Rewiring T Cell Metabolism to Enhance CAR T Cell Function in Solid Tumor Microenvironments
Abstract
1. Introduction
2. The Metabolic Landscape of the Solid Tumor Microenvironment
2.1. Nutrient Depletion: Starving the Invaders
2.2. Accumulation of Suppressive Metabolites: Impeding Immune Cell Infiltration and Activity Through Suppressive Mechanisms
2.3. Hypoxia: Suffocating the Response
| Metabolic Feature | Primary Mechanism | Direct Impact on CAR T Cells |
|---|---|---|
| Hypoglycemia [15,17] | Warburg effect in tumor cells | Impairs glycolysis, cytokine production, and cytotoxicity |
| Acidosis [42,49] | Export of lactic acid | Suppresses mTOR signaling, motility, and effector function |
| Tryptophan Depletion [36,37] | IDO1/Kynurenine pathway | Arrests proliferation; induces apoptosis and Treg differentiation |
| Arginine Depletion [38,40] | ARG1 activity | Downregulates CD3ζ chain; causes cell cycle arrest |
| Adenosine Rich [47] | CD39/CD73 ectoenzyme activity | Engages A2AR, suppressing TCR signaling and promoting exhaustion |
| Hypoxia [49] | Dysregulated tumor growth | Stabilizes HIF-1α, driving exhaustion and suppressing memory formation |
| High ROS [59,63] | Dysfunctional tumor metabolism | Causes oxidative damage, inhibiting function and inducing apoptosis |
3. Principles of T Cell Immunometabolism
3.1. The Metabolic Journey of a T Cell
3.2. The Metabolism of Exhaustion
| T Cell Subset | Primary Metabolic Pathway(s) | Metabolic Characteristics | Functional Outcome |
|---|---|---|---|
| Naïve T Cell [80] | OXPHOS, FAO | Catabolic, metabolically quiescent, high AMPK activity | Long-term survival, immune surveillance |
| Effector T Cell [81] | Aerobic Glycolysis | Anabolic, high glycolytic flux, high mTORC1 activity | Rapid proliferation, cytokine production, cytotoxicity |
| Memory T Cell [81,82] | OXPHOS, FAO | Enhanced mitochondrial biogenesis, high spare respiratory capacity | Long-term persistence, rapid recall response |
| Exhausted T Cell [63,74] | Dysfunctional OXPHOS and Glycolysis; ADO accumulation with suppressed A2A–mTOR signaling | Mitochondria fragmentation, reduced glycolytic and OXPHOS activity, bioenergetic failure | Diminished cytokine production, loss of proliferation capacity, sustained dysfunction |
4. Strategic Metabolic Reprogramming of CAR T Cells
4.1. Genetic Engineering for Intrinsic Metabolic Fitness
4.2. Pharmacologic and Ex Vivo Preconditioning Strategies
4.3. Combinatorial Approaches: Remodeling the TME
| Strategy Group | Molecular Target/Approach | Proposed Mechanism | Key Challenges |
|---|---|---|---|
| Mitochondrial/OXPHOS Enhancement [62,63] | PGC1α overexpression (PPARGC1A) | PGC1α overexpression (PPARGC1A) | PGC1α overexpression (PPARGC1A) |
| Cytokine/Stemness Engineering [33] | IL-7R (C7R) armoring | Promotes stemness, enhances glucose metabolism, prevents differentiation. | Risk of tonic signaling to exhaustion or transformation. |
| Culture with IL-15/IL-21 | Favors memory-like, oxidative metabolism phenotypes during manufacturing. | Standardization and scalability of ex vivo conditioning. | |
| Nutrient Uptake Modulation [13] | SLC7A5 overexpression | Increases leucine import, sustaining mTORC1 activity in nutrient-poor TME. | May not address other nutrient limitations (e.g., glucose). |
| Adenosine/Inosine Axis Control [47,54,56] | CD73 inhibition (e.g., AB680) | Blocks adenosine production in the TME. | Combination therapy needed; possible off-tumor effects. |
| ADA1 enzyme strategy (CAR T expression or fusion) | Degrades extracellular adenosine to inosine, both relieving immunosuppression and fueling metabolism. | Balancing enzymatic activity; immunogenicity concerns. | |
