Microbiota and Pancreatic Cancer: New Therapeutic Frontiers Between Engineered Microbes, Metabolites and Non-Bacterial Components
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Oncobiosis and Microbial Metabolite Signaling in Pancreatic Adenocarcinoma
3.1. Oral and Oral–Gut Microbiota Axis in the Pathogenesis and Progression of Pancreatic Adenocarcinoma
3.2. Role of the Gut Microbiota in the Pathogenesis and Progression of Pancreatic Adenocarcinoma
3.3. Intratumoral Microbiota in Pathogenesis and Progression of PDAC
4. Gut Microbiota Influence on Chemotherapy and Immunotherapy
4.1. Impact of the Microbiota on Therapeutic Efficacy in PDAC
4.2. Impact of the Microbiota on Antitumor Therapy-Related Toxicities
5. Microbiota Modulation in the Treatment of PDAC: Classic and New Therapeutic Strategies
5.1. Antibiotics
5.2. Probiotics and Prebiotics
5.3. Engineered Bacteria
5.4. Non-Bacterial Microbiome Components: Bacteriophages and Oncolytic Viruses
5.5. Fecal Microbiota Transplantation
5.6. Future Direction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PDAC | Pancreatic ductal adenocarcinoma |
| MeSH | Medical subject headings |
| SNP | Single-nucleotide polymorphism |
| LPS | Lipopolysaccharide |
| TLR4 | Toll-like receptor 4 |
| MyD88 | Myeloid differentiation primary response 88 |
| PD-L1 | Programmed death-ligand 1 |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| AKT | Protein kinase B |
| SCFAs | Short-chain fatty acids |
| LCA | Lithocholic acid |
| DCA | Deoxycholic acid |
| UDCA | Ursodeoxycholic acid |
| TGR5 | Takeda G protein-coupled receptor 5 |
| EGFR | Epidermal growth factor receptor |
| STAT3 | Signal transducer and activator of transcription 3 |
| TMAO | Trimethylamine N-oxide |
| IFN | Interferon |
| mTOR | Mammalian target of rapamycin |
| ECM | Extracellular matrix |
| TME | Tumor microenvironment |
| 5-FU | 5-Fluorouracil |
| GnP | Gemcitabine plus nab-paclitaxel |
| PFS | Progression-free survival |
| OS | Overall survival |
| CDD | Cytidine deaminase |
| TLR2 | Toll-like receptor 2 |
| TLR5 | Toll-like receptor 5 |
| MDSCs | Myeloid-derived suppressor cells |
| ROS | Reactive oxygen species |
| 3-IAA | Indole-3-acetic acid |
| ICI/ICIs | Immune checkpoint inhibitor(s) |
| PD-1 | Programmed cell death protein 1 |
| CD8+ | Cytotoxic T lymphocyte (CD8 positive) |
| CD4+ | Helper T lymphocyte (CD4 positive) |
| Th1 | T helper 1 cell |
| M1 | M1 macrophage (pro-inflammatory phenotype) |
| IL-1β | Interleukin 1 beta |
| IL-6 | Interleukin 6 |
| IL-10 | Interleukin 10 |
| IL-17A | Interleukin 17A |
| FOLFIRINOX | 5-FU, leucovorin, irinotecan, oxaliplatin |
| GUS | β-glucuronidase |
| SN-38/SN-38G | 7-ethyl-10-hydroxycamptothecin/SN-38 glucuronide |
| EMT | Epithelial–mesenchymal transition |
| NK | Natural killer cell |
| FMT | Fecal microbiota transplantation |
| STING | Stimulator of interferon genes |
| OMV/OMVs | Outer membrane vesicle(s) |
| OV/OVs | Oncolytic virus(es) |
| HSV | Herpes simplex virus |
| ONYX-015 | First-generation oncolytic adenovirus vector |
| LGG | Lactobacillus rhamnosus GG |
| LGG@Ga-poly | LGG functionalized with gallium–polyphenol network |
| CGL | Cyst(e)inase enzyme |
| RAS | Rat sarcoma viral oncogene family |
| KRAS^G12D | KRAS gene mutation (glycine 12 to aspartate) |
| PanIN | Pancreatic intraepithelial neoplasia |
| KPC | Kras^G12D; Trp53^R172H; Pdx1-Cre mouse model |
| ATCC | American Type Culture Collection |
| MCA1 | Phage-derived tumor-targeting peptide |
| irAEs | Immune-related adverse events |
| GI | Gastrointestinal |
References
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.P.; Wang, B.; Jain, S.; Ding, J.; Rejeski, J.; Furdui, C.M.; Kitzman, D.W.; Taraphder, S.; Brechot, C.; Kumar, A.; et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut 2023, 72, 1848–1865. [Google Scholar] [CrossRef] [PubMed]
- Flandroy, L.; Poutahidis, T.; Berg, G.; Clarke, G.; Dao, M.-C.; Decaestecker, E.; Furman, E.; Haahtela, T.; Massart, S.; Plovier, H.; et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total. Environ. 2018, 627, 1018–1038. [Google Scholar] [CrossRef]
- Niccolai, E.; Boem, F.; Emmi, G.; Amedei, A. The link “Cancer and autoimmune diseases” in the light of microbiota: Evidence of a potential culprit. Immunol. Lett. 2020, 222, 12–28. [Google Scholar] [CrossRef]
- Aburto, M.R.; Cryan, J.F. Gastrointestinal and brain barriers: Unlocking gates of communication across the microbiota–gut–brain axis. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 222–247. [Google Scholar] [CrossRef]
- Signoretti, M.; Roggiolani, R.; Stornello, C.; Fave, G.D.; Capurso, G. Gut microbiota and pancreatic diseases. Minerva Gastroenterol. 2017, 63, 399–410. [Google Scholar] [CrossRef]
- Ren, S.; Qian, L.-C.; Cao, Y.-Y.; Daniels, M.J.; Song, L.-N.; Tian, Y.; Wang, Z.-Q. Computed tomography-based radiomics diagnostic approach for differential diagnosis between early- and late-stage pancreatic ductal adenocarcinoma. World J. Gastrointest. Oncol. 2024, 16, 1256–1267. [Google Scholar] [CrossRef]
- Leiphrakpam, P.D.; Chowdhury, S.; Zhang, M.; Bajaj, V.; Dhir, M.; Are, C. Trends in the Global Incidence of Pancreatic Cancer and a Brief Review of its Histologic and Molecular Subtypes. J. Gastrointest. Cancer 2025, 56, 1–13. [Google Scholar] [CrossRef]
