWF is challenging due to the highly nonlinear and multiscale governing equations. In this study, a physics-informed neural network (PINN) framework is developed for one-dimensional PAHWF simulation as a controlled benchmark system to systematically investigate PINN behavior in multiphysics-coupled problems. The PAHWF governing equations incorporating temperature- and concentration-dependent viscosity are embedded into the PINN loss function. Three progressively designed numerical examples are conducted to examine the effects of temperature normalization, network architecture (PINN-1 versus PINN-2), and network depth on training stability and solution accuracy. The results demonstrate that temperature normalization effectively mitigates gradient-scale imbalance, significantly improving convergence stability and prediction accuracy. Furthermore, the PINN-2 architecture, which employs a dedicated network for temperature, exhibits enhanced robustness and accuracy compared with the unified PINN-1 structure. Variations in network depth show limited influence on solution quality, indicating the inherent robustness of PINNs under the proposed framework. Although conventional numerical methods remain more efficient for one-dimensional forward problems, this study establishes a methodological foundation for extending PINNs to higher-dimensional, strongly coupled PAHWF simulations and inverse reservoir problems. The proposed framework provides insights into improving PINN trainability and reliability for complex enhanced oil recovery processes. Full article
Show Figures

Figure 1

27 pages, 2554 KB  
Article
Resilient Anomaly Detection in Ocean Drifters with Unsupervised Learning, Deep Learning Models, and Energy-Efficient Recovery
by Claire Angelina Guo, Jiachi Zhao and Eugene Pinsky
Oceans 2026, 7(1), 5; https://doi.org/10.3390/oceans7010005 - 6 Jan 2026
Viewed by 281
Abstract
Changes in climate and ocean pollution has prioritized monitoring of ocean surface behavior. Ocean drifters, which are floating sensors that record position and velocity, help track ocean dynamics. However, environmental events such as oil spills can cause abnormal behavior, making anomaly detection critical. [...] Read more.
Changes in climate and ocean pollution has prioritized monitoring of ocean surface behavior. Ocean drifters, which are floating sensors that record position and velocity, help track ocean dynamics. However, environmental events such as oil spills can cause abnormal behavior, making anomaly detection critical. Unsupervised learning, combined with deep learning and advanced data handling, is used to detect unusual behavior more accurately on the NOAA Global Drifter Program dataset, focusing on regions of the West Coast and the Mexican Gulf, for time periods spanning 2010 and 2024. Using Density-Based Spatial Clustering of Applications with Noise (DBSCAN), pseudo-labels of anomalies are generated to train both a one-dimensional Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network. The results of the two models are then compared with bootstrapping with block shuffling, as well as 10 trials with bar chart summaries. The results show nuance, with models outperforming the other in different contexts. Between the four spatiotemporal domains, a difference in the increasing rate of anomalies is found, showing the relevance of the suggested pipeline. Beyond detection, data reliability and efficiency are addressed: a RAID-inspired recovery method reconstructs missing data, while delta encoding and gzip compression cut storage and transmission costs. This framework enhances anomaly detection, ensures reliable recovery, and reduces energy consumption, thereby providing a sustainable system for timely environmental monitoring. Full article
Show Figures