| A2A receptor knockout (ADORA2A KO) | Prevents T cells from sensing/suppressive signaling of adenosine. | Risk of unchecked T cell activation and off-tumor toxicity. | |
| Inosine supplementation | Supplies alternative carbon source (glycolysis + OXPHOS) under glucose restriction. | Optimization of dose; possible interference with nucleotide metabolism. |
5. Challenges, Clinical Translation, and Future Perspectives
5.1. Navigating Safety and Toxicity in Metabolically Enhanced Cells
5.2. The Daunting Hurdles of Manufacturing and Translation
5.3. Confronting Tumor Heterogeneity and Advancing Personalization
5.4. Future Directions: Toward Intelligent and Dynamic Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Quintás-Cardama, A. Anti-BCMA CAR T-Cell Therapy in Multiple Myeloma. N. Engl. J. Med. 2019, 381, e6. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014, 6, 224ra225. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Hudecek, M.; Pender, B.; Robinson, E.; Hawkins, R.; Chaney, C.; Cherian, S.; Chen, X.; et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 2016, 8, 355ra116. [Google Scholar] [CrossRef]
- Louis, C.U.; Savoldo, B.; Dotti, G.; Pule, M.; Yvon, E.; Myers, G.D.; Rossig, C.; Russell, H.V.; Diouf, O.; Liu, E.; et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011, 118, 6050–6056. [Google Scholar] [CrossRef]
- Park, J.R.; Digiusto, D.L.; Slovak, M.; Wright, C.; Naranjo, A.; Wagner, J.; Meechoovet, H.B.; Bautista, C.; Chang, W.C.; Ostberg, J.R.; et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 2007, 15, 825–833. [Google Scholar] [CrossRef]
- Zhai, B.; Shi, D.; Gao, H.; Qi, X.; Jiang, H.; Zhang, Y.; Chi, J.; Ruan, H.; Wang, H.; Ru, Q.C.; et al. A phase I study of anti-GPC3 chimeric antigen receptor modified T cells (GPC3 CAR-T) in Chinese patients with refractory or relapsed GPC3+ hepatocellular carcinoma (r/r GPC3+ HCC). J. Clin. Oncol. 2017, 35, 3049. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, H.; Miao, C. Metabolic reprogram and T cell differentiation in inflammation: Current evidence and future perspectives. Cell Death Discov. 2025, 11, 123. [Google Scholar] [CrossRef]
- Renauer, P.; Park, J.J.; Bai, M.; Acosta, A.; Lee, W.H.; Lin, G.H.; Zhang, Y.; Dai, X.; Wang, G.; Errami, Y.; et al. Immunogenetic Metabolomics Reveals Key Enzymes That Modulate CAR T-cell Metabolism and Function. Cancer Immunol. Res. 2023, 11, 1068–1084. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gnanaprakasam, J.N.R.; Sherman, J.; Wang, R. A Metabolism Toolbox for CAR T Therapy. Front. Oncol. 2019, 9, 322. [Google Scholar] [CrossRef]
- Wang, T.; Liu, G.; Wang, R. The Intercellular Metabolic Interplay between Tumor and Immune Cells. Front. Immunol. 2014, 5, 358. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Renner, K.; Bruss, C.; Schnell, A.; Koehl, G.; Becker, H.M.; Fante, M.; Menevse, A.N.; Kauer, N.; Blazquez, R.; Hacker, L.; et al. Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. Cell Rep. 2019, 29, 135–150.e9. [Google Scholar] [CrossRef]
- Sotgia, F.; Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Pestell, R.G.; Lisanti, M.P. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 2011, 13, 213. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, Y.; Han, Y.; Li, M.; Wang, G. Targeting glutamine metabolism crosstalk with tumor immune response. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189257. [Google Scholar] [CrossRef]
- Edwards, D.N.; Ngwa, V.M.; Raybuck, A.L.; Wang, S.; Hwang, Y.; Kim, L.C.; Cho, S.H.; Paik, Y.; Wang, Q.; Zhang, S.; et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Investig. 2021, 131, e140100. [Google Scholar] [CrossRef]
