Microfluidic-Based Scratch Assays for Wound Healing Studies: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Data Collection
2.5. Data Extraction
2.6. Risk of Bias Assessment
2.7. Methodological Quality Assessment
2.8. Data Analysis
3. Results
3.1. Selection Process of the Articles Identified According to the PRISMA Guidelines
3.2. Methodological Quality Assessment Outcomes
3.3. Characteristics, Design, and Fabrication of Microfluidic Devices for Scratch Assays in Wound Healing Studies
3.4. Cell Culture in Microfluidic Devices
3.5. Wound Healing Assays in Microfluidic Devices
3.6. Proposal, Evaluation, Advantages, Disadvantages, and Outcome of Wound Healing Scratch Assays in Microfluidic Devices
3.7. Technological Evolution of Microfluidic Wound Healing Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hulkower, K.I.; Herber, R.L. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 2011, 3, 107–124. [Google Scholar] [CrossRef]
- Bouchalova, P.; Bouchal, P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int. 2022, 22, 394. [Google Scholar] [CrossRef]
- Horwitz, R.; Webb, D. Cell migration. Curr. Biol. CB 2003, 13, R756–R759. [Google Scholar] [CrossRef]
- Friedl, P.; Bröcker, E.B. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. CMLS 2000, 57, 41–64. [Google Scholar] [CrossRef] [PubMed]
- Cory, G. Scratch-wound assay. Methods Mol. Biol. 2011, 769, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Shabestani Monfared, G.; Ertl, P.; Rothbauer, M. Microfluidic and Lab-on-a-Chip Systems for Cutaneous Wound Healing Studies. Pharmaceutics 2021, 13, 793. [Google Scholar] [CrossRef]
- Felder, M.; Sallin, P.; Barbe, L.; Haenni, B.; Gazdhar, A.; Geiser, T.; Guenat, O. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium. Lab Chip 2012, 12, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, Y.; Sun, W.; Ning, K.; Feng, L.; Chen, X.; Li, Y.; Yu, L. Wound healing assay on a gravity-driven unidirectional perfusion microfluidic device. Microchem. J. 2025, 208, 112289. [Google Scholar] [CrossRef]
- Mazalan, M.B.; Toyohara, R.; Ohashi, T. A Review of Fabrication and Applications of Confined Microchannels for Cell Migration Assay. Int. J. Precis. Eng. Manuf. 2024, 25, 1525–1538. [Google Scholar] [CrossRef]
- Sala, F.; Ficorella, C.; Osellame, R.; Käs, J.A.; Martínez Vázquez, R. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement. Biosensors 2022, 12, 604. [Google Scholar] [CrossRef]
- Deal, H.E.; Brown, A.C.; Daniele, M.A. Microphysiological systems for the modeling of wound healing and evaluation of pro-healing therapies. J. Mater. Chem. B 2020, 8, 7062–7075. [Google Scholar] [CrossRef]
- Ding, L.; Wang, Z.; Li, X.; Uddin, E.; Jiang, Q.; Sun, D.; Wei, J.; Chen, L.; Liu, B.; Liu, C.; et al. Microfluidic-based wound healing assays for investigating the effects of matrix viscoelasticity on tumor cell migration. Analyst 2025, 150, 3298–3310. [Google Scholar] [CrossRef]
- Fenu, M.; Bettermann, T.; Vogl, C.; Darwish-Miranda, N.; Schramel, J.; Jenner, F.; Ribitsch, I. A novel magnet-based scratch method for standardisation of wound-healing assays. Sci. Rep. 2019, 9, 12625. [Google Scholar] [CrossRef]
- Cho, S.W.; Malick, H.; Kim, S.J.; Grattoni, A. Advances in Skin-on-a-Chip Technologies for Dermatological Disease Modeling. J. Invest. Dermatol. 2024, 144, 1707–1715. [Google Scholar] [CrossRef]
- Wang, C.; Fan, K.; Shirzaei Sani, E.; Lasalde-Ramírez, J.A.; Heng, W.; Min, J.; Solomon, S.A.; Wang, M.; Li, J.; Han, H.; et al. A microfluidic wearable device for wound exudate management and analysis in human chronic wounds. Sci. Transl. Med. 2025, 17, eadt0882. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Li, H.; Zheng, F.; Kong, F.; Dao, M.; Karniadakis, G.E.; Suresh, S. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc. Natl. Acad. Sci. USA 2021, 118, e2100697118. [Google Scholar] [CrossRef]
- Deng, S.; Li, C.; Cao, J.; Cui, Z.; Du, J.; Fu, Z.; Yang, H.; Chen, P. Organ-on-a-chip meets artificial intelligence in drug evaluation. Theranostics 2023, 13, 4526–4558. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.H.; Quan, A.M.L.; Souter, A.; Krisnagopal, A.; Biss, R.K. Effects of Exergaming on Physical and Cognitive Outcomes of Older Adults Living in Long-Term Care Homes: A Systematic Review. Gerontology 2022, 68, 1044–1060. [Google Scholar] [CrossRef] [PubMed]
