Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = energy storage device (ESD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9954 KiB  
Review
Recent Advances of Electrode Materials Applied in an Electrochromic Supercapacitor Device
by Qingfu Guo, Chao Sun, Yiran Li, Kaoxue Li and Xishi Tai
Molecules 2025, 30(1), 182; https://doi.org/10.3390/molecules30010182 - 5 Jan 2025
Cited by 6 | Viewed by 2305
Abstract
An electrochromic supercapacitor device (ESD) is an advanced energy storage device that combines the energy storage capability of a supercapacitor with the optical modulation properties of electrochromic materials. The electrode materials used to construct an ESD need to have both rich color variations [...] Read more.
An electrochromic supercapacitor device (ESD) is an advanced energy storage device that combines the energy storage capability of a supercapacitor with the optical modulation properties of electrochromic materials. The electrode materials used to construct an ESD need to have both rich color variations and energy storage properties. Recent advances in ESDs have focused on the preparation of novel electrochromic supercapacitor electrode materials and improving their energy storage capacity, cycling stability, and electrochromic performance. In this review, the research significance and application value of ESDs are discussed. The device structure and working principle of electrochromic devices and supercapacitors are analyzed in detail. The research progress of inorganic materials, organic materials, and inorganic/organic nanocomposite materials used for the construction of ESDs is discussed. The advantages and disadvantages of various types of materials in ESD applications are summarized. The preparation and application of ESD electrode materials in recent years are reviewed in detail. Importantly, the challenges existing in the current research and recommendations for future perspectives are suggested. This review will provide a useful reference for researchers in the field of ESD electrode material preparation and application. Full article
(This article belongs to the Special Issue Energy Storage Materials: Synthesis and Application)
Show Figures

Figure 1

30 pages, 11520 KiB  
Review
Progress in Tungsten Trioxide-Based Materials for Energy Storage and Smart Window Applications
by Khursheed Ahmad and Tae Hwan Oh
Crystals 2025, 15(1), 10; https://doi.org/10.3390/cryst15010010 - 25 Dec 2024
Cited by 1 | Viewed by 1105
Abstract
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used [...] Read more.
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used for the construction of working electrodes for supercapacitor (SC) and ECD applications. Previously, WO3-based hybrid composites were explored for SC and ECD applications. In this review report, we have compiled the WO3-based hybrid electrode materials for SC and ECD applications. It is believed that the present review would benefit the researchers working on the fabrication of electrode materials for SC and ECD applications. In this review article, challenges and future perspectives have been discussed for the development of WO3-based SCs and ECDs. Full article
Show Figures

Figure 1

25 pages, 8710 KiB  
Article
Enhancing Efficiency in Hybrid Marine Vessels through a Multi-Layer Optimization Energy Management System
by Hoai Vu Anh Truong, Tri Cuong Do and Tri Dung Dang
J. Mar. Sci. Eng. 2024, 12(8), 1295; https://doi.org/10.3390/jmse12081295 - 31 Jul 2024
Cited by 3 | Viewed by 1204
Abstract
Configuring green power transmissions for heavy-industry marines is treated as a crucial request in an era of global energy and pollution crises. Following up on this hotspot trend, this paper examines the effectiveness of a modified optimization-based energy management strategy (OpEMS) for a [...] Read more.
Configuring green power transmissions for heavy-industry marines is treated as a crucial request in an era of global energy and pollution crises. Following up on this hotspot trend, this paper examines the effectiveness of a modified optimization-based energy management strategy (OpEMS) for a dual proton exchange membrane fuel cells (dPEMFCs)-battery-ultra-capacitors (UCs)-driven hybrid electric vessels (HEVs). At first, the summed power of the dual PEMFCs is defined by using the equivalent consumption minimum strategy (ECMS). Accordingly, a map search engine (MSE) is proposed to appropriately split power for each FC stack and maximize its total efficiency. The remaining power is then distributed to each battery and UC using an adaptive co-state, timely determined based on the state of charge (SOC) of each device. Due to the strict constraint of the energy storage devices’ (ESDs) SOC, one fine-corrected layer is suggested to enhance the SOC regulations. With the comparative simulations with a specific rule-based EMS and other approaches for splitting power to each PEMFC unit, the effectiveness of the proposed topology is eventually verified with the highest efficiency, approximately about 0.505, and well-regulated ESDs’ SOCs are obtained. Full article
(This article belongs to the Special Issue Advancements in Power Management Systems for Hybrid Electric Vessels)
Show Figures