Figure 1

18 pages, 4582 KB  
Article
Comparative Evaluation of Polymer Screening and Oil Displacement Performance in Class III Reservoirs of the Daqing Oilfield
by Ming Yu, Yunwei He, Xin Jin, Tong Pei, Jinyun Wei, Fushan Li, Shuaishuai Zhao and Yanfu Pi
Polymers 2026, 18(2), 147; https://doi.org/10.3390/polym18020147 - 6 Jan 2026
Viewed by 140
Abstract
Class III reservoirs in the Daqing Oilfield are characterized by low permeability and strong heterogeneity, posing significant challenges to enhanced oil recovery (EOR). To improve the recovery efficiency of these reservoirs, the viscosifying ability, stability, shear resistance, and profile-control performance of fifteen polymer [...] Read more.
Class III reservoirs in the Daqing Oilfield are characterized by low permeability and strong heterogeneity, posing significant challenges to enhanced oil recovery (EOR). To improve the recovery efficiency of these reservoirs, the viscosifying ability, stability, shear resistance, and profile-control performance of fifteen polymer solutions were experimentally evaluated, and the two most compatible formulations were selected for the Daqing Class III reservoirs. Subsequently, a three-dimensional physical model equipped with real-time saturation monitoring was employed to compare the EOR performance of the selected polymers. The results indicate that a 1500 mg L−1 polymer solution with a molecular weight (Mw) of 16 × 106 Da and a 1200 mg L−1 polymer solution with an Mw of 19 × 106 Da exhibit the best compatibility with the target formation. After injecting the 1500 mg L−1 (Mw = 16 × 106 Da) polymer solution, the ultimate recovery reached 53.38%, with displacement efficiencies of 64.34% and 58.16% and sweep efficiencies of 92.26% and 80.35% in the high- and low-permeability layers, respectively. Injection of the 1200 mg L−1 (Mw = 19 × 106 Da) polymer solution yielded an overall recovery of 47.71%, corresponding to displacement efficiencies of 60.34% and 54.16% and sweep efficiencies of 88.52% and 76.38%. Consequently, the 1500 mg L−1 (Mw = 16 × 106 Da) polymer solution delivers the highest recovery increment in Class III reservoirs. These findings provide valuable guidance for the efficient polymer-flooding development of Class III reservoirs in Daqing and analogous formations worldwide. Full article
(This article belongs to the Special Issue Application of Polymers in Enhanced Oil Recovery)
Show Figures

Figure 1

22 pages, 4387 KB  
Article
The Optimal Amount of PAMAM G3 Dendrimer in Polyurethane Matrices Makes Them a Promising Tool for Controlled Drug Release
by Magdalena Zaręba, Magdalena Zuzanna Twardowska, Paweł Błoniarz, Jaromir B. Lechowicz, Jakub Czechowicz, Dawid Łysik, Magdalena Rzepna and Łukasz Stanisław Uram
Polymers 2026, 18(1), 135; https://doi.org/10.3390/polym18010135 - 1 Jan 2026
Viewed by 442
Abstract
Systemic anticancer therapy causes a number of side effects; therefore, local drug release devices may play an important role in this area. In this study, we developed polyurethane-dendrimer foams containing different amounts of third-generation poly (amidoamine) dendrimers (PAMAM G3) to evaluate their ability [...] Read more.
Systemic anticancer therapy causes a number of side effects; therefore, local drug release devices may play an important role in this area. In this study, we developed polyurethane-dendrimer foams containing different amounts of third-generation poly (amidoamine) dendrimers (PAMAM G3) to evaluate their ability to encapsulate and release the model anticancer drug doxorubicin (DOX), as well as their biocompatibility and effectiveness against normal and cancer cells in vitro. PU–PAMAM foams containing 10–50 wt% PAMAM G3 were prepared using glycerin-based polyether polyol and castor oil as co-components. Structural and rheological analyses revealed that foams containing up to 20 wt% PAMAM G3 exhibited a well-developed porous structure, while higher dendrimer loadings (≥30 wt%) led to irregular cell shapes, pore coalescence, and thinning of cell walls, and indicated a gradual loss of structural integrity. Rheological creep–recovery measurements confirmed the structural findings: moderate PAMAM G3 incorporation (≤20 wt%) increased both the instantaneous and delayed elastic modulus (E1 ≈ 130–140 kPa; E2 ≈ 80 kPa) and enhanced elastic recovery, reflecting improved cross-link density and foam stability. Higher dendrimer contents (30–50 wt%) caused a decline in these parameters and higher viscoelastic compliance, indicating a softer, less stable structure. The DOX loading capacity and encapsulation efficiency increased with PAMAM G3 content, reaching maximum values of 35% and 51% for 30–40 wt% PAMAM G3, respectively. However, the most sustained DOX release profiles were observed for matrices containing 20 wt% PAMAM G3. Analysis of cumulative release and kinetic modeling revealed a transition from diffusion-controlled release at low PAMAM contents to burst-dominated release at higher dendrimer loadings. Importantly, matrices containing 10–20 wt% PAMAM G3 also indicated selective anticancer action against squamous cell carcinoma (SCC-15) compared to non-cancerous human keratinocytes (HaCaT). Moreover, the DOX they released effectively destroyed cancer cells. Overall, PU–PAMAM foams containing 10–20 wt% PAMAM G3 provide the most balanced combination of structural stability, controlled drug release, and cytocompatibility. These materials therefore represent a promising platform as passive carriers in drug delivery systems (DDSs), such as local implants, anticancer patches, or bioactive wound dressings. Full article
Show Figures