- Danna, S.M.; Graham, E.; Burns, R.J.; Deschênes, S.S.; Schmitz, N. Association between Depressive Symptoms and Cognitive Function in Persons with Diabetes Mellitus: A Systematic Review. PLoS ONE 2016, 11, e0160809. [Google Scholar] [CrossRef]
- Gwet, K.L. Large-Sample Variance of Fleiss Generalized Kappa. Educ. Psychol. Meas. 2021, 81, 781–790. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- An, Y.; Ma, C.; Tian, C.; Zhao, L.; Pang, L.; Tu, Q.; Xu, J.; Wang, J. On-chip assay of the effect of topographical microenvironment on cell growth and cell-cell interactions during wound healing. Biomicrofluidics 2015, 9, 064112. [Google Scholar] [CrossRef]
- Gao, A.X.; Tian, Y.L.; Shi, Z.Z.; Yu, L. A cost-effective microdevice bridges microfluidic and conventional in vitro scratch/wound-healing assay for personalized therapy validation. Biochip J. 2016, 10, 56–64. [Google Scholar] [CrossRef]
- Go, H.; Tian, T.; Rhee, S.W. Fabrication of Microfluidic Chip for Investigation of Wound Healing Processes. Biochip J. 2018, 12, 146–153. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, L.; Mitra, K.; Bit, A. Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress. Micromachines 2022, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, L.; Tu, Q.; Wang, J.; Liu, W.; Wang, X.; Ren, L.; Wang, J. On-chip cell migration assay for quantifying the effect of ethanol on MCF-7 human breast cancer cells. Microfluid. Nanofluidics 2011, 10, 1333–1341. [Google Scholar] [CrossRef]
- Imashiro, C.; Kang, B.; Lee, Y.; Hwang, Y.H.; Im, S.; Kim, D.E.; Takemura, K.; Lee, H. Propagating acoustic waves on a culture substrate regulate the directional collective cell migration. Microsyst. Nanoeng. 2021, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, D.; Park, G.L.; Jeon, T.J.; Kim, S.M. Investigation of wound healing process guided by nano-scale topographic patterns integrated within a microfluidic system. PLoS ONE 2018, 13, e0201418. [Google Scholar] [CrossRef]
- Lin, J.Y.; Lo, K.Y.; Sun, Y.S. A microfluidics-based wound-healing assay for studying the effects of shear stresses, wound widths, and chemicals on the wound-healing process. Sci. Rep. 2019, 9, 20016. [Google Scholar] [CrossRef]
- Murrell, M.; Kamm, R.; Matsudaira, P. Tension, free space, and cell damage in a microfluidic wound healing assay. PLoS ONE 2011, 6, e24283. [Google Scholar] [CrossRef] [PubMed]
- Naomi Handly, L.; Pilko, A.; Wollman, R. Paracrine communication maximizes cellular response fidelity in wound signaling. eLife 2015, 4, e09652. [Google Scholar] [CrossRef]
- Nie, F.Q.; Yamada, M.; Kobayashi, J.; Yamato, M.; Kikuchi, A.; Okano, T. On-chip cell migration assay using microfluidic channels. Biomaterials 2007, 28, 4017–4022. [Google Scholar] [CrossRef]
- Shabestani Monfared, G.; Ertl, P.; Rothbauer, M. An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure. Sci. Rep. 2020, 10, 16192. [Google Scholar] [CrossRef]
- Shaner, S.; Savelyeva, A.; Kvartuh, A.; Jedrusik, N.; Matter, L.; Leal, J.; Asplund, M. Bioelectronic microfluidic wound healing: A platform for investigating direct current stimulation of injured cell collectives. Lab Chip 2023, 23, 1531–1546. [Google Scholar] [CrossRef]
- Shih, H.-C.; Lee, T.-A.; Wu, H.-M.; Ko, P.-L.; Liao, W.-H.; Tung, Y.-C. Microfluidic Collective Cell Migration Assay for Study of Endothelial Cell Proliferation and Migration under Combinations of Oxygen Gradients, Tensions, and Drug Treatments. Sci. Rep. 2019, 9, 8234. [Google Scholar] [CrossRef] [PubMed]
- Sticker, D.; Lechner, S.; Jungreuthmayer, C.; Zanghellini, J.; Ertl, P. Microfluidic Migration and Wound Healing Assay Based on Mechanically Induced Injuries of Defined and Highly Reproducible Areas. Anal. Chem. 2017, 89, 2326–2333. [Google Scholar] [CrossRef]
- Sun, Y.S.; Peng, S.W.; Cheng, J.Y. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process. Biomicrofluidics 2012, 6, 34117. [Google Scholar] [CrossRef]
- Uhlig, K.; Wegener, T.; He, J.; Zeiser, M.; Bookhold, J.; Dewald, I.; Godino, N.; Jaeger, M.; Hellweg, T.; Fery, A.; et al. Patterned Thermoresponsive Microgel Coatings for Noninvasive Processing of Adherent Cells. Biomacromolecules 2016, 17, 1110–1116. [Google Scholar] [CrossRef]