- Li, J.J.; Zhu, M.; Kashyap, P.C.; Chia, N.; Tran, N.H.; McWilliams, R.R.; Bekaii-Saab, T.S.; Ma, W.W. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev. 2021, 40, 777–789. [Google Scholar] [CrossRef]
- Routy, B.; Gopalakrishnan, V.; Daillère, R.; Zitvogel, L.; Wargo, J.A.; Kroemer, G. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 2018, 15, 382–396. [Google Scholar] [CrossRef]
- Sfanos, K.S. Intratumoral Bacteria as Mediators of Cancer Immunotherapy Response. Cancer Res. 2023, 83, 2985–2986. [Google Scholar] [CrossRef]
- Baker, J.L.; Welch, J.L.M.; Kauffman, K.M.; McLean, J.S.; He, X. The oral microbiome: Diversity, biogeography and human health. Nat. Rev. Microbiol. 2023, 22, 89–104. [Google Scholar] [CrossRef]
- Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut 2018, 67, 120–127. [Google Scholar] [CrossRef]
- Slocum, C.; Kramer, C.; Genco, C.A. Immune dysregulation mediated by the oral microbiome: Potential link to chronic inflammation and atherosclerosis. J. Intern. Med. 2016, 280, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Maisonneuve, P.; Amar, S.; Lowenfels, A.B. Periodontal disease, edentulism, and pancreatic cancer: A meta-analysis. Ann. Oncol. 2017, 28, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S.; Fu, Z.; Shi, J.; Chung, M. Periodontal Disease, Tooth Loss, and Cancer Risk. Epidemiol. Rev. 2017, 39, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Hujoel, P.P.; Drangsholt, M.; Spiekerman, C.; Weiss, N.S. An Exploration of the Periodontitis–Cancer Association. Ann. Epidemiology 2003, 13, 312–316. [Google Scholar] [CrossRef]
- Michaud, D.S.; Izard, J.; Wilhelm-Benartzi, C.S.; You, D.-H.; Grote, V.A.; Tjonneland, A.; Dahm, C.C.; Overvad, K.; Jenab, M.; Fedirko, V.; et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 2013, 62, 1764–1770. [Google Scholar] [CrossRef]
- Saba, E.; Farhat, M.; Daoud, A.; Khashan, A.; Forkush, E.; Menahem, N.H.; Makkawi, H.; Pandi, K.; Angabo, S.; Kawasaki, H.; et al. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024, 73, 770–786. [Google Scholar] [CrossRef]
- Guo, X.; Shao, Y. Role of the oral-gut microbiota axis in pancreatic cancer: A new perspective on tumor pathophysiology, diagnosis, and treatment. Mol. Med. 2025, 31, 1–19. [Google Scholar] [CrossRef]
- Papa, V.; Schepis, T.; Coppola, G.; Chiappetta, M.F.; Del Vecchio, L.E.; Rozera, T.; Quero, G.; Gasbarrini, A.; Alfieri, S.; Papa, A. The Role of Microbiota in Pancreatic Cancer. Cancers 2023, 15, 3143. [Google Scholar] [CrossRef]
- Nagata, N.; Nishijima, S.; Kojima, Y.; Hisada, Y.; Imbe, K.; Miyoshi-Akiyama, T.; Suda, W.; Kimura, M.; Aoki, R.; Sekine, K.; et al. Metagenomic Identification of Microbial Signatures Predicting Pancreatic Cancer From a Multinational Study. Gastroenterology 2022, 163, 222–238. [Google Scholar] [CrossRef]
- Han, Y.; Cao, B.; Tang, J.; Wang, J. A comprehensive multi-omics analysis uncovers the associations between gut microbiota and pancreatic cancer. Front. Microbiol. 2025, 16, 1592549. [Google Scholar] [CrossRef]
- Lee, A.A.; Wang, Q.-L.; Kim, J.; Babic, A.; Zhang, X.; Perez, K.; Ng, K.; Nowak, J.; Rifai, N.; Sesso, H.D.; et al. Helicobacter pylori Seropositivity, ABO Blood Type, and Pancreatic Cancer Risk From 5 Prospective Cohorts. Clin. Transl. Gastroenterol. 2023, 14, e00573. [Google Scholar] [CrossRef]
- Sammallahti, H.; Kokkola, A.; Rezasoltani, S.; Ghanbari, R.; Aghdaei, H.A.; Knuutila, S.; Puolakkainen, P.; Sarhadi, V.K. Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients. Int. J. Mol. Sci. 2021, 22, 12978. [Google Scholar] [CrossRef]
- Aykut, B.; Pushalkar, S.; Chen, R.; Li, Q.; Abengozar, R.; Kim, J.I.; Shadaloey, S.A.; Wu, D.; Preiss, P.; Verma, N.; et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 2019, 574, 264–267. [Google Scholar] [CrossRef]
- Daniel, N.; Farinella, R.; Belluomini, F.; Fajkic, A.; Rizzato, C.; Souček, P.; Campa, D.; Hughes, D.J. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin. Cancer Biol. 2025, 112, 43–57. [Google Scholar] [CrossRef]
- Yin, H.; Pu, N.; Chen, Q.; Zhang, J.; Zhao, G.; Xu, X.; Wang, D.; Kuang, T.; Jin, D.; Lou, W.; et al. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer. Cell Death Dis. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Ratajczak, W.; Rył, A.; Mizerski, A.; Walczakiewicz, K.; Sipak, O.; Laszczyńska, M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Nagathihalli, N.S.; Beesetty, Y.; Lee, W.; Washington, M.K.; Chen, X.; Lockhart, A.C.; Merchant, N.B. Novel Mechanistic Insights into Ectodomain Shedding of EGFR Ligands Amphiregulin and TGF-α: Impact on Gastrointestinal Cancers Driven by Secondary Bile Acids. Cancer Res. 2014, 74, 2062–2072. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef]
- Rees, D.O.; Crick, P.J.; Jenkins, G.J.; Wang, Y.; Griffiths, W.J.; Brown, T.H.; Al-Sarireh, B. Comparison of the composition of bile acids in bile of patients with adenocarcinoma of the pancreas and benign disease. J. Steroid Biochem. Mol. Biol. 2017, 174, 290–295. [Google Scholar] [CrossRef]
- Mirji, G.; Worth, A.; Bhat, S.A.; El Sayed, M.; Kannan, T.; Goldman, A.R.; Tang, H.-Y.; Liu, Q.; Auslander, N.; Dang, C.V.; et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 2022, 7, eabn0704. [Google Scholar] [CrossRef]
- Noureldein, M.H.; Eid, A.A. Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microb. Pathog. 2018, 118, 98–104. [Google Scholar] [CrossRef]