Figure 1

14 pages, 1776 KB  
Article
Theoretical Computation-Driven Screening and Mechanism Study of Washing Oil Composite Solvents for Benzene Waste Gas Absorption
by Chengyi Qiu, Zekai Jin, Meisi Chen, Li Wang, Sisi Li, Gang Zhang, Muhua Chen, Xinbao Zhu and Bo Fu
Atmosphere 2026, 17(1), 52; https://doi.org/10.3390/atmos17010052 - 31 Dec 2025
Viewed by 320
Abstract
In order to solve the problems of high volatility and insufficient absorption effect when using chemical by-product washing oil to treat benzene-containing waste gas, this study innovatively proposed a composite solvent screening method based on the solvation free energy (ΔGsol), and [...] Read more.
In order to solve the problems of high volatility and insufficient absorption effect when using chemical by-product washing oil to treat benzene-containing waste gas, this study innovatively proposed a composite solvent screening method based on the solvation free energy (ΔGsol), and reasonably predicted the absorption performance of 26 solvents for benzene. Through theoretical calculation and experimental verification, tetraethylene glycol dimethyl ether (TGDE) was finally determined to be the optimal composite component of washing oil. The absorption efficiency of the composite solvent reached 96.2%, and the regeneration efficiency was stable after 12 cycles with a mass loss of only 2.4%. Quantum computing simulation revealed that the dispersion force is dominant between benzene and the solvent, and TGDE enhances the electrostatic interaction through weak hydrogen bonds. The synergistic effect of the two improves the absorption performance. This study provides theoretical and technical support for the development of efficient and renewable benzene waste gas recovery solvent systems. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

15 pages, 3835 KB  
Article
Fabrication and Performance Evaluation of NiMOF@MGO-Modified Polysulfone Membranes for Heavy Metal Removal from Wastewater
by Javad Hashemibeni, Asif Jamil, Asta Bronusiene, Hesam Seifi, Arvydas Palevicius and Giedrius Janusas
Polymers 2026, 18(1), 117; https://doi.org/10.3390/polym18010117 - 31 Dec 2025
Viewed by 317
Abstract
This work presents a detailed analysis of polysulfone (PSF) based mixed matrix membranes (MMMs) modified with NiMOF@MGO for water purification. Magnetic iron oxide nanoparticles were synthesized and incorporated into the NiMOF@GO framework, with successful formation confirmed by FT-IR, XRD, BET, TGA, and SEM [...] Read more.
This work presents a detailed analysis of polysulfone (PSF) based mixed matrix membranes (MMMs) modified with NiMOF@MGO for water purification. Magnetic iron oxide nanoparticles were synthesized and incorporated into the NiMOF@GO framework, with successful formation confirmed by FT-IR, XRD, BET, TGA, and SEM analyses. Membranes were prepared via phase inversion and modified with varying NiMOF@MGO contents. SEM, AFM, and contact angle analyses demonstrated enhanced membrane hydrophilicity with increasing MOF concentration, reducing the contact angle from 59.74° (0.05 wt%) to 49.70° (0.2 wt%). The highest flux of 117.85 L/m2·h was observed for the PMM-0.2 membrane. Heavy metal removal was most efficient at pH 6, with the PMM-0.1 membrane achieving 95.97% and 95.92% rejection for Pb2+ and Cu2+, respectively. In oil-water separation, PMM-0.1 exhibited optimal performance, with a water flux of 45.84 L/m2·h. Antifouling tests showed the PMM-0.2 membrane had the highest flux recovery of 85.97%, indicating improved fouling resistance. Overall, incorporation of NiMOF@MGO significantly enhanced membrane hydrophilicity, flux, selectivity and antifouling performance, demonstrating its potential for advanced water purification applications. Full article
(This article belongs to the Special Issue Polymer Composites: Design, Manufacture and Characterization)
Show Figures