- Mestre-Farrera, A.; Bruch-Oms, M.; Pena, R.; Rodriguez-Morato, J.; Alba-Castellon, L.; Comerma, L.; Quintela-Fandino, M.; Dunach, M.; Baulida, J.; Pozo, O.J.; et al. Glutamine-Directed Migration of Cancer-Activated Fibroblasts Facilitates Epithelial Tumor Invasion. Cancer Res. 2021, 81, 438–451. [Google Scholar] [CrossRef]
- Apostolova, P.; Pearce, E.L. Lactic acid and lactate: Revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 2022, 43, 969–977. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, H.; Liu, G.; Wu, J.; Yuan, Y.; Shang, A. Tumor Microenvironment: Lactic Acid Promotes Tumor Development. J. Immunol. Res. 2022, 2022, 3119375. [Google Scholar] [CrossRef]
- Kumagai, S.; Koyama, S.; Itahashi, K.; Tanegashima, T.; Lin, Y.T.; Togashi, Y.; Kamada, T.; Irie, T.; Okumura, G.; Kono, H.; et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 2022, 40, 201–218.e9. [Google Scholar] [CrossRef]
- Cekic, C.; Day, Y.J.; Sag, D.; Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 2014, 74, 7250–7259. [Google Scholar] [CrossRef]
- Chen, S.; Akdemir, I.; Fan, J.; Linden, J.; Zhang, B.; Cekic, C. The Expression of Adenosine A2B Receptor on Antigen-Presenting Cells Suppresses CD8+ T-cell Responses and Promotes Tumor Growth. Cancer Immunol. Res. 2020, 8, 1064–1074. [Google Scholar] [CrossRef]
- Cui, H.; Lan, Z.; Zou, K.L.; Zhao, Y.Y.; Yu, G.T. STAT3 promotes differentiation of monocytes to MDSCs via CD39/CD73-adenosine signal pathway in oral squamous cell carcinoma. Cancer Immunol. Immunother. 2023, 72, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Morello, S.; Miele, L. Targeting the adenosine A2b receptor in the tumor microenvironment overcomes local immunosuppression by myeloid-derived suppressor cells. Oncoimmunology 2014, 3, e27989. [Google Scholar] [CrossRef] [PubMed]
- Morello, S.; Pinto, A.; Blandizzi, C.; Antonioli, L. Myeloid cells in the tumor microenvironment: Role of adenosine. Oncoimmunology 2016, 5, e1108515. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, C.; Miele, L.; Porta, A.; Pinto, A.; Morello, S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 2015, 6, 27478–27489. [Google Scholar] [CrossRef]
- Vasiukov, G.; Menshikh, A.; Owens, P.; Novitskaya, T.; Hurley, P.; Blackwell, T.; Feoktistov, I.; Novitskiy, S.V. Adenosine/TGFβ axis in regulation of mammary fibroblast functions. PLoS ONE 2021, 16, e0252424. [Google Scholar] [CrossRef]
- Azzarito, G.; Visentin, M.; Leeners, B.; Dubey, R.K. Transcriptomic and Functional Evidence for Differential Effects of MCF-7 Breast Cancer Cell-Secretome on Vascular and Lymphatic Endothelial Cell Growth. Int. J. Mol. Sci. 2022, 23, 7192. [Google Scholar] [CrossRef]
- Lenoir, B.; Wagner, D.R.; Blacher, S.; Sala-Newby, G.B.; Newby, A.C.; Noel, A.; Devaux, Y. Effects of adenosine on lymphangiogenesis. PLoS ONE 2014, 9, e92715. [Google Scholar] [CrossRef]
- Bishop, E.L.; Gudgeon, N.; Dimeloe, S. Control of T Cell Metabolism by Cytokines and Hormones. Front. Immunol. 2021, 12, 653605. [Google Scholar] [CrossRef]
- Hu, Y.; Sarkar, A.; Song, K.; Michael, S.; Hook, M.; Wang, R.; Heczey, A.; Song, X. Selective refueling of CAR T cells using ADA1 and CD26 boosts antitumor immunity. Cell Rep. Med. 2024, 5, 101530. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhang, C.; Zhang, J.; Su, W.; Wang, G.; Wang, Z. The Kynurenine Pathway and Indole Pathway in Tryptophan Metabolism Influence Tumor Progression. Cancer Med. 2025, 14, e70703. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, H.; Zheng, Z.; Lin, Y.; Bian, L.; Geng, H.; Huang, X.; Zhu, J.; Jing, H.; Zhang, Y.; et al. IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment. J. Transl. Med. 2025, 23, 275. [Google Scholar] [CrossRef]