- Lu, W.; Aihaiti, A.; Abudukeranmu, P.; Liu, Y.; Gao, H. Unravelling the role of intratumoral bacteria in digestive system cancers: Current insights and future perspectives. J. Transl. Med. 2024, 22, 545. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, X.; Wei, B.; Tang, Z.; Zhang, B. The correlation between gut and intra-tumor microbiota and PDAC: Etiology, diagnostics and therapeutics. Biochim. et Biophys. Acta (BBA)-Rev. Cancer 2023, 1878, 188943. [Google Scholar] [CrossRef]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef]
- Diehl, G.E.; Longman, R.S.; Zhang, J.-X.; Breart, B.; Galan, C.; Cuesta, A.; Schwab, S.R.; Littman, D.R. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 2013, 494, 116–120. [Google Scholar] [CrossRef]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; Lucas, A.S.; et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2019, 178, 795–806.e12. [Google Scholar] [CrossRef]
- Kiss, B.; Mikó, E.; Sebő, É.; Toth, J.; Ujlaki, G.; Szabó, J.; Uray, K.; Bai, P.; Árkosy, P. Oncobiosis and Microbial Metabolite Signaling in Pancreatic Adenocarcinoma. Cancers 2020, 12, 1068. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; Werba, G.; Lyssiotis, C.A.; Simeone, D.M. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev. 2021, 35, 940–962. [Google Scholar] [CrossRef]
- Chrysostomou, D.; Roberts, L.A.; Marchesi, J.R.; Kinross, J.M. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2022, 164, 198–213. [Google Scholar] [CrossRef]
- Giovannetti, E.; van der Borden, C.; Frampton, A.; Ali, A.; Firuzi, O.; Peters, G. Never let it go: Stopping key mechanisms underlying metastasis to fight pancreatic cancer. Semin. Cancer Biol. 2017, 44, 43–59. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef]
- Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in Pancreatic Cancer. Int. J. Mol. Sci. 2019, 20, 4504. [Google Scholar] [CrossRef]
- Raghavan, S.; Winter, P.S.; Navia, A.W.; Williams, H.L.; DenAdel, A.; Lowder, K.E.; Galvez-Reyes, J.; Kalekar, R.L.; Mulugeta, N.; Kapner, K.S.; et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 2021, 184, 6119–6137.e26. [Google Scholar] [CrossRef]
- Capula, M.; Perán, M.; Xu, G.; Donati, V.; Yee, D.; Gregori, A.; Assaraf, Y.G.; Giovannetti, E.; Deng, D. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist. Updat. 2022, 64, 100864. [Google Scholar] [CrossRef]
- Hernández-Camarero, P.; López-Ruiz, E.; Marchal, J.A.; Perán, M. Cancer: A mirrored room between tumor bulk and tumor microenvironment. J. Exp. Clin. Cancer Res. 2021, 40, 1–12. [Google Scholar] [CrossRef]
- Apte, M.V.; Wilson, J.S.; Lugea, A.; Pandol, S.J. A Starring Role for Stellate Cells in the Pancreatic Cancer Microenvironment. Gastroenterology 2013, 144, 1210–1219. [Google Scholar] [CrossRef]
- Dickson, I. Microbiome promotes pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 328. [Google Scholar] [CrossRef]
- Geller, L.T.; Barzily-Rokni, M.; Danino, T.; Jonas, O.H.; Shental, N.; Nejman, D.; Gavert, N.; Zwang, Y.; Cooper, Z.A.; Shee, K.; et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017, 357, 1156–1160. [Google Scholar] [CrossRef]
- Weniger, M.; Hank, T.; Qadan, M.; Ciprani, D.; Michelakos, T.; Niess, H.; Heiliger, C.; Ilmer, M.; D’Haese, J.G.; Ferrone, C.R.; et al. Influence of Klebsiella pneumoniae and quinolone treatment on prognosis in patients with pancreatic cancer. Br. J. Surg. 2020, 108, 709–716. [Google Scholar] [CrossRef]
- Lehouritis, P.; Cummins, J.; Stanton, M.; Murphy, C.T.; McCarthy, F.O.; Reid, G.; Urbaniak, C.; Byrne, W.L.; Tangney, M. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci. Rep. 2015, 5, 14554. [Google Scholar] [CrossRef]
- Ye, C.; Liu, X.; Liu, Z.; Pan, C.; Zhang, X.; Zhao, Z.; Sun, H. Fusobacterium nucleatum in tumors: From tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol. Ther. 2024, 25, 2306676. [Google Scholar] [CrossRef]
- Udayasuryan, B.; Ahmad, R.N.; Nguyen, T.T.D.; Umaña, A.; Roberts, L.M.; Sobol, P.; Jones, S.D.; Munson, J.M.; Slade, D.J.; Verbridge, S.S. Fusobacterium nucleatum induces proliferation and migration in pancreatic cancer cells through host autocrine and paracrine signaling. Sci. Signal. 2022, 15, eabn4948. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [Google Scholar] [CrossRef]
- Bai, L.; Yan, X.; Lv, J.; Qi, P.; Song, X.; Zhang, L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. Biology 2023, 12, 1151. [Google Scholar] [CrossRef]
- Panebianco, C.; Villani, A.; Pisati, F.; Orsenigo, F.; Ulaszewska, M.; Latiano, T.P.; Potenza, A.; Andolfo, A.; Terracciano, F.; Tripodo, C.; et al. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomed. Pharmacother. 2022, 151, 113163. [Google Scholar] [CrossRef]
- Tintelnot, J.; Xu, Y.; Lesker, T.R.; Schönlein, M.; Konczalla, L.; Giannou, A.D.; Pelczar, P.; Kylies, D.; Puelles, V.G.; Bielecka, A.A.; et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 2023, 615, 168–174. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 439–457. [Google Scholar] [CrossRef]
- Pfisterer, N.; Lingens, C.; Heuer, C.; Dang, L.; Neesse, A.; Ammer-Herrmenau, C. The Microbiome in PDAC—Vantage Point for Future Therapies? Cancers 2022, 14, 5974. [Google Scholar] [CrossRef]
- Gori, S.; Inno, A.; Belluomini, L.; Bocus, P.; Bisoffi, Z.; Russo, A.; Arcaro, G. Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit. Rev. Oncol. Hematol. 2019, 143, 139–147. [Google Scholar] [CrossRef]