Figure 1

18 pages, 2811 KB  
Article
Research and Application of Intensive-Stage Fracturing Technology for Shale Oil in ZN Oilfield
by Lin-Peng Zhang, Bin Li, Yi-Fei Wang, Si-Bo Wang, Peng Zheng and Zong-Rui Wu
Processes 2026, 14(1), 131; https://doi.org/10.3390/pr14010131 - 30 Dec 2025
Viewed by 260
Abstract
The ZN Oilfield shale reservoir is characterized by thin sand–shale interbeds, strong lateral and vertical heterogeneity, poor porosity–permeability, low formation pressure coefficient, and low brittleness, which together limit fracture propagation and suppress production after conventional hydraulic fracturing. To overcome these constraints, we propose [...] Read more.
The ZN Oilfield shale reservoir is characterized by thin sand–shale interbeds, strong lateral and vertical heterogeneity, poor porosity–permeability, low formation pressure coefficient, and low brittleness, which together limit fracture propagation and suppress production after conventional hydraulic fracturing. To overcome these constraints, we propose an intensive-stage, closely spaced volumetric fracturing technology that couples energy-replenishment pressurization with differentiated parameter design. Numerical simulations were used to quantify how injected fluid volume affects the post-fracturing formation pressure coefficient and estimated ultimate recovery (EUR), and to determine economically optimal energy-replenishment scales. Guided by a “dual sweet spot” evaluation (geological + engineering), field designs reduced stage spacing from 80–100 m to 30–50 m and cluster spacing from 10–20 m to 6–10 m, and increased proppant and fluid intensities to ~5.0 t/m and 22.0 m3/m, respectively. Field monitoring and production data show average fracture half-length increased to 193 m, and average initial oil production per well rose from 8.8 t/d to 12.9 t/d (≈46% increase). These results demonstrate that the proposed approach effectively enlarges fracture-controlled reservoir volume, enhances formation energy, and substantially improves single-well performance in low-pressure shale oil systems. Full article
Show Figures

