Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = engineered tumor microenvironment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1445 KB  
Review
ADA1-Driven Metabolic Refueling Enhances CAR T Cell Therapy for Solid Tumors
by Alex Wade Song and Xiaotong Song
Cancers 2026, 18(1), 34; https://doi.org/10.3390/cancers18010034 - 22 Dec 2025
Viewed by 39
Abstract
CAR T cell therapy, while highly effective for hematological malignancies, continues to face significant hurdles in the treatment of solid tumors. Key challenges include severe nutrient deprivation and the presence of immunosuppressive metabolites such as adenosine in the tumor microenvironment, which limit CAR [...] Read more.
CAR T cell therapy, while highly effective for hematological malignancies, continues to face significant hurdles in the treatment of solid tumors. Key challenges include severe nutrient deprivation and the presence of immunosuppressive metabolites such as adenosine in the tumor microenvironment, which limit CAR T cell persistence and antitumor activity. This review focuses on current progress and future directions for ADA1-based metabolic reprogramming as a targeted approach to enhance CAR T cell function. We discuss recent advances, particularly the engineering of CAR T cells to express ADA1, which facilitates the local conversion of immunosuppressive adenosine into inosine, thereby supporting T cell metabolism and improving therapeutic outcomes. Preclinical studies, including our own, demonstrate that ADA1-expressing CAR T cells exhibit reduced exhaustion, greater metabolic flexibility, and enhanced antitumor efficacy in solid tumor models. The selective clearance of adenosine and supplementation of inosine directly address the metabolic barriers within the tumor microenvironment and provide an effective strategy to bolster CAR T cell responses. Integration of ADA1-driven metabolic refueling with future innovations in CAR design holds promise for overcoming key obstacles in solid tumor immunotherapy. We conclude by highlighting the potential of ADA1-based strategies and offering our perspective on their translation toward clinical application. Full article
Show Figures

Figure 1

19 pages, 2482 KB  
Review
Application of Metal-Doped Nanomaterials in Cancer Diagnosis and Treatment
by Xinhao Jin and Qi Sun
J. Nanotheranostics 2025, 6(4), 35; https://doi.org/10.3390/jnt6040035 - 17 Dec 2025
Viewed by 213
Abstract
Cancer remains a severe global health threat, with traditional therapies often plagued by limited efficacy and significant side effects. The emergence of nanotechnology, particularly metal-doped nanomaterials, offers a promising avenue for integrating diagnostic and therapeutic functions into a single platform, enabling a theranostic [...] Read more.
Cancer remains a severe global health threat, with traditional therapies often plagued by limited efficacy and significant side effects. The emergence of nanotechnology, particularly metal-doped nanomaterials, offers a promising avenue for integrating diagnostic and therapeutic functions into a single platform, enabling a theranostic approach to oncology. This article explores the design and application of various metal-doped nanosystems, including gadolinium-doped selenium molybdenum nanosheets for magnetic resonance/photoacoustic dual-mode imaging and photothermal therapy, and metal-doped hollow mesoporous silica nanoparticles that leverage the tumor’s acidic microenvironment to release ions for catalytic generation of reactive oxygen species. Despite their promise, the limited enzyme-like activity of some nanozymes, insufficient endogenous hydrogen peroxide in tumors, and the tumor microenvironment’s defensive mechanisms, such as high glutathione levels, can restrict therapeutic efficacy. Looking forward, the outlook for the field is contingent upon advancing material engineering strategies. Future research should prioritize the development of intelligent, multifunctional nanoplatforms that can dynamically respond to and remodel the tumor microenvironment. Innovations in surface modification for enhanced targeting, alongside rigorous preclinical studies focused on safety and standardized manufacturing, are crucial for bridging the gap between laboratory research and clinical application, ultimately paving the way for personalized cancer medicine. Full article
(This article belongs to the Special Issue Feature Review Papers in Nanotheranostics)
Show Figures