- Hamouda, N.; Sano, T.; Oikawa, Y.; Ozaki, T.; Shimakawa, M.; Matsumoto, K.; Amagase, K.; Higuchi, K.; Kato, S. Apoptosis, Dysbiosis and Expression of Inflammatory Cytokines are Sequential Events in the Development of 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Basic Clin. Pharmacol. Toxicol. 2017, 121, 159–168. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, S.; Li, H.; Yang, F.; Mushtaq, N.; Ullah, S.; Shi, Y.; An, C.; Xu, J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed. Pharmacother. 2018, 108, 184–193. [Google Scholar] [CrossRef]
- Ciernikova, S.; Novisedlakova, M.; Cholujova, D.; Stevurkova, V.; Mego, M. The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines 2020, 8, 565. [Google Scholar] [CrossRef]
- Cheng, K.-W.; Tseng, C.-H.; Tzeng, C.-C.; Leu, Y.-L.; Cheng, T.-C.; Wang, J.-Y.; Chang, J.-M.; Lu, Y.-C.; Cheng, C.-M.; Chen, I.-J.; et al. Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol. Res. 2019, 139, 41–49. [Google Scholar] [CrossRef]
- Yue, B.; Gao, R.; Wang, Z.; Dou, W. Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. Front. Cell. Infect. Microbiol. 2021, 11, 710945. [Google Scholar] [CrossRef]
- Mahdy, M.S.; Azmy, A.F.; Dishisha, T.; Mohamed, W.R.; Ahmed, K.A.; Hassan, A.; El Aidy, S.; El-Gendy, A.O. Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity. BMC Microbiol. 2023, 23, 1–22. [Google Scholar] [CrossRef]
- Panebianco, C.; Pisati, F.; Villani, A.; Andolfo, A.; Ulaszewska, M.; Bellini, E.; Ferro, C.; Lombardi, R.; Orsenigo, F.; Latiano, T.P.; et al. Counteracting gemcitabine+nab-paclitaxel induced dysbiosis in KRAS wild type and KRASG12D mutated pancreatic cancer in vivo model. Cell Death Discov. 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Gong, J.; Chehrazi-Raffle, A.; Placencio-Hickok, V.; Guan, M.; Hendifar, A.; Salgia, R. The gut microbiome and response to immune checkpoint inhibitors: Preclinical and clinical strategies. Clin. Transl. Med. 2019, 8, 9. [Google Scholar] [CrossRef]
- Bartolini, I.; Nannini, G.; Risaliti, M.; Matarazzo, F.; Moraldi, L.; Ringressi, M.N.; Taddei, A.; Amedei, A. Impact of microbiota-immunity axis in pancreatic cancer management. World J. Gastroenterol. 2022, 28, 4527–4539. [Google Scholar] [CrossRef]
- Chandra, V.; McAllister, F. Therapeutic potential of microbial modulation in pancreatic cancer. Gut 2021, 70, 1419–1425. [Google Scholar] [CrossRef]
- Sethi, V.; Kurtom, S.; Tarique, M.; Lavania, S.; Malchiodi, Z.; Hellmund, L.; Zhang, L.; Sharma, U.; Giri, B.; Garg, B.; et al. Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology 2018, 155, 33–37.e6. [Google Scholar] [CrossRef]
- Geller, L.T.; Straussman, R. Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents. Mol. Cell. Oncol. 2017, 5, e1405139. [Google Scholar] [CrossRef]
- Guenther, M.; Surendran, S.A.; Hauer, N.; Fahrenschon, F.; Arslan, M.D.; Ormanns, S. Intratumoral bacterial abundance confers poor response to adjuvant gemcitabine in resected pancreatic cancer patients which is mitigated by postoperative antibiotics. Br. J. Cancer 2025, 133, 574–581. [Google Scholar] [CrossRef]
- Corty, R.W.; Langworthy, B.W.; Fine, J.P.; Buse, J.B.; Sanoff, H.K.; Lund, J.L. Antibacterial Use Is Associated with an Increased Risk of Hematologic and Gastrointestinal Adverse Events in Patients Treated with Gemcitabine for Stage IV Pancreatic Cancer. Oncol. 2020, 25, 579–584. [Google Scholar] [CrossRef]
- Mohindroo, C.; Hasanov, M.; Rogers, J.E.; Dong, W.; Prakash, L.R.; Baydogan, S.; Mizrahi, J.D.; Overman, M.J.; Varadhachary, G.R.; Wolff, R.A.; et al. Antibiotic use influences outcomes in advanced pancreatic adenocarcinoma patients. Cancer Med. 2021, 10, 5041–5050. [Google Scholar] [CrossRef]
- Fulop, D.J.; Zylberberg, H.M.; Wu, Y.L.; Aronson, A.; Labiner, A.J.; Wisnivesky, J.; Cohen, D.J.; Sigel, K.M.; Lucas, A.L. Association of Antibiotic Receipt With Survival Among Patients With Metastatic Pancreatic Ductal Adenocarcinoma Receiving Chemotherapy. JAMA Netw. Open 2023, 6, e234254. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Lamont, R.J. Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 2012, 27, 409–419. [Google Scholar] [CrossRef]
- Chen, S.-M.; Hsu, L.-J.; Lee, H.-L.; Lin, C.-P.; Huang, S.-W.; Lai, C.J.-L.; Lin, C.-W.; Chen, W.-T.; Chen, Y.-J.; Lin, Y.-C.; et al. Lactobacillus Attenuate the Progression of Pancreatic Cancer Promoted by Porphyromonas Gingivalis in K-rasG12D Transgenic Mice. Cancers 2020, 12, 3522. [Google Scholar] [CrossRef]
- Guan, S.-W.; Lin, Q.; Yu, H.-B. Intratumour microbiome of pancreatic cancer. World J. Gastrointest. Oncol. 2023, 15, 713–730. [Google Scholar] [CrossRef]
- Taper, H.S.; Roberfroid, M.B. Possible adjuvant cancer therapy by two prebiotics--inulin or oligofructose. In Vivo. 2005, 19, 201–204. [Google Scholar]