Figure 1

3 pages, 148 KB  
Editorial
Editorial for the Special Issue “Clay Minerals: Roles in Oil and Gas Generation, Drilling, and Enhanced Recovery”
by Guanzheng Zhuang and Qiang Li
Minerals 2026, 16(1), 42; https://doi.org/10.3390/min16010042 - 30 Dec 2025
Viewed by 182
Abstract
Clay minerals are fundamental components of sedimentary basins and play a dual role in the petroleum industry according to Zhuang et al [...] Full article
13 pages, 1172 KB  
Article
Study on the Influence of Composition Differences in Heavy Oil Components on In-Situ Combustion Coking Performance
by Qingchun Meng, Qingqiao Zeng, Yuying Li, Xi Huang, Yong Guo and Xusheng Wang
Processes 2026, 14(1), 123; https://doi.org/10.3390/pr14010123 - 29 Dec 2025
Viewed by 167
Abstract
This study investigates coke formation, structure, and combustion behaviors in paraffin-based Menggulin and naphthenic-based Xinjiang heavy oils under simulated in-situ combustion (ISC) conditions (350 °C, 450 °C), utilizing GC-MS, SEM, 13C ss-NMR, and TG-DSC. The results indicate that the crude oil composition [...] Read more.
This study investigates coke formation, structure, and combustion behaviors in paraffin-based Menggulin and naphthenic-based Xinjiang heavy oils under simulated in-situ combustion (ISC) conditions (350 °C, 450 °C), utilizing GC-MS, SEM, 13C ss-NMR, and TG-DSC. The results indicate that the crude oil composition determines the coking mechanisms: Xinjiang oil, rich in cyclic hydrocarbons and O/N/S heteroatoms, forms high-yield, compact, sheet- or block-like coke at 350 °C via π–π stacking. In contrast, Menggulin oil, composed primarily of long-chain alkanes, yields loose coke at 350 °C but produces dense, highly aromatized coke at 450 °C, which corresponds to the critical alkane cracking temperature, through intense cracking–polymerization. Temperature differentially regulates oxidative processes, thereby shaping the divergent functional group distributions. Correlations between coke structure and combustion properties reveal that oxygenated/aliphatic-rich cokes exhibit high reactivity, whereas aromatized cokes release more heat. These findings provide guidance for ISC optimization, suggesting that sufficient high-temperature energy is required for paraffinic oils while medium-temperature oxidation regulation is suitable for naphthenic oils. This work advances the theory of ISC coke formation and supports enhanced recovery of heavy oils. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

21 pages, 2265 KB  
Article
Simulation and Sensitivity Analysis of CO2 Migration and Pressure Propagation Considering Molecular Diffusion and Geochemical Reactions in Shale Oil Reservoirs
by Ruihong Qiao, Bing Yang, Hai Huang, Qianqian Ren, Zijie Cheng and Huanyu Feng
Energies 2026, 19(1), 164; https://doi.org/10.3390/en19010164 - 27 Dec 2025
Viewed by 261
Abstract
Unconventional shale oil reservoirs, characterized by ultra-low porosity and permeability, severely constrain oil recovery. CO2-enhanced oil recovery (CO2-EOR) following hydraulic fracturing is an effective approach that combines incremental oil recovery with long-term CO2 storage. However, CO2 transport [...] Read more.
Unconventional shale oil reservoirs, characterized by ultra-low porosity and permeability, severely constrain oil recovery. CO2-enhanced oil recovery (CO2-EOR) following hydraulic fracturing is an effective approach that combines incremental oil recovery with long-term CO2 storage. However, CO2 transport in the fracture–matrix system is complex, especially when molecular diffusion and geochemical reactions are coupled. This study conducts numerical simulations on a representative shale reservoir in the Ordos Basin, incorporating both mechanisms under post-fracturing injection–soaking conditions. The results show that molecular diffusion enhances CO2 mass transfer across the fracture–matrix interface, increasing the final CO2 sweep efficiency by 0.17 percentage points relative to convection alone, whereas geochemical reactions reduce it by about 0.3 percentage points. When both mechanisms coexist, the net effect is a decrease of approximately 0.2 percentage points in CO2 sweep efficiency. In contrast, pressure sweep efficiency differs by less than 0.5 percentage points among all cases and stabilizes near 47%, suggesting that pressure propagation is only weakly affected by diffusion and reactions. Sensitivity analysis reveals that, among operational parameters, injection pressure and injection rate strongly affect CO2 sweep efficiency, whereas soaking time governs pressure propagation. Among reservoir parameters, permeability has the most pronounced influence on both CO2 and pressure sweep efficiencies, followed by temperature, while initial reservoir pressure has minimal impact. This work quantitatively elucidates the coupled roles of molecular diffusion and geochemical reactions in shale reservoirs and provides practical guidance for optimizing post-fracturing CO2-EOR operations. Full article
Show Figures

Figure 1

Back to TopTop