Figure 1

0 pages, 1890 KB  
Review
Cell-Mediated and Peptide-Based Delivery Systems: Emerging Frontiers in Targeted Therapeutics
by Eszter Erdei, Ruth Deme, Balázs Balogh and István M. Mándity
Pharmaceutics 2025, 17(12), 1597; https://doi.org/10.3390/pharmaceutics17121597 - 11 Dec 2025
Viewed by 513
Abstract
Background/Objectives: Cell-mediated and peptide-assisted delivery systems have emerged as powerful platforms at the intersection of chemistry, nanotechnology, and molecular medicine. By leveraging the intrinsic targeting, transport, and signaling capacities of living cells and bioinspired peptides, these systems facilitate the delivery of therapeutic agents [...] Read more.
Background/Objectives: Cell-mediated and peptide-assisted delivery systems have emerged as powerful platforms at the intersection of chemistry, nanotechnology, and molecular medicine. By leveraging the intrinsic targeting, transport, and signaling capacities of living cells and bioinspired peptides, these systems facilitate the delivery of therapeutic agents across otherwise restrictive biological barriers such as the blood–brain barrier (BBB) and the tumor microenvironment. This review aims to summarize recent advances in engineered cell carriers, peptide vectors, and hybrid nanostructures designed for enhanced intracellular and tissue-specific delivery. Methods: We surveyed recent literature covering molecular design principles, mechanistic studies, and in vitro/in vivo evaluations of cell-mediated and peptide-enabled delivery platforms. Emphasis was placed on neuro-oncology, immunotherapy, and regenerative medicine, with particular focus on uptake pathways, endosomal escape mechanisms, and structure–function relationships. Results: Analysis of current strategies reveals significant progress in optimizing cell-based transport systems, peptide conjugates, and multifunctional nanostructures for the targeted delivery of drugs, nucleic acids, and immunomodulatory agents. Key innovations include improved BBB penetration, enhanced tumor homing, and more efficient cytosolic delivery enabled by advanced peptide designs and engineered cellular carriers. Several platforms have progressed toward clinical translation, underscoring their therapeutic potential. Conclusions: Cell-mediated and peptide-assisted delivery technologies represent a rapidly evolving frontier with broad relevance to next-generation therapeutics. Despite notable advances, challenges remain in scalability, manufacturing, safety, and regulatory approval. Continued integration of chemical design, molecular engineering, and translational research will be essential to fully realize the clinical impact of these delivery systems. Full article
(This article belongs to the Special Issue Biomimetic Nanoparticles for Disease Treatment and Diagnosis)
Show Figures

Figure 1

14 pages, 953 KB  
Review
Oncolytic Viruses in Glioblastoma: Clinical Progress, Mechanistic Insights, and Future Therapeutic Directions
by Jiayu Liu, Yuxin Wang, Shichao Su, Gang Cheng, Hulin Zhao, Junzhao Sun, Guochen Sun, Fangye Li, Rui Hui, Meijing Liu, Lin Wu, Dongdong Wu, Fan Yang, Yuanyuan Dang, Junru Hei, Yanteng Li, Zhao Gao, Bingxian Wang, Yunjuan Bai, Wenying Lv and Jianning Zhangadd Show full author list remove Hide full author list
Cancers 2025, 17(24), 3948; https://doi.org/10.3390/cancers17243948 - 10 Dec 2025
Viewed by 475
Abstract
High-grade gliomas—particularly glioblastoma (GBM)—remain refractory to standard-of-care surgery followed by chemoradiation, with a median overall survival of ~15 months. Oncolytic viruses (OVs), which selectively infect and lyse tumor cells while engaging antitumor immunity, offer a mechanistically distinct therapeutic modality. This review synthesizes clinical [...] Read more.
High-grade gliomas—particularly glioblastoma (GBM)—remain refractory to standard-of-care surgery followed by chemoradiation, with a median overall survival of ~15 months. Oncolytic viruses (OVs), which selectively infect and lyse tumor cells while engaging antitumor immunity, offer a mechanistically distinct therapeutic modality. This review synthesizes clinical progress of OVs in GBM, with emphasis on oncolytic herpes simplex virus (oHSV) and coverage of other vectors (adenovirus, reovirus, Newcastle disease virus, vaccinia virus) across phase I–III trials, focusing on efficacy and safety. Key observations include the encouraging clinical trajectory of oHSV exemplars—T-VEC (approved for melanoma) and G47Δ (approved in Japan for recurrent GBM)—the multi-center exploration of the adenovirus DNX-2401 combined with programmed death-1 (PD-1) blockade, and the early-stage status of reovirus (pelareorep) and Newcastle disease virus programs. Emerging evidence indicates that oHSV therapy augments immune infiltration within the tumor microenvironment and alleviates immunosuppression, with synergy when combined with chemotherapy or immune checkpoint inhibitors. Persistent challenges include GBM’s inherently immunosuppressive milieu, limitations imposed by the blood–brain barrier, intrapatient viral delivery and biodistribution, and concerns about viral shedding. Future directions encompass programmable vector design, optimization of systemic delivery, biomarker-guided patient selection, and rational combination immunotherapy. Collectively, OVs represent a promising immunotherapeutic strategy in GBM; further gains will hinge on vector engineering and precision combinations to translate mechanistic promise into durable clinical benefit. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