- Chen, S.-M.; Chieng, W.-W.; Huang, S.-W.; Hsu, L.-J.; Jan, M.-S. The synergistic tumor growth-inhibitory effect of probiotic Lactobacillus on transgenic mouse model of pancreatic cancer treated with gemcitabine. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Du, M.; Li, X.; Gao, J.; Li, Q.; Li, H.; Li, J.; Gao, X.; Cong, H.; Huang, Y.; et al. Upregulation of Lactobacillus spp. in gut microbiota as a novel mechanism for environmental eustress-induced anti-pancreatic cancer effects. Gut Microbes 2025, 17, 2470372. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.H.; Zahid, S.U.; Wardak, K.; Azimi, K.A.; Hosseini, S.M.R.; Wafaee, M.; Dhama, K.; Sah, R.; Rabaan, A.A.; Arteaga-Livias, K.; et al. Mapping the Changes on Incidence, Case Fatality Rates and Recovery Proportion of COVID-19 in Afghanistan Using Geographical Information Systems. Arch. Med Res. 2020, 51, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Longhi, G.; van Sinderen, D.; Ventura, M.; Turroni, F. Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Front. Microbiol. 2020, 11, 575072. [Google Scholar] [CrossRef]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef]
- Maher, S.; Elmeligy, H.A.; Aboushousha, T.; Helal, N.S.; Ossama, Y.; Rady, M.; Hassan, A.M.A.; Kamel, M. Synergistic immunomodulatory effect of synbiotics pre- and postoperative resection of pancreatic ductal adenocarcinoma: A randomized controlled study. Cancer Immunol. Immunother. 2024, 73, 1–12. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J.; Li, D.; Yang, H.; Chen, C.; Qin, M.; Wen, Z.; He, Z.; Xu, L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol. Res. 2023, 196, 106916. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, E.; Tabrizi, F.P.F.; Khaled, G.M.; Sestito, M.P.; Jamie, S.; Boone, B.A. Unraveling the gut microbiome’s contribution to pancreatic ductal adenocarcinoma: Mechanistic insights and therapeutic perspectives. Front. Immunol. 2024, 15, 1434771. [Google Scholar] [CrossRef] [PubMed]
- Trone, K.; Rahman, S.; Green, C.H.; Venegas, C.; Martindale, R.; Stroud, A. Synbiotics and Surgery: Can Prebiotics and Probiotics Affect Inflammatory Surgical Outcomes? Curr. Nutr. Rep. 2023, 12, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, L.; Huang, C.; Jia, Q.; Bao, W.; Guo, P.; Tan, D.; Chen, Z.; Shi, C.; Rao, Z.; et al. Engineered Bacteria Manipulate Cysteine Metabolism to Boost Ferroptosis-Based Pancreatic Ductal Adenocarcinoma Therapy. Adv. Mater. 2024, 37, e2412982. [Google Scholar] [CrossRef]
- Xu, X.; Ding, Y.; Dong, Y.; Yuan, H.; Xia, P.; Qu, C.; Ma, J.; Wang, H.; Zhang, X.; Zhao, L.; et al. Nanobody-Engineered Biohybrid Bacteria Targeting Gastrointestinal Cancers Induce Robust STING-Mediated Anti-Tumor Immunity. Adv. Sci. 2024, 11, e2401905. [Google Scholar] [CrossRef]
- Tan, W.; Duong, M.T.-Q.; Zuo, C.; Qin, Y.; Zhang, Y.; Guo, Y.; Hong, Y.; Zheng, J.H.; Min, J.-J. Targeting of pancreatic cancer cells and stromal cells using engineered oncolytic Salmonella typhimurium. Mol. Ther. 2022, 30, 662–671. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Fu, Z.-J.; Wang, Y.-Z.; Zhang, C.; Chen, Q.-W.; An, J.-X.; Zhang, X.-Z. Probiotics functionalized with a gallium-polyphenol network modulate the intratumor microbiota and promote anti-tumor immune responses in pancreatic cancer. Nat. Commun. 2024, 15, 1–18. [Google Scholar] [CrossRef]
- Asar, M.C.; Franco, A.; Soendergaard, M. Phage Display Selection, Identification, and Characterization of Novel Pancreatic Cancer Targeting Peptides. Biomolecules 2020, 10, 714. [Google Scholar] [CrossRef]
- Bedi, D.; Gillespie, J.W.; Petrenko, V.A. Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines. Protein Eng. Des. Sel. 2014, 27, 235–243. [Google Scholar] [CrossRef]
- Wang, T.; Narayanaswamy, R.; Ren, H.; Gillespie, J.W.; Petrenko, V.A.; Torchilin, V.P. Phage-derived protein-mediated targeted chemotherapy of pancreatic cancer. J. Drug Target. 2017, 26, 505–515. [Google Scholar] [CrossRef]
- Eissa, I.R.; Bustos-Villalobos, I.; Ichinose, T.; Matsumura, S.; Naoe, Y.; Miyajima, N.; Morimoto, D.; Mukoyama, N.; Zhiwen, W.; Tanaka, M.; et al. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers 2018, 10, 356. [Google Scholar] [CrossRef] [PubMed]
- Rahal, A.; Musher, B. Oncolytic viral therapy for pancreatic cancer. J. Surg. Oncol. 2017, 116, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Yokoda, R.T.; Nagalo, B.M.; Borad, M.J. Oncolytic Adenoviruses in Gastrointestinal Cancers. Biomedicines 2018, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Freytag, S.O.; Barton, K.N.; Brown, S.L.; Narra, V.; Zhang, Y.; Tyson, D.; Nall, C.; Lu, M.; Ajlouni, M.; Movsas, B.; et al. Replication-competent Adenovirus-mediated Suicide Gene Therapy with Radiation in a Preclinical Model of Pancreatic Cancer. Mol. Ther. 2007, 15, 1600–1606. [Google Scholar] [CrossRef]
- Yokoda, R.; Nagalo, B.M.; Arora, M.; Egan, J.B.; Bogenberger, J.M.; DeLeon, T.T.; Zhou, Y.; Ahn, D.H.; Borad, M.J. Oncolytic virotherapy in upper gastrointestinal tract cancers. Oncolytic Virotherapy 2018, 7, 13–24. [Google Scholar] [CrossRef]
- Gayral, M.; Lulka, H.; Hanoun, N.; Biollay, C.; Sèlves, J.; Vignolle-Vidoni, A.; Berthommé, H.; Trempat, P.; Epstein, A.L.; Buscail, L.; et al. Targeted Oncolytic Herpes Simplex Virus Type 1 Eradicates Experimental Pancreatic Tumors. Hum. Gene Ther. 2015, 26, 104–113. [Google Scholar] [CrossRef]
- Eissa, I.R.; Naoe, Y.; Bustos-Villalobos, I.; Ichinose, T.; Tanaka, M.; Zhiwen, W.; Mukoyama, N.; Morimoto, T.; Miyajima, N.; Hitoki, H.; et al. Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Front. Oncol. 2017, 7, 149. [Google Scholar] [CrossRef]
- Yu, Y.A.; Galanis, C.; Woo, Y.; Chen, N.; Zhang, Q.; Fong, Y.; Szalay, A.A. Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68. Mol. Cancer Ther. 2009, 8, 141–151. [Google Scholar] [CrossRef]