- Sosnowska, A.; Chlebowska-Tuz, J.; Matryba, P.; Pilch, Z.; Greig, A.; Wolny, A.; Grzywa, T.M.; Rydzynska, Z.; Sokolowska, O.; Rygiel, T.P.; et al. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma. Oncoimmunology 2021, 10, 1956143. [Google Scholar] [CrossRef]
- Badeaux, M.D.; Rolig, A.S.; Agnello, G.; Enzler, D.; Kasiewicz, M.J.; Priddy, L.; Wiggins, J.F.; Muir, A.; Sullivan, M.R.; Van Cleef, J.; et al. Arginase Therapy Combines Effectively with Immune Checkpoint Blockade or Agonist Anti-OX40 Immunotherapy to Control Tumor Growth. Cancer Immunol. Res. 2021, 9, 415–429. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, X.; Li, W.; Feng, Q.; Feng, H.; Tong, Y.; Rong, H.; Wang, W.; Zhang, D.; Zhang, Z.; et al. Circulating and tumor-infiltrating arginase 1-expressing cells in gastric adenocarcinoma patients were mainly immature and monocytic Myeloid-derived suppressor cells. Sci. Rep. 2020, 10, 8056. [Google Scholar] [CrossRef]
- Czystowska-Kuzmicz, M.; Sosnowska, A.; Nowis, D.; Ramji, K.; Szajnik, M.; Chlebowska-Tuz, J.; Wolinska, E.; Gaj, P.; Grazul, M.; Pilch, Z.; et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun. 2019, 10, 3000. [Google Scholar] [CrossRef]
- Guo, M.; Qiu, M.Y.; Zeng, L.; Nie, Y.X.; Tang, Y.L.; Luo, Y.; Gu, H.F. Acidosis induces autophagic cell death through ASIC1-mediated Akt/mTOR signaling in HT22 neurons. Toxicology 2025, 511, 154045. [Google Scholar] [CrossRef]
- Wolff, M.; Rauschner, M.; Reime, S.; Riemann, A.; Thews, O. Role of the mTOR Signalling Pathway During Extracellular Acidosis in Tumour Cells. Adv. Exp. Med. Biol. 2022, 1395, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Erra Diaz, F.; Ochoa, V.; Merlotti, A.; Dantas, E.; Mazzitelli, I.; Gonzalez Polo, V.; Sabatte, J.; Amigorena, S.; Segura, E.; Geffner, J. Extracellular Acidosis and mTOR Inhibition Drive the Differentiation of Human Monocyte-Derived Dendritic Cells. Cell Rep. 2020, 31, 107613. [Google Scholar] [CrossRef] [PubMed]
- Komarova, S.V.; Pereverzev, A.; Shum, J.W.; Sims, S.M.; Dixon, S.J. Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc. Natl. Acad. Sci. USA 2005, 102, 2643–2648. [Google Scholar] [CrossRef]
- Ghiyabi, E.; Arabameri, A.; Charmi, M. Mathematical modeling of hypoxia and adenosine to explore tumor escape mechanisms in DC-based immunotherapy. Sci. Rep. 2024, 14, 11387. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Alabdullah, M.; Mahnke, K. Adenosine, bridging chronic inflammation and tumor growth. Front. Immunol. 2023, 14, 1258637. [Google Scholar] [CrossRef]
- Kowash, R.R.; Akbay, E.A. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer. Front. Immunol. 2023, 14, 1130358. [Google Scholar] [CrossRef]
- Vaupel, P.; Multhoff, G. Accomplices of the Hypoxic Tumor Microenvironment Compromising Antitumor Immunity: Adenosine, Lactate, Acidosis, Vascular Endothelial Growth Factor, Potassium Ions, and Phosphatidylserine. Front. Immunol. 2017, 8, 1887. [Google Scholar] [CrossRef]
- Jin, H.; Lee, J.S.; Kim, D.C.; Ko, Y.S.; Lee, G.W.; Kim, H.J. Increased Extracellular Adenosine in Radiotherapy-Resistant Breast Cancer Cells Enhances Tumor Progression through A2AR-Akt-beta-Catenin Signaling. Cancers 2021, 13, 2105. [Google Scholar] [CrossRef]
- Young, A.; Ngiow, S.F.; Gao, Y.; Patch, A.M.; Barkauskas, D.S.; Messaoudene, M.; Lin, G.; Coudert, J.D.; Stannard, K.A.; Zitvogel, L.; et al. A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Res. 2018, 78, 1003–1016. [Google Scholar] [CrossRef]
- McColl, S.R.; St-Onge, M.; Dussault, A.A.; Laflamme, C.; Bouchard, L.; Boulanger, J.; Pouliot, M. Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J. 2006, 20, 187–189. [Google Scholar] [CrossRef]