38 pages, 10496 KB  
Review
Microfluidic-Based Scratch Assays for Wound Healing Studies: A Systematic Review
by Fernando A. Oliveira, Nicole M. E. Valle, Keithy F. da Silva, Arielly H. Alves, Marta C. S. Galanciak, Gabriel M. Rosário, Javier B. Mamani, Mariana P. Nucci and Lionel F. Gamarra
Cells 2025, 14(24), 1931; https://doi.org/10.3390/cells14241931 - 5 Dec 2025
Viewed by 490
Abstract
Cell migration plays a central role in physiological processes such as wound healing, tissue regeneration, and immune responses, as well as in pathological conditions like chronic inflammation and tumor metastasis. Among the in vitro approaches to study this phenomenon, the conventional wound healing [...] Read more.
Cell migration plays a central role in physiological processes such as wound healing, tissue regeneration, and immune responses, as well as in pathological conditions like chronic inflammation and tumor metastasis. Among the in vitro approaches to study this phenomenon, the conventional wound healing assay (scratch assay) has been widely used due to its simplicity and low cost. However, its limitations, including poor reproducibility, damage to the extracellular matrix (ECM), and lack of dynamic physiological conditions, have prompted the development of microfluidic alternatives. Scratch-on-a-chip platforms integrate engineering and microtechnology to provide standardized, non-destructive methods for wound generation, preserve ECM integrity, and allow precise control of the cellular microenvironment. These systems also enable miniaturization, reducing reagent and cell consumption, while facilitating the application of biochemical or physical stimuli and real-time monitoring. This review synthesizes advances reported in the literature, addressing the different wound induction strategies (enzymatic depletion, physical depletion, and physical exclusion), the role of ECM composition, and the impact of mechanical forces such as shear stress. Overall, scratch-on-a-chip assays emerge as promising tools that enhance reproducibility, better mimic in vivo conditions, and broaden applications for therapeutic testing and mechanistic studies in cell migration. Full article
Show Figures

Figure 1

30 pages, 3881 KB  
Review
Biofunctionalization of Stem Cell Scaffold for Osteogenesis and Bone Regeneration
by Qianqian Chen, Yixue Jiang, Xiaoyuan Zhang, Shichun Xu, Yunwei Wang, Dan Xing and Hui Li
Biomolecules 2025, 15(12), 1700; https://doi.org/10.3390/biom15121700 - 5 Dec 2025
Viewed by 612
Abstract
Repairing bone defects resulting from trauma, tumor resection, or pathological conditions remains a significant clinical challenge. While conventional bone grafting techniques are constrained by inherent limitations, stem cell-based tissue engineering scaffolds offer a promising therapeutic alternative. The ideal scaffold should not only serve [...] Read more.
Repairing bone defects resulting from trauma, tumor resection, or pathological conditions remains a significant clinical challenge. While conventional bone grafting techniques are constrained by inherent limitations, stem cell-based tissue engineering scaffolds offer a promising therapeutic alternative. The ideal scaffold should not only serve as a structural support but, more importantly, must establish a bioactive microenvironment capable of directing stem cell osteogenic differentiation. Consequently, scaffold biofunctionalization has emerged as a fundamental strategy for achieving effective bone regeneration. This review comprehensively examines the primary materials utilized in bone regeneration scaffolds and systematically analyzes key biofunctionalization approaches, including surface modification, incorporation of bioactive molecules, and integration of functional ions. Moreover, it thoroughly discusses the mechanisms through which biofunctionalized scaffolds modulate stem cell behavior and enhance bone repair in vivo. Finally, the article provides insights into future research directions and emerging trends, aiming to inform the rational design and development of advanced bone regeneration scaffolds. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