- Dai, M.; Liu, S.; Chen, N.; Zhang, T.; You, L.; Zhang, F.Q.; Chou, T.; Szalay, A.; Fong, Y.; Zhao, Y. Oncolytic vaccinia virus in combination with radiation shows synergistic antitumor efficacy in pancreatic cancer. Cancer Lett. 2014, 344, 282–290. [Google Scholar] [CrossRef]
- Al Yaghchi, C.; Zhang, Z.; Alusi, G.; Lemoine, N.R.; Wang, Y. Vaccinia Virus, a Promising New Therapeutic Agent for Pancreatic Cancer. Immunotherapy 2015, 7, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Wilkinson, G.A.; Eng, K.H.; Fields, P.; Raber, P.; Moseley, J.L.; Cheetham, K.; Coffey, M.; Nuovo, G.; Kalinski, P.; et al. Pembrolizumab in Combination with the Oncolytic Virus Pelareorep and Chemotherapy in Patients with Advanced Pancreatic Adenocarcinoma: A Phase Ib Study. Clin. Cancer Res. 2020, 26, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Geisler, A.; Dieringer, B.; Elsner, L.; Klopfleisch, R.; Kurreck, J.; Fechner, H. Oncolytic Coxsackievirus B3 Strain PD-H Is Effective Against a Broad Spectrum of Pancreatic Cancer Cell Lines and Induces a Growth Delay in Pancreatic KPC Cell Tumors In Vivo. Int. J. Mol. Sci. 2024, 25, 11224. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, F.; Gheshlagh, S.R.; Hemati, M.; Farhadi, S.; Eslami, M. The influence of microbiota on the efficacy and toxicity of immunotherapy in cancer treatment. Mol. Biol. Rep. 2024, 52, 1–14. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2020, 371, 602–609. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, G.; Kim, S.; Cho, B.; Kim, S.-Y.; Do, E.-J.; Bae, D.-J.; Kim, S.; Kweon, M.-N.; Song, J.S.; et al. Fecal microbiota transplantation improves anti-PD-1 inhibitor efficacy in unresectable or metastatic solid cancers refractory to anti-PD-1 inhibitor. Cell Host Microbe 2024, 32, 1380–1393.e9. [Google Scholar] [CrossRef]
- Routy, B.; Lenehan, J.G.; Miller, W.H.; Jamal, R.; Messaoudene, M.; Daisley, B.A.; Hes, C.; Al, K.F.; Martinez-Gili, L.; Punčochář, M.; et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: A phase I trial. Nat. Med. 2023, 29, 2121–2132. [Google Scholar] [CrossRef]
- Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.-M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [Google Scholar] [CrossRef]
- DeFilipp, Z.; Bloom, P.P.; Torres Soto, M.; Mansour, M.K.; Sater, M.R.A.; Huntley, M.H.; Turbett, S.; Chung, R.T.; Chen, Y.-B.; Hohmann, E.L. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. N. Engl. J. Med. 2019, 381, 2043–2050. [Google Scholar] [CrossRef]
- Halsey, T.M.; Thomas, A.S.; Hayase, T.; Ma, W.; Abu-Sbeih, H.; Sun, B.; Parra, E.R.; Jiang, Z.-D.; DuPont, H.L.; Sanchez, C.; et al. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor–induced colitis. Sci. Transl. Med. 2023, 15, eabq4006. [Google Scholar] [CrossRef]
- Elkrief, A.; Waters, N.R.; Smith, N.; Dai, A.; Slingerland, J.; Aleynick, N.; Febles, B.; Gogia, P.; Socci, N.D.; Lumish, M.; et al. Immune-Related Colitis Is Associated with Fecal Microbial Dysbiosis and Can Be Mitigated by Fecal Microbiota Transplantation. Cancer Immunol. Res. 2023, 12, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wiesnoski, D.H.; Helmink, B.A.; Gopalakrishnan, V.; Choi, K.; DuPont, H.L.; Jiang, Z.-D.; Abu-Sbeih, H.; Sanchez, C.A.; Chang, C.-C.; et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 2018, 24, 1804–1808. [Google Scholar] [CrossRef]
- Chen, M.; Liu, M.; Li, C.; Peng, S.; Li, Y.; Xu, X.; Sun, M.; Sun, X. Fecal Microbiota Transplantation Effectively Cures a Patient With Severe Bleeding Immune Checkpoint Inhibitor-Associated Colitis and a Short Review. Front. Oncol. 2022, 12, 913217. [Google Scholar] [CrossRef]
- Ding, X.; Li, Q.; Li, P.; Chen, X.; Xiang, L.; Bi, L.; Zhu, J.; Huang, X.; Cui, B.; Zhang, F. Fecal microbiota transplantation: A promising treatment for radiation enteritis? Radiother. Oncol. 2020, 143, 12–18. [Google Scholar] [CrossRef]
- Cui, J.Q.; Tian, H.L.; Wang, X.J.; Wang, L.; Liu, Y.K.; Ye, C.; Ding, L.F.; Li, N.; Chen, Q.Y. [Analysis of short-term efficacy of perioperative fecal microbiota transplantation combined with nutritional support in patients with radiation-induced enteritis complicated by intestinal obstruction]. Chin. J. Gastrointest. Surg. 2023, 26, 955–962. [Google Scholar] [CrossRef]
| Author/Study | Microorganism/Metabolite | Drug/Therapy | Mechanism | Effect on Therapy |
|---|---|---|---|---|
| Geller et al. 2017 [54] | M. hyorhinis; Gammaproteobacteria | Gemcitabine | Gemcitabine inactivation via cytidine deaminase (CDD) | Resistance |
| Weniger et al. 2021 [55] | K. pneumoniae | Gemcitabine | Presence associated with reduced PFS under gemcitabine | Resistance |
| Lehouritis et al. 2015 [56] | E. coli (non-pathogenic strain) | Gemcitabine and others | Drug structural modification, leading to resistance | Resistance |
| Ye et al., Udayasuryan et al., Yu et al. 2017, 2022, 2024 [57,58,59] | F. nucleatum | 5-FU | TLR4/MYD88-dependent inhibition of apoptosis | Resistance |
| Bai et al. 2023 [60] | B. fragilis (non-toxigenic) | Oxaliplatin | T-cell activation enhances oxaliplatin-induced apoptosis | Sensitization |
| Bai et al., 2023 Panebianco et al. 2022 [60,61] | Butyrate-producing bacteria | Oxaliplatin | CD8+ T-cell activation; depletion increases resistance | Sensitization |