- Sullivan, G.W.; Lee, D.D.; Ross, W.G.; DiVietro, J.A.; Lappas, C.M.; Lawrence, M.B.; Linden, J. Activation of A2A adenosine receptors inhibits expression of alpha 4/beta 1 integrin (very late antigen-4) on stimulated human neutrophils. J. Leukoc. Biol. 2004, 75, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gnanaprakasam, J.N.R.; Chen, X.; Kang, S.; Xu, X.; Sun, H.; Liu, L.; Rodgers, H.; Miller, E.; Cassel, T.A.; et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nat. Metab. 2020, 2, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Mager, L.F.; Burkhard, R.; Pett, N.; Cooke, N.C.A.; Brown, K.; Ramay, H.; Paik, S.; Stagg, J.; Groves, R.A.; Gallo, M.; et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 2020, 369, 1481–1489. [Google Scholar] [CrossRef]
- Klysz, D.D.; Fowler, C.; Malipatlolla, M.; Stuani, L.; Freitas, K.A.; Chen, Y.; Meier, S.; Daniel, B.; Sandor, K.; Xu, P.; et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell 2024, 42, 266–282.e8. [Google Scholar] [CrossRef]
- Nandi, S.; Mondal, A.; Sarkar, I.; Akram Ddoza Hazari, M.W.; Banerjee, I.; Ghosh, S.; Roy, H.; Banerjee, A.; Bandyopadhyay, A.; Aich, S.; et al. The hypoxia-induced chromatin reader ZMYND8 drives HIF-dependent metabolic rewiring in breast cancer. J. Biol. Chem. 2025, 301, 110680. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gong, S.; Liao, B.; Liu, J.; Zhao, L.; Wu, N. HIF-1alpha and HIF-2alpha: Synergistic regulation of glioblastoma malignant progression during hypoxia and apparent chemosensitization in response to hyperbaric oxygen. Cancer Cell Int. 2025, 25, 251. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Martin-Rodriguez, A.; Redondo-Florez, L.; Ruisoto, P.; Navarro-Jimenez, E.; Ramos-Campo, D.J.; Tornero-Aguilera, J.F. Metabolic Health, Mitochondrial Fitness, Physical Activity, and Cancer. Cancers 2023, 15, 814. [Google Scholar] [CrossRef]
- Pezone, A.; Olivieri, F.; Napoli, M.V.; Procopio, A.; Avvedimento, E.V.; Gabrielli, A. Inflammation and DNA damage: Cause, effect or both. Nat. Rev. Rheumatol. 2023, 19, 200–211. [Google Scholar] [CrossRef]
- Kondo, T.; Ando, M.; Nagai, N.; Tomisato, W.; Srirat, T.; Liu, B.; Mise-Omata, S.; Ikeda, M.; Chikuma, S.; Nishimasu, H.; et al. The NOTCH-FOXM1 Axis Plays a Key Role in Mitochondrial Biogenesis in the Induction of Human Stem Cell Memory-like CAR-T Cells. Cancer Res. 2020, 80, 471–483. [Google Scholar] [CrossRef]
- Buck, M.D.; O’Sullivan, D.; Klein Geltink, R.I.; Curtis, J.D.; Chang, C.H.; Sanin, D.E.; Qiu, J.; Kretz, O.; Braas, D.; van der Windt, G.J.; et al. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell 2016, 166, 63–76. [Google Scholar] [CrossRef]
- Li, F.; Liu, H.; Zhang, D.; Ma, Y.; Zhu, B. Metabolic plasticity and regulation of T cell exhaustion. Immunology 2022, 167, 482–494. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, H.; Lin, H.; Li, R. Somatostatin-SSTR3-GSK3 modulates human T-cell responses by inhibiting OXPHOS. Front. Immunol. 2024, 15, 1322670. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Phoon, Y.P.; Karlinsey, K.; Tian, Y.F.; Thapaliya, S.; Thongkum, A.; Qu, L.; Matz, A.J.; Cameron, M.; Cameron, C.; et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients. J. Exp. Med. 2022, 219, e20202084. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Curtis, J.D.; Maggi, L.B., Jr.; Faubert, B.; Villarino, A.V.; O’Sullivan, D.; Huang, S.C.; van der Windt, G.J.; Blagih, J.; Qiu, J.; et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013, 153, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, M.K.; Mitra, D. Differential modulation of mitochondrial OXPHOS system during HIV-1 induced T-cell apoptosis: Up regulation of Complex-IV subunit COX-II and its possible implications. Apoptosis 2010, 15, 28–40. [Google Scholar] [CrossRef]