23 pages, 1448 KB  
Review
Engineering Anti-Tumor Immunity: An Immunological Framework for mRNA Cancer Vaccines
by Olivia Roy and Karen S. Anderson
Vaccines 2025, 13(12), 1222; https://doi.org/10.3390/vaccines13121222 - 3 Dec 2025
Viewed by 835
Abstract
The landscape of cancer immunotherapy has been redefined by mRNA vaccines as rapid clinically viable strategies that help induce potent, tumor-specific immune responses. This review highlights the current advances in mRNA engineering and antigen design to establish an integrated immunological framework for cancer [...] Read more.
The landscape of cancer immunotherapy has been redefined by mRNA vaccines as rapid clinically viable strategies that help induce potent, tumor-specific immune responses. This review highlights the current advances in mRNA engineering and antigen design to establish an integrated immunological framework for cancer vaccine development. Achieving durable clinical benefit requires more than antigen expression. Effective vaccines need precise epitope selection, optimized delivery systems, and rigorous immune monitoring. The field is shifting from merely inducing immune responses to focusing more on the biochemistry and molecular design principles that combine magnitude, polyfunctionality, and longevity to overcome tumor-induced immune suppression. We examine an integrated immunological framework for mRNA cancer vaccine development, examining how rational molecular engineering of vaccine components, from nucleoside modifications and codon optimization to untranslated regions and linker sequences, shapes immunogenicity and therapeutic efficacy. Future directions will depend on balancing combinatorial strategies combining vaccination with immune checkpoint inhibitors and adoptive cell therapies. Full article
Show Figures

Figure 1

21 pages, 3493 KB  
Article
Downregulation of the CCK-B Receptor in Pancreatic Stellate Cells Blocks Molecular Proliferative Pathways and Increases Apoptosis to Decrease Pancreatic Cancer Growth In Vitro
by Miranda Ortega, Eri Agena, Wenqiang Chen, Hong Cao, Sona Vasudevan, Narayan Shivapurkar, Mariaelena Pierobon and Jill P. Smith
Int. J. Mol. Sci. 2025, 26(23), 11699; https://doi.org/10.3390/ijms262311699 - 3 Dec 2025
Viewed by 382
Abstract
Pancreatic cancer is characterized by an extensive fibrotic stroma largely driven by activated pancreatic stellate cells (PSCs)/fibroblasts, which also function to support tumor growth and metastasis. Cholecystokinin-B receptors (CCK-BRs) are expressed on pancreatic stellate cells (PSCs) and have emerged as a key regulator [...] Read more.
Pancreatic cancer is characterized by an extensive fibrotic stroma largely driven by activated pancreatic stellate cells (PSCs)/fibroblasts, which also function to support tumor growth and metastasis. Cholecystokinin-B receptors (CCK-BRs) are expressed on pancreatic stellate cells (PSCs) and have emerged as a key regulator of PSC activation and tumor-stromal interactions. We hypothesized that disrupting CCK-BR function shifts PSCs to a more quiescent phenotype and reduces their pro-fibrotic and tumor-supportive activity to decrease growth of pancreatic cancer. Murine PSCs were genetically engineered with CRISPR-Cas9 to knockout the CCK-BR. In a series of experiments, the role of the CCK-BR expression was evaluated on cell migration, proliferation, differentially expressed genes, molecular signaling pathways, and in co-culture with murine pancreatic cancer epithelial cells. Next, primary human pancreatic stellate cells were treated with proglumide, a CCK-BR antagonist, to study the effects of pharmacologic blockade of the CCK-BR on cellular signaling and proliferative pathways by RNA sequencing. Knockout of the CCK-BR led to significant decreases in PSC activation and the ability to stimulate growth of pancreatic cancer cells in co-culture. Both genetic knockdown and pharmacologic blockade of the CCK-BR downregulated genes implicated in fibrosis, proliferation, fibroblast activation, and tumorigenesis, while genes implicated in apoptosis and tumor suppression were upregulated. Flow cytometry showed increased apoptosis markers in CCK-BR-knockout cells compared to controls. These experiments combine transcriptomic profiling with functional validation to provide a comprehensive analysis of how targeting CCK-BR interrupts the cross-communication between cancer cells and fibroblasts. Blockade or downregulation of the CCK-BR on pancreatic fibroblasts may provide a strategy to disrupt oncogenic signaling pathways and reprogram the tumor microenvironment. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