| Panebianco et al. 2022 [61] | Butyrate | Gemcitabine | Induction of apoptosis in PDAC cells | Sensitization |
| Tintelnot et al. 2023 [62] | Indole-3-acetic acid (3-IAA) | Gemcitabine | ROS accumulation, impaired cancer metabolism | Sensitization |
| Pushalkar et al. 2018 [38] | Multiple species (antibiotic-sensitive) | Anti-PD-1 immunotherapy | Microbial ablation enhances PD-1 blockade efficacy | Sensitization |
| Drug | Microorganism/Metabolite | Toxicity | Mechanism | Intervention/Findings |
|---|---|---|---|---|
| 5-Fluorouracil | Escherichia, Enterococcus spp., Clostridium | Mucositis, bacteremia, sepsis | Pathogenic overgrowth predisposes to infections | Association with dysbiosis 2017, 2018 [66,67] |
| Cisplatin | Lachnospiraceae, Lactobacillus (protective, promoted by D-methionine) | General toxicity (attenuated by microbiota modulation) | D-methionine fosters beneficial taxa, reducing toxicity | D-methionine promotes protective taxa 2017, 2018 [66,67] |
| Irinotecan | Proteobacteria, Clostridium clusters, Fusobacteria (β-glucuronidase producers) | Severe diarrhea, mucosal injury | β-glucuronidase hydrolyzes SN-38G back to SN-38, damaging mucosa | Targeted GUS inhibitors and probiotics reduce toxicity 2020, 2019, 2021, 2023 [68,69,70,71] |
| Gemcitabine + Nab-paclitaxel | SCFA-producing bacteria (butyrate producers) | Dysbiosis, chemotherapy side effects, stromatogenesis | Loss of SCFA producers; restored with probiotics, improving diversity | Probiotic supplementation mitigates side effects, restores SCFA producers 2023 [72] |
| Study/Author | Model/Setting | Antibiotic/Intervention | Mechanism/Finding | Outcome |
|---|---|---|---|---|
| Sethi et al. 2018 [76] | Subcutaneous PDAC (murine) | Broad-spectrum antibiotics | ↑ IFN-γ cytotoxic T cells; ↓ IL-17A/IL-10 T cells | Delayed tumor growth (preclinical) |
| Pushalkar et al. 2018 [38] | Orthotopic PDAC (murine) | Broad-spectrum antibiotics | ↑ M1 macrophages, CD4+ Th1, CD8+; ↓ TLR2/5 signaling | Reduced tumor burden (preclinical) |
| Weniger et al. 2021[55] | Preclinical/human tissue | Ciprofloxacin (counteracts Gammaproteobacteria) | Reverses Gammaproteobacteria-mediated gemcitabine resistance | Restored gemcitabine efficacy |
| Fulop et al. 2023 [81] | Clinical cohort, gemcitabine+nab-paclitaxel | Antibiotics during GnP treatment | Improved PFS (5.8 vs 2.7 months); better outcomes | Clinical survival benefit |
| Weniger et al. 2021 [55] | Clinical cohort, bile culture (K. pneumoniae) | Absence of Klebsiella pneumoniae | Better PFS when K. pneumoniae is absent | Improved progression-free survival |
| Hajishengallis et al. 2012 [82] | Clinical retrospective cohort | Antibiotics + Gemcitabine vs Fluoropyrimidines | Gemcitabine benefits, not with fluoropyrimidines | Improved OS/PFS with gemcitabine |
| Fulop et al. 2023 [81] | Clinical metastatic PDAC | Macrolides and quinolones | Survival benefit of +2–3 months | Improved OS/PFS in metastatic PDAC |
| Geller et al. 2017 [54] | Murine colon carcinoma model | Local release of ampicillin, chloramphenicol | Tumor inhibition, apoptosis ↑; synergy with gemcitabine | Reduced chemoresistance; local effect with less systemic toxicity |
| Species/Molecule | Mechanism | Therapeutic Effect | Model/Setting |
|---|---|---|---|
| Lactobacillus paracasei, L. reuteri, L. rhamnosus | p53 activation, cell cycle arrest, EMT modulation | Antitumor activity; enhances gemcitabine efficacy | Preclinical models 2005, 2020 [83,85,86] |
| Lactobacillus (co-administered with gemcitabine) | Reduced PanIN progression; improved hepatic enzyme profile | Improved drug tolerability and efficacy | Mouse models 2020 [86] |
| Lactobacillus reuteri | Promotes NK cell infiltration; correlated with improved survival | Suppression of PDAC progression; survival benefit | Mouse and clinical correlations 2025 [87] |
| Ferrichrome (from L. casei) | p53-mediated apoptosis, including in 5-FU-resistant cells | Antineoplastic effect | In vitro models 2020 [88] |
| Bifidobacterium longum | Enhances CD8+ T-cell infiltration; reduces immunosuppressive subsets; synergizes with anti-PD-L1 | Attenuates PDAC progression; potentiates immunotherapy | Preclinical models 2020, 2015, 2024 [89,90,91] |
| Akkermansia muciniphila | Boosts CD8+ T-cell immunity; enhances checkpoint inhibitor efficacy | Improved immunotherapy response | Preclinical and translational 2023, 2024 [92,93] |
| Synbiotics (probiotics + inulin) | ↑ CD8+ T-cell infiltration and IFN-γ; ↓ IL-1β, IL-6, IL-10 | Reduced postoperative complications and bacteremia | Randomized clinical trial (90 patients) 2024, 2023 [91,94] |
| Butyrate (SCFA) | Enhances gemcitabine efficacy (oxidative stress, autophagy); HDAC inhibition; epigenetic regulation | Suppresses tumor proliferation; potentiates chemotherapy | Preclinical and mechanistic studies 2023 [62,95] |
| Indole-3-acetic acid | Regulates tumor and immune cell activity; enhances chemotherapy response | Enhanced chemotherapy effectiveness | Preclinical models 2023 [62] |
| Engineered Bacterium | Strategy | Mechanism | Therapeutic Effect |
|---|---|---|---|
| Hypoxia-responsive E. coli | Genetically modified to secrete cyst(e)inase (CGL) | Depletes cysteine/cystine pools → induces ferroptosis via lipid peroxidation; activates antitumor immunity | Ferroptosis induction and immune activation 2025 [96] |