- van der Meer, A.D.; Vermeul, K.; Poot, A.A.; Feijen, J.; Vermes, I. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H719–H725. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, F.; Zhang, T.; Chen, D.; Jia, X.; Wang, J.; Guo, W.; Chen, J. A Tubing-Free Microfluidic Wound Healing Assay Enabling the Quantification of Vascular Smooth Muscle Cell Migration. Sci. Rep. 2015, 5, 14049. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.L.; Wang, S.T.; Su, B.; Ha, Q.; Niu, F.L.; Nie, F.Q. Wound healing assay using microfluidic channels. Chem. Res. Chin. Univ. 2012, 28, 472–476. [Google Scholar]
- Yin, D.; Zhang, H.; Yang, C.; Zhang, W.; Yang, S. A More Biomimetic Cell Migration Assay with High Reliability and Its Applications. Pharmaceuticals 2022, 15, 695. [Google Scholar] [CrossRef]
- Yazdanpanah Moghadam, E.; Sonenberg, N.; Packirisamy, M. Microfluidic Wound-Healing Assay for ECM and Microenvironment Properties on Microglia BV2 Cells Migration. Biosensors 2023, 13, 290. [Google Scholar] [CrossRef]
- Yazdanpanah Moghadam, E.; Sonenberg, N.; Packirisamy, M. Microfluidic Wound-Healing Assay for Comparative Study on Fluid Dynamic, Chemical and Mechanical Wounding on Microglia BV2 Migration. Micromachines 2024, 15, 1004. [Google Scholar] [CrossRef]
- Yilmaz, A.; Karavelioglu, Z.; Aydemir, G.; Demircali, A.A.; Varol, R.; Kosar, A.; Uvet, H. Microfluidic wound scratching platform based on an untethered microrobot with magnetic actuation. Sens. Actuators B Chem. 2022, 373, 132643. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Ma, H.; Qin, J. A simple microfluidic strategy for cell migration assay in an in vitro wound-healing model. Wound Repair Regen. 2013, 21, 897–903. [Google Scholar] [CrossRef]
- Zhang, S.; Tuk, B.; van de Peppel, J.; Kremers, G.J.; Koedam, M.; Pesch, G.R.; Rahman, Z.; Hoogenboezem, R.M.; Bindels, E.M.J.; van Neck, J.W.; et al. Microfluidic evidence of synergistic effects between mesenchymal stromal cell-derived biochemical factors and biomechanical forces to control endothelial cell function. Acta Biomater. 2022, 151, 346–359. [Google Scholar] [CrossRef]
- Friend, J.; Yeo, L. Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 2010, 4, 026502. [Google Scholar] [CrossRef]
- Kim, D.N.H.; Kim, K.T.; Kim, C.; Teitell, M.A.; Zangle, T.A. Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging. Microfluid. Nanofluidics 2018, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Valencia, L.; Canalejas-Tejero, V.; Clemente, M.; Fernaud, I.; Holgado, M.; Jorcano, J.L.; Velasco, D. A new microfluidic method enabling the generation of multi-layered tissues-on-chips using skin cells as a proof of concept. Sci. Rep. 2021, 11, 13160. [Google Scholar] [CrossRef]
- Carvalho, V.; Gonçalves, I.M.; Rodrigues, N.; Sousa, P.; Pinto, V.; Minas, G.; Rodrigues, R.O.; Teixeira, S.; Lima, R.A. Simulation and Experimental Validation of a Microfluidic Device. In Proceedings of the ASME 2023 International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 29 October–2 November 2023. [Google Scholar]
- Ahmed, F.; Yoshida, Y.; Wang, J.; Sakai, K.; Kiwa, T. Design and validation of microfluidic parameters of a microfluidic chip using fluid dynamics. AIP Adv. 2021, 11, 075224. [Google Scholar] [CrossRef]
- Azzam, S.; Tomasova, L.; Danner, C.; Skiba, M.; Klein, M.; Guttenberg, Z.; Michaelis, S.; Wegener, J. A high-precision wound healing assay based on photosensitized culture substrates. Sci. Rep. 2024, 14, 9103. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, J.; Yang, X.; Tian, W.; Liu, L. Surface modification with fibronectin or collagen to improve the cell adhesion. Appl. Surf. Sci. 2008, 255, 459–461. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef]
- Liu, Z.; Han, X.; Qin, L. Recent Progress of Microfluidics in Translational Applications. Adv. Healthc Mater. 2016, 5, 871–888. [Google Scholar] [CrossRef]
- Reyes, D.R.; van Heeren, H.; Guha, S.; Herbertson, L.; Tzannis, A.P.; Ducrée, J.; Bissig, H.; Becker, H. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices. Lab A Chip 2021, 21, 9–21. [Google Scholar] [CrossRef]
- Scott, S.M.; Ali, Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef] [PubMed]
- Abhyankar, V.V.; Lokuta, M.A.; Huttenlocher, A.; Beebe, D.J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab A Chip 2006, 6, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M.T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Stamm, A.; Reimers, K.; Strauß, S.; Vogt, P.; Scheper, T.; Pepelanova, I. In vitro wound healing assays–state of the art. BioNanoMaterials 2016, 17, 79–87. [Google Scholar] [CrossRef]