24 pages, 1076 KB  
Review
Bioengineering Stem Cell-Derived Glioblastoma Organoids: A Comprehensive Review
by Alexandra D. Avera and Yonghyun Kim
Pharmaceuticals 2025, 18(12), 1830; https://doi.org/10.3390/ph18121830 - 1 Dec 2025
Viewed by 676
Abstract
The development of novel therapeutics for deadly diseases such as glioblastoma (GBM) is bottlenecked by poor preclinical models. GBM is the most common and deadliest primary brain tumor in adults, with an average prognosis of 12–15 months, primarily due to its high cellular [...] Read more.
The development of novel therapeutics for deadly diseases such as glioblastoma (GBM) is bottlenecked by poor preclinical models. GBM is the most common and deadliest primary brain tumor in adults, with an average prognosis of 12–15 months, primarily due to its high cellular heterogeneity and treatment resistance from GBM stem cells. The advancement of in vitro models into organoids, three-dimensional tissue-like modeling systems, has been a promising approach to improving translational medicine for GBM. However, the critical tradeoff between technical convenience and physiological relevance threatens the integrity and reproducibility of GBM organoid (GBO) biomanufacturing. This comprehensive review breaks down and discusses the key features of GBM tumor microenvironment (TME), traces the advancement of in vitro models from two-dimensional cultures to three-dimensional stem cell-derived GBOs, evaluates the process through an engineering perspective (genetic, biochemical, biophysical, and process engineering), and addresses critical translational gaps. Reviewing trends over the last fifteen years in biomanufacturing approaches to GBOs revealed fundamental oversights that address previous review focuses on the limitations of organoids (i.e., maturity, vasculature, and immune defense). To summarize, GBO’s translational gap and reproducibility challenges are rooted in the prioritization of technical convenience over physiological relevance. To achieve clinical relevance, future GBO development must focus on transitioning to fully defined components (excluding animal-derived ECM), developing sufficiently large-sized constructs to recapitulate the full TME, and integrating non-destructive and enhanced functional readouts of the GBOs. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Graphical abstract

31 pages, 1513 KB  
Review
Natural Killer (NK) Cell-Based Therapies Have the Potential to Treat Ovarian Cancer Effectively by Targeting Diverse Tumor Populations and Reducing the Risk of Recurrence
by Kawaljit Kaur
Cancers 2025, 17(23), 3862; https://doi.org/10.3390/cancers17233862 - 1 Dec 2025
Viewed by 1300
Abstract
Ovarian cancer is the sixth leading cause of cancer-related deaths among women in the United States. This complex disease arises from tissues such as the ovarian surface epithelium, fallopian tube epithelium, endometrium, or ectopic Müllerian components and is characterized by diverse histological and [...] Read more.
Ovarian cancer is the sixth leading cause of cancer-related deaths among women in the United States. This complex disease arises from tissues such as the ovarian surface epithelium, fallopian tube epithelium, endometrium, or ectopic Müllerian components and is characterized by diverse histological and molecular traits. Standard treatments like surgery, chemotherapy, and radiation have limited effectiveness and high toxicity. Targeted therapies, including poly (ADP-ribose) polymerase PARP inhibitors, anti-angiogenics, and immune checkpoint inhibitors (ICIs), face obstacles such as adaptive resistance and microenvironmental barriers that affect drug delivery and immune responses. Factors in the tumor microenvironment, such as dense stroma, hypoxia, immune suppression, cancer stem cells (CSCs), and angiogenesis, can reduce drug efficacy, worsen prognosis, and increase the risk of recurrence. Research highlights impaired immune function in ovarian cancer patients as a contributor to recurrence, emphasizing the importance of immunotherapies to target tumors and restore immune function. Preclinical studies and early clinical trials found that natural killer (NK) cell-based therapies have great potential to tackle ovarian tumors. This review explores the challenges and opportunities in treating ovarian cancer, focusing on how NK cells could help overcome these obstacles. Recent findings reveal that engineered NK cells, unlike their primary NK cells, can destroy both stem-like and differentiated ovarian tumors, pointing to their ability to target diverse tumor types. Animal studies on NK cell therapies for solid cancers have shown smaller tumor sizes, tumor differentiation in vivo, recruitment of NK and T cells in the tumor environment and peripheral tissues, restored immune function, and fewer tumor-related systemic effects—suggesting a lower chance of recurrence. NK cells clinical trials in ovarian cancer patients have also shown encouraging results, and future directions include combining NK cell therapies with standard treatments to potentially boost effectiveness. Full article
Show Figures