| Synthetic Salmonella strains (OMVs with STING agonists) | Delivery of STING agonists via outer membrane vesicles | Enhances immune infiltration; synergizes with checkpoint inhibitors | Improved immunotherapy efficacy 2024 [97] |
| Attenuated Salmonella Typhimurium (immunomodulatory proteins) | Engineered to secrete immunomodulatory proteins | Inhibits PDAC growth; alters cytokine profiles | Suppression of PDAC growth 2022 [98] |
| Lactobacillus rhamnosus GG functionalized with Ga–polyphenol network (LGG@Ga-poly) | Functionalization with gallium–polyphenol network | Depletes Proteobacteria and LPS; remodels tumor immune microenvironment | Enhanced immunotherapeutic response 2024 [99] |
| Agent | Strategy | Mechanism | Therapeutic Effect |
|---|---|---|---|
| Lytic bacteriophages | Eradication of tumor-associated pathogenic bacteria | Selective bacterial lysis | Potential elimination of pathogenic microbiota 2020 [100] |
| Phage peptide MCA1 | Phage display-identified peptide binds PDAC cells | High-specificity binding with nanomolar affinity | Imaging and targeted drug delivery 2020 [100] |
| Phage-decorated liposomes (doxorubicin) | Fusion proteins used to decorate liposomes | Enhanced tumor selectivity and cytotoxicity | Enhanced doxorubicin efficacy 2014 [101] |
| Phage-functionalized micelles (paclitaxel) | Micelles functionalized with phage proteins | Improved drug targeting and solubility; reduced off-target toxicity | Improved paclitaxel delivery and safety, 2018 [102] |
| Adenoviruses (first-generation ONYX-015) | First oncolytic adenovirus vector | Limited replication; immune clearance | Limited efficacy 2018. 2017 [103,104] |
| Next-generation adenoviruses | Engineered to overcome antiviral resistance, radiosensitize, and remodel stroma | Enhanced persistence, radiosensitivity, and stromal modulation | Improved antitumor activity 2018. 2007 [105,106,107] |
| HSV-based oncolytic viruses | Engineered or naturally mutated strains | Induces apoptosis/necrosis; stimulates immune activation | Suppressed PDAC growth; synergy with gemcitabine 2015, 2017 [108,109] |
| Vaccinia virus strains | Engineered or naturally attenuated strains | Direct oncolysis; synergizes with chemo/radiotherapy | Preclinical efficacy; ongoing clinical trials 2009. 2014, 2015 [110,111,112] |
| Reoviruses (Pelareorep) | Exploits replication in RAS-mutant cells | Replicates in RAS-mutant cells; immunotherapy synergy | Limited monotherapy efficacy; synergy with ICIs 2020 [113] |
| Coxsackievirus B3 (PD-H strain) | Naturally lytic strain targeting PDAC | Potent lytic activity; requires stromal-targeting combination | Suppressed tumor growth in vivo 2024 [114] |
| Study/Setting | Donor/Source | Outcome |
|---|---|---|
| Chandra et al. 2021 [75] | Immunotherapy responders or long-term PDAC survivors | Reduced tumor burden; ↑ T-cell infiltration |
| Riquelme et al. 2019 [40] | Long-term PDAC survivors (diverse intratumoral microbiota) | Higher intratumoral diversity correlated with survival (Pseudoxanthomonas, Streptomyces, Saccharopolyspora, B. clausii) |
| Tintelnot et al. 2023 [62] | Chemotherapy responders or healthy donors | Improved chemosensitivity; reduced tumor progression |
| No Melanoma trials (anti-PD-1 refractory) 2021, 2023, 2024 [116,117,118,119] | Responder or healthy donors | Reversal of anti-PD-1 resistance; partial and complete responses |
| De Filipp et al. 2019 [120] | Shared donor (safety incident) | Fatal bacteremia due to ESBL-producing E. coli |
| ICI-induced colitis (steroid/biologic-refractory) 2023, 2024, 2018, 2022 [121,122,123,124] | Responder-derived or healthy donor FMT | Improved colitis control; enabled ICI continuation |
| Ding et al. 2020 [125] | FMT donors (clinical setting) | Clinical improvement without serious adverse events |
| Cui et al. 2023 [126] | FMT donors (extended follow-up) | Improved GI quality of life and nutritional status (6 months) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lucia, S.S.; Nista, E.C.; Candelli, M.; Archilei, S.; Deutschbein, F.; Capuano, E.; Gasbarrini, A.; Franceschi, F.; Pignataro, G. Microbiota and Pancreatic Cancer: New Therapeutic Frontiers Between Engineered Microbes, Metabolites and Non-Bacterial Components. Cancers 2025, 17, 3618. https://doi.org/10.3390/cancers17223618
De Lucia SS, Nista EC, Candelli M, Archilei S, Deutschbein F, Capuano E, Gasbarrini A, Franceschi F, Pignataro G. Microbiota and Pancreatic Cancer: New Therapeutic Frontiers Between Engineered Microbes, Metabolites and Non-Bacterial Components. Cancers. 2025; 17(22):3618. https://doi.org/10.3390/cancers17223618
Chicago/Turabian StyleDe Lucia, Sara Sofia, Enrico Celestino Nista, Marcello Candelli, Sebastiano Archilei, Franziska Deutschbein, Enrico Capuano, Antonio Gasbarrini, Francesco Franceschi, and Giulia Pignataro. 2025. "Microbiota and Pancreatic Cancer: New Therapeutic Frontiers Between Engineered Microbes, Metabolites and Non-Bacterial Components" Cancers 17, no. 22: 3618. https://doi.org/10.3390/cancers17223618
APA StyleDe Lucia, S. S., Nista, E. C., Candelli, M., Archilei, S., Deutschbein, F., Capuano, E., Gasbarrini, A., Franceschi, F., & Pignataro, G. (2025). Microbiota and Pancreatic Cancer: New Therapeutic Frontiers Between Engineered Microbes, Metabolites and Non-Bacterial Components. Cancers, 17(22), 3618. https://doi.org/10.3390/cancers17223618