Figure 1

22 pages, 5377 KiB  
Article
An Enhanced Extremum Seeking-Based Energy Management Strategy with Equivalent State for Hybridized-Electric Tramway-Powered by Fuel Cell–Battery–Supercapacitors
by Hoai Vu Anh Truong, Hoai An Trinh, Tri Cuong Do, Manh Hung Nguyen, Van Du Phan and Kyoung Kwan Ahn
Mathematics 2024, 12(12), 1849; https://doi.org/10.3390/math12121849 - 14 Jun 2024
Cited by 6 | Viewed by 1151
Abstract
This article proposes a novel real-time optimization-based energy management strategy (EMS) for proton membrane exchange fuel cell (PEMFC)-battery-supercapacitors-driven hybridized-electric tramways (HETs). The proposed algorithm is derived based on an enhanced extremum seeking (ES) algorithm, with a new equivalent state-of-charge (SOC) and a new [...] Read more.
This article proposes a novel real-time optimization-based energy management strategy (EMS) for proton membrane exchange fuel cell (PEMFC)-battery-supercapacitors-driven hybridized-electric tramways (HETs). The proposed algorithm is derived based on an enhanced extremum seeking (ES) algorithm, with a new equivalent state-of-charge (SOC) and a new adaptive co-state introduced. Thereby, optimized reference power for each power source can be distributed appropriately when using three components. The workability and prominent of the proposed technique are demonstrated through comparative simulations with fuzzy-rule-based EMS (FEMS) and equivalent consumption minimization strategy (ECMS) in two case studies: with and without considering the supercapacitors, as an important factor in the EMS design to stabilize the SOC of energy storage devices (ESDs). Briefly, under the proposed ES-based method, the PEMFC power can be regulated such that high-efficiency can be performed, approximately by 46.7%. Subsequently, the hydrogen consumption is reduced about 31.2% compared to a comparative fuzzy-based EMS. Besides, the supplements’ SOCs at the end of a driving cycle are also regulated to be equal to the initial ones. Full article
Show Figures

Figure 1

23 pages, 5990 KiB  
Article
Integrating Demand Response for Enhanced Load Frequency Control in Micro-Grids with Heating, Ventilation and Air-Conditioning Systems
by Tanima Bal, Saheli Ray, Nidul Sinha, Ramesh Devarapalli and Łukasz Knypiński
Energies 2023, 16(15), 5767; https://doi.org/10.3390/en16155767 - 2 Aug 2023
Cited by 6 | Viewed by 1897
Abstract
Heating, ventilation and air-conditioning (HVAC) systems constitute the majority of the demands in modern power systems for aggregated buildings. However, HVAC integrated with renewable energy sources (RES) face notable issues, such as uneven demand–supply balance, frequency oscillation and significant drop in system inertia [...] Read more.
Heating, ventilation and air-conditioning (HVAC) systems constitute the majority of the demands in modern power systems for aggregated buildings. However, HVAC integrated with renewable energy sources (RES) face notable issues, such as uneven demand–supply balance, frequency oscillation and significant drop in system inertia owing to sudden disturbances in nearby generation for a longer period. To overcome these challenges, load frequency control (LFC) is implemented to regulate the frequency, maintain zero steady-state error between the generation and demand, reduce frequency deviations and balance the active power flow with neighboring control areas at a specified value. In view of this, the present paper investigates LFC with a proposed centralized single control strategy for a micro-grid (µG) system consisting of RESs and critical load of a HVAC system. The proposed control strategy includes a newly developed cascaded two-degree-of-freedom (2-DOF) proportional integral (PI) and proportional derivative filter (PDF) controller optimized with a very recent meta-heuristic algorithm—a modified crow search algorithm (mCSA)—after experimenting with the number of performance indices (PICs). The superiority of both the proposed optimization algorithm and the proposed controller is arrived at after comparison with similar other algorithms and similar controllers, respectively. Compared to conventional control schemes, the proposed scheme significantly reduces the frequency deviations, improving by 27.22% from the initial value and reducing the performance index criteria (ƞISE) control error to 0.000057. Furthermore, the demand response (DR) is implemented by an energy storage device (ESD), which validates the suitability of the proposed control strategy for the µG system and helps overcome the challenges associated with variable RESs inputs and load demand. Additionally, the improved robustness of the proposed controller for this application is demonstrated through sensitivity analysis with ±20% μG coefficient variation. Full article
Show Figures