Figure 1

22 pages, 4709 KB  
Article
Exploring Anti-Neoplastic Activity of Chitosan Nanobubbles Decorated with ICOS-Fc and Loaded with Paclitaxel in a Human and Murine Model of Melanoma
by Deepika Pantham, Monica Argenziano, Foteini Christaki, Nausicaa Clemente, Chiara Colombo, Elisa Benetti, Stefania Pizzimenti, Umberto Dianzani, Ian Stoppa, Roberta Cavalli and Chiara Dianzani
Pharmaceutics 2025, 17(12), 1530; https://doi.org/10.3390/pharmaceutics17121530 - 28 Nov 2025
Viewed by 331
Abstract
Background: Paclitaxel (PTX) is an anti-neoplastic drug that inhibits not only melanoma cell proliferation but also migration and angiogenesis. ICOS-Fc is a recombinant molecule that triggers ICOS ligand (ICOSL) on tumor cells and cells of the tumor microenvironment and inhibits tumor growth, angiogenesis, [...] Read more.
Background: Paclitaxel (PTX) is an anti-neoplastic drug that inhibits not only melanoma cell proliferation but also migration and angiogenesis. ICOS-Fc is a recombinant molecule that triggers ICOS ligand (ICOSL) on tumor cells and cells of the tumor microenvironment and inhibits tumor growth, angiogenesis, and metastasis. This study investigated the effects of chitosan nanobubbles loaded with low doses of PTX and surface decorated with ICOS-Fc (ICOS-Fc-NB-PTX) in inhibiting in vitro and in vivo melanoma cell growth and invasiveness. Methods: Preparation and characterization of nanoformulations, as well as in vitro drug release studies, were carried out. Nanoformulations were studied both in vitro and in vivo. In melanoma cells, viability, migration, and invasion assays were analyzed. For the in vivo experiments, C57BL/6 Wild-type (WT) male mice were injected subcutaneously with D4M-3A cells, a murine melanoma cell line engineered to carry the BRAFV600E mutation. After treatments, in vivo tumor growth, proliferation, and angiogenesis markers were studied. Results: In vitro tests showed the great ability of ICOS-Fc-NB-PTX to inhibit cell viability, migration, and invasion. These results were confirmed in vivo, where the tumors of mice treated with ICOS-Fc-NB-PTX displayed decreased growth accompanied by downregulation of the proliferation marker Ki-67 and reduced development of CD31+ blood vessels. Conclusions: In conclusion, the ICOS-Fc-NB-PTX formulation deserves to be further analyzed as a highly effective combination for melanoma, exerting multifaceted anti-tumor activities. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