- Feng, R.; Liu, C.; Cui, Z.; Liu, Z.; Zhang, Y. Sphingosine 1-phosphate combining with S1PR4 promotes regulatory T cell differentiation related to FAO through Nrf2/PPARalpha. Scand. J. Immunol. 2023, 98, e13322. [Google Scholar] [CrossRef]
- Kang, T.; Usherwood, Y.K.; Reisz, J.A.; Kamerkar, S.C.; Culp-Hill, R.; Wilkins, O.M.; Verissimo, A.F.; Kolling, F.W.t.; Hung, A.M.; Musial, S.C.; et al. Targeting pyruvate metabolism generates distinct CD8+ T cell responses to gammaherpesvirus and B lymphoma. JCI Insight 2025, 10, e187680. [Google Scholar] [CrossRef]
- Wenes, M.; Jaccard, A.; Wyss, T.; Maldonado-Perez, N.; Teoh, S.T.; Lepez, A.; Renaud, F.; Franco, F.; Waridel, P.; Yacoub Maroun, C.; et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab. 2022, 34, 731–746.e9. [Google Scholar] [CrossRef]
- Ramstead, A.G.; Wallace, J.A.; Lee, S.H.; Bauer, K.M.; Tang, W.W.; Ekiz, H.A.; Lane, T.E.; Cluntun, A.A.; Bettini, M.L.; Round, J.L.; et al. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep. 2020, 30, 2889–2899.e6. [Google Scholar] [CrossRef]
- Petiti, J.; Arpinati, L.; Menga, A.; Carra, G. The influence of fatty acid metabolism on T cell function in lung cancer. FEBS J. 2025, 292, 3596–3615. [Google Scholar] [CrossRef]
- Banik, M.; Adhya, S. OXPHOS deficiency induces mitochondrial DNA synthesis through non-canonical AMPK-dependent mRNA compartmentalization. J. Biosci. 2022, 47, 67. [Google Scholar] [CrossRef]
- Li, F.; Feng, Y.; Yin, Z.; Wang, Y. Mitochondrial Metabolism in T-Cell Exhaustion. Int. J. Mol. Sci. 2025, 26, 7400. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, M.M. Aberrant protein translation promotes T cell exhaustion. Nat. Immunol. 2025, 26, 1438–1439. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Guo, A.; Poudel, S.; Boada-Romero, E.; Verbist, K.C.; Palacios, G.; Immadisetty, K.; Chen, M.J.; Haydar, D.; Mishra, A.; et al. Early methionine availability attenuates T cell exhaustion. Nat. Immunol. 2025, 26, 1384–1396. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Dunn, Z.S.; Chen, X.; MacMullan, M.; Cinay, G.; Wang, H.Y.; Liu, J.; Hu, F.; Wang, P. Adenosine Deaminase 1 Overexpression Enhances the Antitumor Efficacy of Chimeric Antigen Receptor-Engineered T Cells. Hum. Gene Ther. 2022, 33, 223–236. [Google Scholar] [CrossRef]
- Parkman, R.; Gelfand, E.W.; Rosen, F.S.; Sanderson, A.; Hirschhorn, R. Severe combined immunodeficiency and adenosine deaminase deficiency. N. Engl. J. Med. 1975, 292, 714–719. [Google Scholar] [CrossRef]
- Parkman, R.; Gelfand, E.W. Severe combined immunodeficiency disease, adenosine deaminase deficiency and gene therapy. Curr. Opin. Immunol. 1991, 3, 547–551. [Google Scholar] [CrossRef]
- Nikolich-Zugich, J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat. Rev. Immunol. 2008, 8, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Kondo, T.; Tomisato, W.; Ito, M.; Shichino, S.; Srirat, T.; Mise-Omata, S.; Nakagawara, K.; Yoshimura, A. Rejuvenating Effector/Exhausted CAR T Cells to Stem Cell Memory-Like CAR T Cells By Resting Them in the Presence of CXCL12 and the NOTCH Ligand. Cancer Res. Commun. 2021, 1, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Sun, H.; Ouyang, X.; Han, Y.; Yu, H.; Wu, N.; Xie, Y.; Su, B. Regulation of CD8(+) T memory and exhaustion by the mTOR signals. Cell Mol. Immunol. 2023, 20, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- Guedan, S.; Madar, A.; Casado-Medrano, V.; Shaw, C.; Wing, A.; Liu, F.; Young, R.M.; June, C.H.; Posey, A.D., Jr. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J. Clin. Investig. 2020, 130, 3087–3097. [Google Scholar] [CrossRef]