- Shen, F.; Li, X.; Li, P.C. Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations. Biomicrofluidics 2014, 8, 014109. [Google Scholar] [CrossRef]
- Bielefeld, K.A.; Amini-Nik, S.; Alman, B.A. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. CMLS 2013, 70, 2059–2081. [Google Scholar] [CrossRef]
- Freitas, J.T.; Jozic, I.; Bedogni, B. Wound Healing Assay for Melanoma Cell Migration. Methods Mol. Biol. 2021, 2265, 65–71. [Google Scholar] [CrossRef]
- Walter, M.N.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays. Exp. Cell Res. 2010, 316, 1271–1281. [Google Scholar] [CrossRef]
- Ammann, K.R.; DeCook, K.J.; Li, M.; Slepian, M.J. Migration versus proliferation as contributor to in vitro wound healing of vascular endothelial and smooth muscle cells. Exp. Cell Res. 2019, 376, 58–66. [Google Scholar] [CrossRef]
- Olofsson, P.E.; Brandt, L.; Magnusson, K.E.G.; Frisk, T.; Jaldén, J.; Önfelt, B. A collagen-based microwell migration assay to study NK-target cell interactions. Sci. Rep. 2019, 9, 10672. [Google Scholar] [CrossRef]
- Li, W.; Khan, M.; Mao, S.; Feng, S.; Lin, J.-M. Advances in Tumor-Endothelial Cells Co-culture and Interaction on Microfluidics. J. Pharm. Anal. 2018, 8, 210–218. [Google Scholar] [CrossRef]
- Yu, F.; Hunziker, W.; Choudhury, D. Engineering Microfluidic Organoid-on-a-Chip Platforms. Micromachines 2019, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Poon, P.Y.; Yue, P.Y.; Wong, R.N. A Device for Performing Cell Migration/Wound Healing in a 96-Well Plate. J. Vis. Exp. 2017, 121, 55411. [Google Scholar] [CrossRef]
- Yue, P.Y.K.; Leung, E.P.Y.; Mak, N.K.; Wong, R.N.S. A Simplified Method for Quantifying Cell Migration/Wound Healing in 96-Well Plates. J. Biomol. Screen. 2010, 15, 427–433. [Google Scholar] [CrossRef] [PubMed]









| Study | Year | Mold Cast | Microfluidic Device | Device Assembly | In Silico Test | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Material | Fabrication | Material | Layers | Technology | Microchannels Geometry | Cover | Sealing | |||
| Scratch assay: Enzymatic cell depletion | ||||||||||
| Moghadam et al. [46] | 2024 | SU-8 | Photolithography | PDMS | 2 | Soft-lithography | 1 main channel (W = 0.9 mm, L = 8.2/8.4 mm) and 2 side channels (W = 200 or 400 µm, L = 6 mm); 2 inlets and 2 outlets (D = 1.5 mm) and 4 reservoirs (D = 8 mm) | Glass | Plasma | COMSOL® |
| Moghadam et al. [45] | 2023 | SU-8 | Photolithography | PDMS | 2 | Soft-lithography | 1 main channel (W = 0.9 mm, L = 5.6 mm and H = 100 µm) and 2 side channels (W = 600 µm, L = 4 mm and H = 100 µm); 4 reservoirs (D = 8 mm); 2 inlets and 2 outlets (D = 3 mm) | Glass | Plasma | NR |
| Zhang et al. [49] | 2022 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 1 main channel (L = 150 mm, W = 1 mm, H = 100 µm); 3 short inlet and 3 outlet channels on both ends | Glass | Plasma | NR |
| Yang et al. [44] | 2022 | NR | NR | PDMS | 1 | Soft-lithography | 1 main channel (W = 3 mm, H = 150 µm, L = 300 mm); 3 inlets and 1 outlet | Glass | Plasma | COMSOL® |
| Gupta et al. [27] | 2022 | 3D-printed material | 3D printing | PDMS, PMMA, and silk film | 2 and 3 | Laser micromachining | 3 parallel microchannels (H = 200 µm, W = 200 µm); 3 inlets and 3 outlets (D = 3 mm) | Glass | Super glue | ANSYS Fluent® |
| Shih et al. [37] | 2019 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 2 channels sets: 1 cell culture straight channel, 3 inlets and 1 outlet, and 1 mixing channel | Glass | Plasma | NR |
| Lin et al. [31] | 2019 | NA | NA | PMMA | 6 | CO2 laser | 1 central inlet for trypsin flow, a side inlet for medium flow, and 1 outlet; 3 different W cell culture areas (6 mm, 4.5 mm, and 3 mm) | PMMA | Double-sided tapes | COMSOL® |
| Lee et al. [30] | 2018 | SU-8 | Photolithography | PDMS | 2 | Soft-lithography | 1 cell culture region (W = 500 µm, L = 10 mm, and H = 200 µm); 2 inlets and 1 outlet | Nano-patterned PDMS slab | Plasma | NR |
| Wei et al. [42] | 2015 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 1 main channel (W = 800 µm, L = 3 mm, H = 100 µm or 250 µm); 2 inlets and 1 outlet (D = 5 mm) | Glass | NR | NR |
| Xi et al. [43] | 2012 | NR | Photolithography | PDMS | 1 | Soft-lithography | 1 long channel (W = 900 µm, H = 60 µm, L = 3 mm) separated on 1 side into 3 smaller inlet channels (W = 200 µm, H = 100 µm, L = 2 mm) | Culture dish | NR | NR |