19 pages, 491 KB  
Review
Rewiring T Cell Metabolism to Enhance CAR T Cell Function in Solid Tumor Microenvironments
by Alex Wade Song and Xiaotong Song
Pharmaceutics 2025, 17(12), 1520; https://doi.org/10.3390/pharmaceutics17121520 - 26 Nov 2025
Viewed by 775
Abstract
Background/Objectives: Chimeric antigen receptor (CAR) T cells have shown remarkable clinical success in certain blood cancers but remain largely ineffective in solid tumors. A major reason for this limitation is the hostile tumor microenvironment, which restricts oxygen and nutrients while producing toxic [...] Read more.
Background/Objectives: Chimeric antigen receptor (CAR) T cells have shown remarkable clinical success in certain blood cancers but remain largely ineffective in solid tumors. A major reason for this limitation is the hostile tumor microenvironment, which restricts oxygen and nutrients while producing toxic metabolites that suppress immune cell activity. This review aims to examine how targeted metabolic reprogramming can overcome these barriers and improve CAR T cell performance. Methods: We evaluated preclinical and translational studies that focused on engineering CAR T cells to resist hypoxia, improve nutrient utilization, reduce metabolic exhaustion, and counteract suppressive metabolites in solid tumors. Results: Emerging strategies include engineering resistance to low oxygen and high lactate, enhancing nutrient uptake through transporter overexpression, and blocking inhibitory pathways such as those driven by adenosine. These approaches improve CAR T cell persistence, memory formation, and cytotoxic function in challenging tumor environments. Conclusions: Integrating metabolic reprogramming with conventional CAR design is essential to unlock the full potential of CAR T therapy against solid tumors. Continued innovation in this area will be critical for translating laboratory advances into effective clinical treatments. Full article
Show Figures

Figure 1

28 pages, 7715 KB  
Article
Functional pH-Responsive Nanoparticles for Immune Reprogramming in MSS Colorectal Cancer via ER Stress-Induced Proteostasis Disruption, PD-L1-Targeting miRNA, and TLR7 Activation
by Yu-Li Lo, Hua-Ching Lin, Ching-Yao Li, Bryant Huang, Ching-Ping Yang, Hui-Yen Chuang and Tsui-Fen Chou
Pharmaceutics 2025, 17(11), 1503; https://doi.org/10.3390/pharmaceutics17111503 - 20 Nov 2025
Viewed by 803
Abstract
Background: Colorectal cancer (CRC), particularly the microsatellite-stable (MSS) subtype, remains largely unresponsive to immune checkpoint inhibitors (ICIs) due to immune escape, tumor-associated macrophage (TAM) enrichment, and cytokine-driven suppression that sustain a TAM-dominant tumor microenvironment (TME). To overcome these barriers, a pH-responsive solid lipid [...] Read more.
Background: Colorectal cancer (CRC), particularly the microsatellite-stable (MSS) subtype, remains largely unresponsive to immune checkpoint inhibitors (ICIs) due to immune escape, tumor-associated macrophage (TAM) enrichment, and cytokine-driven suppression that sustain a TAM-dominant tumor microenvironment (TME). To overcome these barriers, a pH-responsive solid lipid nanoparticle (SLN) system was engineered to co-deliver CB-5083 (a VCP/p97 inhibitor), miR-142 (a PD-L1-targeting microRNA), and imiquimod (R, a TLR7 agonist) for spatially confined induction of endoplasmic reticulum stress (ERS) and immune reprogramming in MSS CRC. Methods: The SLNs were coated with PEG–PGA for pH-triggered de-shielding and functionalized with PD-L1- and EGFR-binding peptides plus an ER-homing peptide, enabling tumor-selective and subcellular targeting. Results: The nanoplatform displayed acid-triggered PEG–PGA detachment, selective CRC/TAM uptake, and ER localization. CB-mediated VCP inhibition activated IRE1α/XBP1s/LC3II, PERK/eIF2α/ATF4/CHOP, and JNK/Beclin signaling, driving apoptosis and autophagy, while miR-142 suppressed PD-L1 expression and epithelial–mesenchymal transition markers. R facilitated dendritic cell maturation and M1 polarization. Combined CB + miR + R/SLN-CSW suppressed IL-17, G-CSF, and CXCL1, increased infiltration of CD4+ and CD8+ T cells, reduced Tregs and M2-TAMs, and inhibited tumor growth in CT-26 bearing mice. The treatment induced immunogenic cell death, reprogramming the TME into a T cell-permissive state and conferring resistance to tumor rechallenge. Biodistribution analysis confirmed tumor-preferential accumulation with minimal off-target exposure, and biosafety profiling demonstrated low systemic toxicity. Conclusions: This TME-responsive nanoplatform therefore integrates ERS induction, checkpoint modulation, and cytokine suppression to overcome immune exclusion in MSS CRC, representing a clinically translatable strategy for chemo-immunotherapy in immune-refractory tumors. Full article
Show Figures