Figure 1

21 pages, 9927 KiB  
Article
Three-Port Bi-Directional DC–DC Converter with Solar PV System Fed BLDC Motor Drive Using FPGA
by Arun Kumar Udayakumar, Raghavendra Rajan Vijaya Raghavan, Mohamad Abou Houran, Rajvikram Madurai Elavarasan, Anushkannan Nedumaran Kalavathy and Eklas Hossain
Energies 2023, 16(2), 624; https://doi.org/10.3390/en16020624 - 4 Jan 2023
Cited by 16 | Viewed by 3331
Abstract
The increased need for renewable energy systems to generate power, store energy, and connect energy storage devices with applications has become a major challenge. Energy storage using batteries is most appropriate for energy sources like solar, wind, etc. A non-isolated three-port DC–DC-converter energy [...] Read more.
The increased need for renewable energy systems to generate power, store energy, and connect energy storage devices with applications has become a major challenge. Energy storage using batteries is most appropriate for energy sources like solar, wind, etc. A non-isolated three-port DC–DC-converter energy conversion unit is implemented feeding the brushless DCmotor drive. In this paper, a non-isolated three-port converter is designed and simulated for battery energy storage, interfaced with an output drive. Based on the requirements, the power extracted from the solar panel during the daytime is used to charge the batteries through the three-port converter. The proposed three-port converter is analyzed in terms of operating principles and power flow. An FPGA-based NI LabView PXI with SbRio interface is used to develop the suggested approach’s control hardware, and prototype model results are obtained to test the proposed three-port converter control system’s effectiveness and practicality. The overall efficiency of the converter’s output improves as a result. The success rate is 96.5 percent while charging an ESS, 98.1 percent when discharging an ESS, and 95.7 percent overall. Full article
Show Figures

Figure 1

29 pages, 547 KiB  
Review
A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles
by Mokesioluwa Fanoro, Mladen Božanić and Saurabh Sinha
Energies 2022, 15(16), 5889; https://doi.org/10.3390/en15165889 - 14 Aug 2022
Cited by 41 | Viewed by 6880
Abstract
The increasing popularity of electric vehicles (EVs) has been attributed to their low-carbon and environmentally friendly attributes. Extensive research has been undertaken in view of the depletion of fossil fuels, changes in climatic conditions due to air pollution, and the goal of developing [...] Read more.
The increasing popularity of electric vehicles (EVs) has been attributed to their low-carbon and environmentally friendly attributes. Extensive research has been undertaken in view of the depletion of fossil fuels, changes in climatic conditions due to air pollution, and the goal of developing EVs capable of matching or exceeding the performance of today’s internal combustion engines (ICEs). The transition from ICE vehicles to EVs can reduce greenhouse gases significantly over a vehicle’s lifetime. Across the different types of EVs, the widespread usage of batteries is due to their high power density and steady output voltage, making them an excellent energy storage device (ESD). The current downsides of battery-powered electric vehicles include long recharge times, the impact of additional strain on the grid, poor societal acceptance due to high initial costs, and a lack of adequate charging infrastructure. Even more problematic is their short driving range when compared to standard ICE and fuel cell EVs. Battery degradation occurs when the capacity of a battery degrades, resulting in a reduction in travel range. This review article includes a description of battery degradation, degradation mechanisms, and types of degradation. A detailed investigation of the methods used to address and reduce battery degeneration is presented. Finally, some future orientation in terms of EV research is offered as vital guidance for academic and industrial partners. Full article
Show Figures