| Felder et al. [8] | 2012 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 1 microwell (W = 900 µm, H = 100 µm, L = 14 mm); 2 inlet microchannels (W = 260 µm, H = 100 µm, L = 12 mm); 3 outlet microchannels (W = 260 µm, H = 100 µm, L = 6 mm) | Glass | Plasma | NR |
| Murrell et al. [32] | 2011 | NR | Photolithography | NR | 1 | Soft-lithography | 3 channels (W = 500 µm) that converge into a single channel (W = 500 µm, L = 10 mm) | NR | NR | COMSOL® |
| Huang et al. [28] | 2011 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 1 main channel (L = 1 cm, W = 900 µm, H = 60 µm); 3 inlet channels (W = 300 µm) | Glass | PDMS | NR |
| van der Meer et al. [41] | 2010 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 1 long channel (H = 60 µm, W = 500 µm, L = 2 cm) separated on one side into 3 smaller inlet channels | Glass | Plasma | NR |
| Nie et al. [34] | 2007 | Poly(UA-co-IBA) | Photolithography | PDMS | 1 | Soft-lithography | 3 inlet microchannels (W = 300 µm) that converged into a single main channel (W = 900 µm) | Collagen-coated culture dish | NR | NR |
| Scratch assay: Physical cell depletion | ||||||||||
| Chen et al. [9] | 2025 | Photosensitive ink | 3D printing | PDMS | 7 | Soft-lithography | 3 channels, 2 reservoirs, and 1 cell chamber | Glass and PMMA | NR | COMSOL® |
| Moghadam et al. [46] | 2024 | SU-8 | Photolithography | PDMS | 2 | Soft-lithography | 1 main channel (W = 900 µm, L = 8.2/8.4 mm) and 2 side channels (W = 200 or 400 µm, L = 6 mm); 2 inlets and 2 outlets (D = 1.5 mm) and 4 reservoirs (D = 8 mm) | Glass | Plasma | COMSOL® |
| Shaner et al. [36] | 2023 | NA | NA | Acrylic-based double-sided pressure-sensitive adhesive | 2 | CO2 laser | 1 center channel (H = 500 µm, W = 300/600 and 900 µm); 4 reservoirs (H = 8 mm); 3 inlets and 1 outlet | Culture dish | Adhesion | COMSOL® |
| Yin et al. [44] | 2022 | SU-8 | Photolithography | PDMS | 2 | Soft-lithography | 100 cylinders (D = 400 µm, H = 100 µm) around 3.5 mm × 20 mm areas; 4 connected chambers on sidewall (21 mm × 5 mm × 0.8 mm); 1 inlet and 1 outlet (D = 1.25 mm) | Culture dish | Plasma | COMSOL® |
| Yilmaz et al. [47] | 2022 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | Square cell seeding area (L = 10 mm, W = 10 mm) | Glass | Plasma | COMSOL® |
| Gupta et al. [27] | 2022 | 3D-printed material | 3D printing | PDMS, PMMA and silk film | 2 and 3 | Laser micromachining | 1 multiple zigzag microchannel (H = 200 µm, W = 200 µm); 1 inlet and 1 outlet (D = 3 mm) | Glass | Super glue | ANSYS Fluent® |
| Monfared et al. [35] | 2020 | NA | NA | PDMS and glass | 4 | Xurography | 8 microchannels (W = 2.5 mm, L = 8.5 mm, H = 250 µm); 8 circular wound areas (1.5 mm2); 1 inlet and 1 outlet (D = 6 mm) | Glass | Plasma | NR |
| Go et al. [26] | 2018 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 1 cell culture square microchannel (W = 1 cm, L = 1 cm, H = 100 µm); 6 microposts (D = 400–800 μm) situated 1050 μm away from the glass substrate; 2 inlet cells and media reservoirs (D = 8 mm) | Glass | Plasma | NR |
| Sticker et al. [38] | 2017 | TMMF S2045 | Photolithography | PDMS and dual-cure thermoset | 3 | Soft-lithography | 1 circular shaped frame for cell depletion (D = 1.5 and 2.5 mm); 4 cell culture chambers (H = 90 μm high, W = 2.5 mm, and L = 7.5 mm) | Glass | Heating | StarCCM+® |
| Uhlig et al. [40] | 2016 | NA | NA | PMMA | 2 | Cutting plotter | 1 microchannel (W = 100 µm, L = 1 cm); 3 inlets | Glass | Double-sided tapes | NR |
| Handly et al. [33] | 2015 | SU-8 | Photolithography | PDMS | 2 | Soft-lithography | 1 trapezoid cell chamber (W = 4 mm, L = 4 mm, H = 60 µm); 1 air channel | Glass | NR | NR |
| An et al. [24] | 2015 | AZ 50XT | Photolithography | PDMS | 2 | Soft-lithography | 3 micropillar arrays (W = 3 mm, L = 9 mm, H = 500 µm) with 0.8 mm space between; pillars had a H = 10 µm, and diameter of 15, 18, or 21 µm | Culture dish | PDMS | NR |
| Sun et al. [39] | 2012 | NA | NA | PMMA and Teflon tape | 6 | CO2 laser | 1 central long slit (H = 320 µm) connected to 3 inlet holes (D = 8 mm), with 3 salt bridge ports (D = 5 mm), and 3 fluid ports (D = 2 mm) | Culture dish | Double-sided tapes and heating | 9CFD-ACE+ (CFD-GEOM, CFD-ACE, and CFD-VIEW) |
| Scratch assay: Physical cell exclusion | ||||||||||