Graphical abstract

23 pages, 371 KB  
Review
Microbiota and Pancreatic Cancer: New Therapeutic Frontiers Between Engineered Microbes, Metabolites and Non-Bacterial Components
by Sara Sofia De Lucia, Enrico Celestino Nista, Marcello Candelli, Sebastiano Archilei, Franziska Deutschbein, Enrico Capuano, Antonio Gasbarrini, Francesco Franceschi and Giulia Pignataro
Cancers 2025, 17(22), 3618; https://doi.org/10.3390/cancers17223618 - 10 Nov 2025
Cited by 1 | Viewed by 1275
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive and lethal human malignancies, with five-year survival rates showing only marginal improvement despite decades of intensive research. Its dismal prognosis reflects a combination of intrinsic biological aggressiveness, late clinical presentation, and marked resistance [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive and lethal human malignancies, with five-year survival rates showing only marginal improvement despite decades of intensive research. Its dismal prognosis reflects a combination of intrinsic biological aggressiveness, late clinical presentation, and marked resistance to standard therapies, underscoring the urgent need for innovative diagnostic and therapeutic approaches. Growing evidence indicates that the microbiome is a modifiable factor influencing the onset, progression, and treatment response of PDAC. Microbial communities originating from the gut, oral cavity, and even the tumor microenvironment can shape carcinogenic pathways, modulate immune activity, and alter the efficacy of chemotherapy and immunotherapy. In addition to bacteria, fungal and viral populations are emerging as relevant contributors within this complex ecosystem. This review provides a comprehensive overview of the current mechanistic and translational evidence linking the microbiome to PDAC biology and therapy. It further explores microbiota-targeted interventions—such as probiotics, postbiotics, engineered bacterial strains, bacteriophages, oncolytic viruses, and fecal microbiota transplantation—as promising adjuncts to conventional treatments. A deeper understanding of host–microbiome interactions could yield novel biomarkers and open innovative avenues for precision medicine in PDAC, ultimately improving patient outcomes and reshaping therapeutic paradigms. Integrating microbiome-based strategies into PDAC management may thus represent a crucial step toward more effective and personalized oncologic care. Full article
(This article belongs to the Special Issue New Insights into Microbial-Based Cancer Therapy)
35 pages, 22753 KB  
Review
Integrating 3D Bioprinting with Organoid Technology-Based Breast Cancer Models for Drug Evaluation
by Arvind Kumar Shukla, Sandhya Shukla, Raj Kumar Mongre, Adarsha Mahendra Upadhyay, Govindhan Thiruppathi, Chandra Dhar Shukla, Shuktika Mishra and Sayan Deb Dutta
Organoids 2025, 4(4), 26; https://doi.org/10.3390/organoids4040026 - 5 Nov 2025
Viewed by 1357
Abstract
Breast cancer remains one of the leading causes of cancer morbidity and mortality among women worldwide. Conventional two-dimensional (2D) cell culture models and animal studies often fail to accurately recapitulate the complex tumor microenvironment and heterogeneous nature of breast cancer. Recent advancements in [...] Read more.
Breast cancer remains one of the leading causes of cancer morbidity and mortality among women worldwide. Conventional two-dimensional (2D) cell culture models and animal studies often fail to accurately recapitulate the complex tumor microenvironment and heterogeneous nature of breast cancer. Recent advancements in tissue engineering have enabled the development of more physiologically relevant models using three-dimensional (3D) bioprinting and organoid technology. This study focuses on integrating 3D bioprinting with patient-derived organoid models to replicate breast cancer tissue architecture, cellular heterogeneity, and tumor-stroma interactions. Utilizing biomimetic bioinks and customized bioprinting protocols, we successfully fabricated breast cancer tissue constructs embedded with stromal and immune components. These engineered models demonstrated high fidelity in mimicking in vivo tumor pathophysiology, including angiogenesis, epithelial–mesenchymal transition, and extracellular matrix remodeling. Furthermore, the platform allowed for high-throughput drug screening and evaluation of therapeutic responses, revealing differential sensitivities to chemotherapeutics and targeted therapies. Our findings highlight the potential of bioprinted organoid models as powerful tools for personalized medicine, enabling more predictive and reliable cancer research and drug development. Full article
Show Figures

Figure 1

Back to TopTop