- Long, A.H.; Haso, W.M.; Shern, J.F.; Wanhainen, K.M.; Murgai, M.; Ingaramo, M.; Smith, J.P.; Walker, A.J.; Kohler, M.E.; Venkateshwara, V.R.; et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 2015, 21, 581–590. [Google Scholar] [CrossRef]
- Guedan, S.; Posey, A.D., Jr.; Shaw, C.; Wing, A.; Da, T.; Patel, P.R.; McGettigan, S.E.; Casado-Medrano, V.; Kawalekar, O.U.; Uribe-Herranz, M.; et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 2018, 3, e96976. [Google Scholar] [CrossRef]
- Mamonkin, M.; Mukherjee, M.; Srinivasan, M.; Sharma, S.; Gomes-Silva, D.; Mo, F.; Krenciute, G.; Orange, J.S.; Brenner, M.K. Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunol. Res. 2018, 6, 47–58. [Google Scholar] [CrossRef]
- Nanjireddy, P.M.; Olejniczak, S.H.; Buxbaum, N.P. Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Front. Immunol. 2023, 14, 1121565. [Google Scholar] [CrossRef]
- Lontos, K.; Wang, Y.; Joshi, S.K.; Frisch, A.T.; Watson, M.J.; Kumar, A.; Menk, A.V.; Wang, Y.; Cumberland, R.; Lohmueller, J.; et al. Metabolic reprogramming via an engineered PGC-1alpha improves human chimeric antigen receptor T-cell therapy against solid tumors. J. Immunother. Cancer 2023, 11, e006522. [Google Scholar] [CrossRef]
- Dumauthioz, N.; Tschumi, B.; Wenes, M.; Marti, B.; Wang, H.; Franco, F.; Li, W.; Lopez-Mejia, I.C.; Fajas, L.; Ho, P.C.; et al. Enforced PGC-1alpha expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell Mol. Immunol. 2021, 18, 1761–1771. [Google Scholar] [CrossRef]
- Nakagawara, K.; Ando, M.; Srirat, T.; Mise-Omata, S.; Hayakawa, T.; Ito, M.; Fukunaga, K.; Yoshimura, A. NR4A ablation improves mitochondrial fitness for long persistence in human CAR-T cells against solid tumors. J. Immunother. Cancer 2024, 12, e008665. [Google Scholar] [CrossRef] [PubMed]
- Fallah-Mehrjardi, K.; Mirzaei, H.R.; Masoumi, E.; Jafarzadeh, L.; Rostamian, H.; Khakpoor-Koosheh, M.; Alishah, K.; Noorbakhsh, F.; Hadjati, J. Pharmacological targeting of immune checkpoint A2aR improves function of anti-CD19 CAR T cells in vitro. Immunol. Lett. 2020, 223, 44–52. [Google Scholar] [CrossRef]
- Seifert, M.; Benmebarek, M.R.; Briukhovetska, D.; Markl, F.; Dorr, J.; Cadilha, B.L.; Jobst, J.; Stock, S.; Andreu-Sanz, D.; Lorenzini, T.; et al. Impact of the selective A2(A)R and A2(B)R dual antagonist AB928/etrumadenant on CAR T cell function. Br. J. Cancer 2022, 127, 2175–2185. [Google Scholar] [CrossRef]
- Hu, Y.; Sarkar, A.; Song, X. Protocol for preparing metabolically reprogrammed human CAR T cells and evaluating their in vitro effects. STAR Protoc. 2024, 5, 103333. [Google Scholar] [CrossRef]
- Lu, C.; Liang, L.; Wu, Y.; Yang, Y.; Poschel, D.; Zhao, Y.; Pei, L.; Yu, M.; Zoccheddu, M.; Bombin, S.; et al. Slc7a5 promotes T cell anti-tumor immunity through sustaining cytotoxic T lymphocyte effector function. Oncogene 2025, 44, 3939–3954. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, X.; Zhong, X.; Wu, H.; Shi, Y.; Feng, M.; Wang, Y.C.; Ann, D.; Gwack, Y.; Yuan, Y.C.; et al. SRC2 controls CD4(+) T cell activation via stimulating c-Myc-mediated upregulation of amino acid transporter Slc7a5. Proc. Natl. Acad. Sci. USA 2023, 120, e2221352120. [Google Scholar] [CrossRef] [PubMed]
- Noh, K.E.; Lee, J.H.; Choi, S.Y.; Jung, N.C.; Nam, J.H.; Oh, J.S.; Song, J.Y.; Seo, H.G.; Wang, Y.; Lee, H.S.; et al. TGF-beta/IL-7 Chimeric Switch Receptor-Expressing CAR-T Cells Inhibit Recurrence of CD19-Positive B Cell Lymphoma. Int. J. Mol. Sci. 2021, 22, 8706. [Google Scholar] [CrossRef] [PubMed]