| Yin et al. [44] | 2022 | SU-8 | Photolithography | PDMS | 2 | Soft-lithography | 100 cylinders (D = 400 µm, H = 100 µm) around 3.5 mm × 20 mm areas; 4 connected chambers on sidewall (21 mm × 5 mm × 0.8 mm); 1 inlet and 1 outlet (D = 1.25 mm) | Culture dish | Plasma | COMSOL® |
| Imashiro et al. [29] | 2021 | Photosensitive ink | 3D printing | PDMS and LiNbO3 substrate | 2 | Soft-lithography | NR | Glass | Plasma | COMSOL® |
| Sticker et al. [38] | 2017 | TMMF S2045 | Photolithography | PDMS and dual-cure thermoset | 3 | Soft-lithography | 1 circular shaped frame for cell depletion (D = 1.5 and 2.5 mm); 4 cell culture chambers (H = 90 μm high, W = 2.5 mm, and L = 7.5 mm) | Glass | Heating | StarCCM+® |
| Gao et al. [25] | 2016 | Photoresist film | Photolithography | PDMS | 2 | Soft-lithography | 1 main channel (W = 250 µm, H = 40 µm, L = 4 mm); 2 inlets and 2 outlets | Glass and PMMA | Plasma and screws | NR |
| Zhang et al. [48] | 2013 | SU-8 | Photolithography | PDMS | 1 | Soft-lithography | 4 uniform units with 3 pillars each (D = 800 µm); 1 inlet and 4 outlets | Glass | Plasma | NR |
| Study | Cell Line | Cell Type | Concentration (×106 Cells/mL) | Seeding Cells Method | Medium | Type of Culture | Coating | Incubation Time (h) |
|---|---|---|---|---|---|---|---|---|
| Scratch assay: Enzymatic cell depletion | ||||||||
| Moghadam et al. [46] | BV2 | Microglial | ~10 | Syringe (hydrostatic passive) | DMEM; 10% FBS, 1% P/S | 2D | NR | NR |
| Moghadam et al. [45] | BV2 | Microglial | 10 | Pipette tips (hydrostatic passive) | DMEM; 10% FBS, 1% P/S | 2D | Collagen I, PLL, gelatin, and fibronectin | 12 |
| Zhang et al. [49] | HUVEC | Endothelial | 5 | NR | α-MEM, 10% FCS | 2D | Fibronectin (40 µg/mL) | 24 |
| Yang et al. [44] | HUVEC | Endothelial | 20 | Pipette tips (hydrostatic passive) | DMEM; 10% FBS, 1% P/S, 1% VEGF | 2D | Fibronectin (100 µg/mL) | NR |
| Gupta et al. [27] | L929 | Fibroblast | NR | NR | DMEM; 10% FBS, 1% P/S | 3D | Silk fibroin (3%) | NR |
| Shih et al. [37] | HUVEC | Endothelial | 2 | NR | CC-3162 | 2D | Fibronectin (100 µg/mL) | 24 |
| Lin et al. [31] | NIH/3T3 | Fibroblast | 3 | NR | DMEM; 10% FBS | 2D | NR | 2.5 |
| Lee et al. [30] | NIH/3T3 | Fibroblast | 5–6 | NR | DMEM; 10% FBS, 1% P/S | 2D | Fibronectin (40 μg/mL) | NR |
| Wei et al. [42] | T/G HA-VSMC | Smooth muscle | 5 | NR | DMEM; 10% FBS, 1% P/S | 2D | Fibronectin (100 µg/mL) or collagen (1000 µg/mL) | 36 |
| HASMC | ||||||||
| RASMC | ||||||||
| Xi et al. [43] | NIH/3T3 | Fibroblast | 5 | NR | DMEM; 10% FBS, P (100 U/mL), S (100 μg/mL) | 2D | Fibronectin (100 µg/mL) | 24 |
| Felder et al. [8] | A549 | Epithelial (alveolar basal) | 6 | NR (hydrostatic passive) | DMEM; 10% FBS, P (100 U/mL), S (100 μg/mL) | 2D | NR | 48 |
| Murrell et al. [32] | CLS-1 | Epithelial | 3.75cells/chip | NR | DMEM; 10% FBS, 1% P/S | 2D | Fibronectin (1000 µg/mL and 200 µg/mL) | NR |
| Huang et al. [28] | MCF-7 | Epithelial (breast cancer) | 20 | Pipette tips (hydrostatic passive) | RPMI-1640; 2% de FBS | 2D | PLL (50 μg/mL) | NR |
| van der Meer et al. [41] | HUVEC | Endothelial | 2 | Pipette tips (hydrostatic passive) | EGM-2 | 2D | Fibronectin (2000 µg/mL) | NR |
| Nie et al. [34] | NIH/3T3 | Fibroblast | 5 | NR | DMEM; 10% FBS, P (200 U/mL), S (200 μg/mL) | 2D | Collagen | NR |
| Scratch assay: Physical cell depletion | ||||||||
| Chen et al. [9] | DU 145 | Epithelial (prostate carcinoma) | 1 | NR | DMEM; 10% FBS, P (100 U/mL), S (100 μg/mL), and GM (100 U/mL) | 2D | NR | 18 |
| Moghadam et al. [46] | BV2 | Microglial | ~10 | Syringe (hydrostatic passive) | DMEM; 10% FBS, 1% P/S | 2D | NR | NR |
| Shaner et al. [36] | Epidermal keratinocytes with HPV-16 E6/E7 | Keratinocyte (immortalized) | 4.5 | NR | KGM2 with a cocktail of factors; CaCl2, N (20 μg/mL), and Kan (100 μg/mL) | 2D | NR | 3 |
| Yin et al. [44] | HeLa | Epithelial (cervical adenocarcinoma) | 1 | Syringe (hydrostatic passive) | DMEM; 10% FBS, 1% P/S | 2D | NR | 6 |
| HUVEC | Endothelial | |||||||
| Yilmaz et al. [47] | HUVEC | Endothelial | 0.02 cells/chip | NR | DMEM; 10% FBS, 1% P/S | 2D | NR | 24 |
| Gupta et al. [27] | L929 | Fibroblast | NR | NR | DMEM; 10% FBS, 1% P/S | 3D | Silk fibroin (3%) | NR |
| Monfared et al. [35] | HDF | Fibroblast | 0.6 | NR | DMEM; 10% FBS, 1% P/S | 2D | Collagen I (0.09%) | 72 |
| Go et al. [26] | BALB/3T3 | Fibroblast | 0.1 | NR | DMEM; 10% FBS, 1% P/S | 2D | NR | NR |
| Sticker et al. [38] | GFP-HUVEC | Endothelial (GFP-tagged) | NR | Syringe (hydrostatic passive) | EGM-2, EGM-2 SingleQuots | 2D | Fibronectin (10 μg/mL), fibrinogen (5 μg/mL), and gelatin (1%) | 24–48 |
| Uhlig et al. [40] | L929 | Fibroblast | 2 | NR | DMEM HEPES (25 mM); 10% FBS, 1% P/S, and Gln (2 Mm); CHO-K1 F12; 10% FBS, 1% P/S | 2D | NIPAM | 24 |
| Handly et al. [33] | MCF-10A | Epithelial | 15 | Needle (hydrostatic passive) | DMEM/F12; 5% HS, 1% P/S, EGF (20 ng/mL), HC (0.5 μg/mL); CTx (100 ng/mL), insulin (10 μg/mL) | 2D | Fibronectin and collagen | 18–24 |
| An et al. [24] | CCC-ESF-1; HaCaT; HUVEC | Fibroblast; keratinocyte; endothelial | 0.1, 0.5, 1 | NR | DMEM; 10% FBS, 1% P/S MEM-EBSS; 10% FBS, 1% P/S | 2D | PLL (100 µg/mL) | 24 |
| Sun et al. [39] | NIH/3T3 | Fibroblast | 1 | Pipette tips (hydrostatic passive) | DMEM + 10% FBS | 2D | NR | 3 |
| Scratch assay: Physical cell exclusion | ||||||||
| Yin et al. [44] | HeLa | Epithelial (cervical adenocarcinoma) | 1 | Syringe (hydrostatic passive) | DMEM; 10% FBS, 1% P/S | 2D | NR | 6 |
| HUVEC | Endothelial | |||||||
| Imashiro et al. [29] | NIH/3T3 | Fibroblast | 2 | NR | DMEM; 10% FBS, 1% P/S | 2D | NR | 8 |
| Sticker et al. [38] | GFP-HUVEC | Endothelial (GFP-tagged) | NR | Syringe (hydrostatic passive) | EGM-2, EGM-2 SingleQuots | 2D | Fibronectin (10 μg/mL), fibrinogen (5 μg/μL), and gelatin (1%) | 24–48 |
| Gao et al. [25] | MV3 BRAFV600E | Epithelial (melanoma) | 1 | NR | RPMI 1640; 10% FCS | 2D | Collagen I (100 µg/mL) | 24–48 |
| Zhang et al. [48] | GES-1 | Epithelial | 10 | NR | HG-DMEM; 10% FBS, P (100 U/mL), S (100 μg/mL) | 2D | NR | 12 |
| NR | Mesenchymal stem | α-MEM; 10% FBS, P (100 U/mL), S (100 μg/mL) | ||||||
| ACCM | Epithelial (adenoid cystic carcinoma) | α-MEM; 10% FBS, P (100 U/mL), S (100 μg/mL) | ||||||
| Study | Applied Material | Wound Induction Method * | Microchannels Geometry | Wound Region | Wound Geometry |
|---|---|---|---|---|---|
| Scratch assay: Enzymatic cell depletion | |||||
| Moghadam et al. [46] | Trypsin | Gravitational force | 1 main channel and 2 side channels; 2 inlets and 2 outlets and 4 reservoirs | Central | Linear (A = 1,400,000 or 240,000 or 120,000 µm2) |
| Moghadam et al. [45] | Trypsin | Pipette (NR) | 1 main channel and 2 side channels; 4 reservoirs; 2 inlets and 2 outlets | Central | Linear (NR) |
| Zhang et al. [49] | Trypsin | Syringe pump (80 µL/min) | 1 main channel; 3 short inlet and 3 outlet channels on both ends | Central | Linear (NR) |
| Yang et al. [44] | Trypsin | Passive pump with/without siphon | 1 main channel; 3 inlets and 1 outlet | Central | Linear (NR) |
| Gupta et al. [27] | Trypsin | Syringe pump (15 µL/min) | 3 parallel microchannels; 3 inlets and 3 outlets | Central | Linear (Flow 1: 619,000 mm; Flow 2: 536,350 mm; Flow 3: 881,500 mm) |
| Shih et al. [37] | Trypsin | Syringe pump (10 µL/min) | 2 channel sets: 1 cell culture straight channel, 3 inlets and 1 outlet, and 1 mixing channel | Central | Linear (W = 300 µm) |
| Lin et al. [31] | Trypsin | Syringe pump (400 µL/min) | 1 central inlet for trypsin flow, a side inlet for medium flow, and an outlet; 3 different widths cell culture area | Central | Linear (W = 1.42 or 0.91 or 0.46 mm) |
| Lee et al. [30] | Trypsin | Syringe pump (5 to 15 µL/min) | 1 cell culture region; 2 inlets and 1 outlet | Central | Linear (W = 250 to 300 μm) |
| Wei et al. [42] | Trypsin | Gravitational force | 1 main channel; 2 inlets and 1 outlet | Lateral | Linear (A = 108.1 ± 22.9 μm or 148.9 ± 20.5 μm or 108.7 ± 10.5 μm or 383.7 ± 19.9 μm) |
| Xi et al. [43] | Trypsin | Gravitational force | 1 long channel separated on 1 side into 3 smaller inlet channels | Central | Linear (W = 300 μm) |
| Felder et al. [8] | Trypsin | Peristaltic pump (3.4 µL/min) | 1 microwell; 2 inlets microchannels; 3 outlets microchannels | Central | Linear (W = 300 μm) |
| Murrell et al. [32] | Trypsin | Syringe pump (15 µL/min) | 3 channels that converge into a single channel | Lateral | Linear (W = 36 μm) |
| Huang et al. [28] | Trypsin | Syringe pump (50 µL/min) | 1 main channel; 3 inlet channels | Lateral | Linear (NR) |
| van der Meer et al. [41] | Trypsin | Syringe pump (5 µL/min) | 1 long channel separated on one side into 3 smaller inlet channels | Central | Linear (W = 110 μm) |
| Nie et al. [34] | Trypsin | Gravitational force | 3 inlets microchannels that converged into a single main channel | Lateral | Linear (W = 600 μm) |