- Steffin, D.; Ghatwai, N.; Montalbano, A.; Rathi, P.; Courtney, A.N.; Arnett, A.B.; Fleurence, J.; Sweidan, R.; Wang, T.; Zhang, H.; et al. Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers. Nature 2025, 637, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Katopodi, T.; Petanidis, S.; Anestakis, D.; Charalampidis, C.; Chatziprodromidou, I.; Floros, G.; Eskitzis, P.; Zarogoulidis, P.; Koulouris, C.; Sevva, C.; et al. Tumor cell metabolic reprogramming and hypoxic immunosuppression: Driving carcinogenesis to metastatic colonization. Front. Immunol. 2023, 14, 1325360. [Google Scholar] [CrossRef]
- Smit, E.F.; Felip, E.; Uprety, D.; Nagasaka, M.; Nakagawa, K.; Paz-Ares Rodriguez, L.; Pacheco, J.M.; Li, B.T.; Planchard, D.; Baik, C.; et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): Primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 2024, 25, 439–454. [Google Scholar] [CrossRef]
- Hegde, M.; Navai, S.; DeRenzo, C.; Joseph, S.K.; Sanber, K.; Wu, M.; Gad, A.Z.; Janeway, K.A.; Campbell, M.; Mullikin, D.; et al. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: A phase 1 trial. Nat. Cancer 2024, 5, 880–894. [Google Scholar] [CrossRef]
- Li, B.T.; Meric-Bernstam, F.; Bardia, A.; Naito, Y.; Siena, S.; Aftimos, P.; Anderson, I.; Curigliano, G.; de Miguel, M.; Kalra, M.; et al. Trastuzumab deruxtecan in patients with solid tumours harbouring specific activating HER2 mutations (DESTINY-PanTumor01): An international, phase 2 study. Lancet Oncol. 2024, 25, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, X.; Wang, Y.; Wang, Y.; Fang, C.; Wang, Y.; Chen, S.; Chen, R.; Lei, T.; Zhang, Y.; et al. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol. Cancer 2023, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Rueda, R.; Wang, K.K.; Forster, J.L.; Driessen, A.; Frank, J.A.; Martinez, M.R.; Reddy, S.T. Dissecting the role of CAR signaling architectures on T cell activation and persistence using pooled screens and single-cell sequencing. Sci. Adv. 2025, 11, eadp4008. [Google Scholar] [CrossRef]
- Gottschlich, A.; Thomas, M.; Grunmeier, R.; Lesch, S.; Rohrbacher, L.; Igl, V.; Briukhovetska, D.; Benmebarek, M.R.; Vick, B.; Dede, S.; et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat. Biotechnol. 2023, 41, 1618–1632. [Google Scholar] [CrossRef]
- Liu, Y.X.; Song, Y.S.; Liu, C.K.; Liu, J.; Yu, F.X.; Jiang, W.S.; Liu, G.; Xu, T.R.; Sang, J. Paris polyphylla Smith var. yunnanensis-derived saponins potentiate the antitumor activity of GPX4 inhibitors. J. Ethnopharmacol. 2025, 357, 120890. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, G.; Lu, Y.; Zuo, S.; Duan, D.; Luo, X.; Zhao, H.; Li, J.; Zeng, Z.; Chen, Q.; et al. TIMER3: An enhanced resource for tumor immune analysis. Nucleic Acids Res. 2025, 53, W534–W541. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, A.W.; Song, X. Rewiring T Cell Metabolism to Enhance CAR T Cell Function in Solid Tumor Microenvironments. Pharmaceutics 2025, 17, 1520. https://doi.org/10.3390/pharmaceutics17121520
Song AW, Song X. Rewiring T Cell Metabolism to Enhance CAR T Cell Function in Solid Tumor Microenvironments. Pharmaceutics. 2025; 17(12):1520. https://doi.org/10.3390/pharmaceutics17121520
Chicago/Turabian StyleSong, Alex Wade, and Xiaotong Song. 2025. "Rewiring T Cell Metabolism to Enhance CAR T Cell Function in Solid Tumor Microenvironments" Pharmaceutics 17, no. 12: 1520. https://doi.org/10.3390/pharmaceutics17121520
APA StyleSong, A. W., & Song, X. (2025). Rewiring T Cell Metabolism to Enhance CAR T Cell Function in Solid Tumor Microenvironments. Pharmaceutics, 17(12), 1520. https://doi.org/10.3390/pharmaceutics17121520