| Scratch assay: Physical cell depletion | |||||
| Chen et al. [9] | Parafilm M® | Mechanical force | 3 channels, 2 reservoirs, and 1 cell chamber | Central | Linear (W = 0.5 mm) |
| Moghadam et al. [46] | PBS | Mechanical force (syringe pump) | 1 main channel and 2 side channels; 2 inlets and 2 outlets and 4 reservoirs | Central | Linear (A = 1,400,000 or 240,000 or 12,000 µm2) |
| Shaner et al. [36] | Pipette tip with a vacuum aspirator | Mechanical force | 1 center channel; 4 reservoirs; 3 inlets and 1 outlet | Central | Linear (W = 0.7 mm) |
| Yin et al. [44] | Magnet-module system | Magnetic force | 100 cylinders around areas; 4 connected chambers on sidewall; 1 inlet and 1 outlet | Central | Circular (D = 0.4 mm) |
| Yilmaz et al. [47] | Microrobot and micropipette | Mechanical force | Square cell seeding area | Central | Linear, square, and triangle (NR) |
| Gupta et al. [27] | PDMS mold | Mechanical force | 1 multiple zigzag microchannel; 1 inlet and 1 outlet | Central | Square (Flow 1: 516,130 mm; Flow 2: 512,157 mm; Flow 3: 515,600 mm) |
| Monfared et al. [35] | Air pressure | Mechanical force | 8 microchannels; 8 circular wound areas; 1 inlet and 1 outlet | Central | Circular (D = 1.4 mm) |
| Go et al. [26] | Rigid plastic piece and posts | Mechanical force | 1 cell culture square microchannel; 6 microposts situated away from the glass substrate; 2 inlet cells and media reservoirs | Central | Circular (D = 600 to 800 μm) |
| Sticker et al. [38] | Air pressure | Mechanical force | 1 circular shaped frame for cell depletion; 4 cell culture chambers | Central | Circular (D = 1.5 mm) |
| Uhlig et al. [40] | Thermoresponsive microgels | Thermal force | 1 microchannel; 3 inlets | Central | Circular (D = 200 μm) |
| Handly et al. [33] | Air pressure | Mechanical force | 1 trapezoid cell chamber; 1 air channel | Central | Circular (D = 300 μm) |
| An et al. [24] | PDMS stencil | Mechanical force | 3 micropillar arrays with spacing, and pillars of set height and diameter | Central | Linear (800 μm) |
| Sun et al. [39] | Tape-made barrier | Mechanical force | 1 central long slit connected to 3 inlet holes, with 3 salt bridge ports, and 3 fluid ports | NR | Linear (NR) |
| Scratch assay: Physical cell exclusion | |||||
| Yin et al. [44] | Pillars with magnet-module system | Pillars removed after 6 h | 100 cylinders; 4 connected chambers on sidewall; 1 inlet and 1 outlet | Central | Circular (D = 0.4 mm) |
| Imashiro et al. [29] | PDMS pillars | Pillars removed after 8 h | 1 main channel; 2 inlets and 2 outlets | Central | Linear (A = 400 μm2) |
| Sticker et al. [38] | Microstencil spin-coated PDMS | Not reached | 1 circular shaped frame for cell depletion; 4 cell culture chambers | Central | Not reached |
| Gao et al. [25] | PDMS pillars | NR | 4 uniform units with 3 pillars each; 1 inlet and 4 outlets | Central | Linear (W = 250 μm, L = 4 mm) |
| Zhang et al. [48] | PDMS pillars | Pillars removed after overnight culture | 4 uniform units with 3 pillars each; 1 inlet and 4 outlets | Central | Circular (D = 0.8 mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, F.A.; Valle, N.M.E.; Silva, K.F.d.; Alves, A.H.; Galanciak, M.C.S.; Rosário, G.M.; Mamani, J.B.; Nucci, M.P.; Gamarra, L.F. Microfluidic-Based Scratch Assays for Wound Healing Studies: A Systematic Review. Cells 2025, 14, 1931. https://doi.org/10.3390/cells14241931
Oliveira FA, Valle NME, Silva KFd, Alves AH, Galanciak MCS, Rosário GM, Mamani JB, Nucci MP, Gamarra LF. Microfluidic-Based Scratch Assays for Wound Healing Studies: A Systematic Review. Cells. 2025; 14(24):1931. https://doi.org/10.3390/cells14241931
Chicago/Turabian StyleOliveira, Fernando A., Nicole M. E. Valle, Keithy F. da Silva, Arielly H. Alves, Marta C. S. Galanciak, Gabriel M. Rosário, Javier B. Mamani, Mariana P. Nucci, and Lionel F. Gamarra. 2025. "Microfluidic-Based Scratch Assays for Wound Healing Studies: A Systematic Review" Cells 14, no. 24: 1931. https://doi.org/10.3390/cells14241931
APA StyleOliveira, F. A., Valle, N. M. E., Silva, K. F. d., Alves, A. H., Galanciak, M. C. S., Rosário, G. M., Mamani, J. B., Nucci, M. P., & Gamarra, L. F. (2025). Microfluidic-Based Scratch Assays for Wound Healing Studies: A Systematic Review. Cells, 14(24), 1931. https://doi.org/10.3390/cells14241931