Figure 1

21 pages, 676 KiB  
Article
Net Hydrogen Consumption Minimization of Fuel Cell Hybrid Trains Using a Time-Based Co-Optimization Model
by Guangzhao Meng, Chaoxian Wu, Bolun Zhang, Fei Xue and Shaofeng Lu
Energies 2022, 15(8), 2891; https://doi.org/10.3390/en15082891 - 14 Apr 2022
Cited by 12 | Viewed by 3114
Abstract
With increasing concerns on transportation decarbonization, fuel cell hybrid trains (FCHTs) attract many attentions due to their zero carbon emissions during operation. Since fuel cells alone cannot recover the regenerative braking energy (RBE), energy storage devices (ESDs) are commonly deployed for the recovery [...] Read more.
With increasing concerns on transportation decarbonization, fuel cell hybrid trains (FCHTs) attract many attentions due to their zero carbon emissions during operation. Since fuel cells alone cannot recover the regenerative braking energy (RBE), energy storage devices (ESDs) are commonly deployed for the recovery of RBE and provide extra traction power to improve the energy efficiency. This paper aims to minimize the net hydrogen consumption (NHC) by co-optimizing both train speed trajectory and onboard energy management using a time-based mixed integer linear programming (MILP) model. In the case with the constraints of speed limits and gradients, the NHC of co-optimization reduces by 6.4% compared to the result obtained by the sequential optimization, which optimizes train control strategies first and then the energy management. Additionally, the relationship between NHC and employed ESD capacity is studied and it is found that with the increase of ESD capacity, the NHC can be reduced by up to 30% in a typical route in urban railway transit. The study shows that ESDs play an important role for FCHTs in reducing NHC, and the proposed time-based co-optimization model can maximize the energy-saving benefits for such emerging traction systems with hybrid energy sources, including both fuel cells and ESD. Full article
Show Figures

Figure 1

22 pages, 3963 KiB  
Article
Comparative Performance Assessment of Different Energy Storage Devices in Combined LFC and AVR Analysis of Multi-Area Power System
by CH. Naga Sai Kalyan, B. Srikanth Goud, Ch. Rami Reddy, Mohit Bajaj, Naveen Kumar Sharma, Hassan Haes Alhelou, Pierluigi Siano and Salah Kamel
Energies 2022, 15(2), 629; https://doi.org/10.3390/en15020629 - 17 Jan 2022
Cited by 62 | Viewed by 3252
Abstract
This paper made an attempt to put forward the comparative performance analysis of different energy storage devices (ESDs), such as redox flow batteries (RFBs), superconducting magnetic energy storage (SMES) device and ultra-capacitors (UCs), in the combined frequency and voltage stabilization of a multi-area [...] Read more.
This paper made an attempt to put forward the comparative performance analysis of different energy storage devices (ESDs), such as redox flow batteries (RFBs), superconducting magnetic energy storage (SMES) device and ultra-capacitors (UCs), in the combined frequency and voltage stabilization of a multi-area interconnected power system (MAIPS). The investigative power system model comprises two areas, and each area consists of the power-generating sources of thermal, hydro and gas units. The intelligent control mechanism of fuzzy PID was used as a secondary controller optimized with a hybridized approach of the artificial electric field algorithm (HAEFA) subjected to the minimization of integral time absolute error (ITAE) objective function. However, the superiority of fuzzy PID in dampening the deviations of combined load frequency control (LFC) and automatic voltage regulator (AVR) responses was revealed upon comparison with conventional PI and PID. Further, the LFC-AVR combined analysis was extended to incorporate different ESDs one after the other. The simulation results reveal the efficacy of incorporating ESDs with the LFC-AVR system and the supremacy of RFBs in damping out the fluctuations in frequency and voltage. Full article
(This article belongs to the Collection Young Researchers in Electrical Power and Energy System)
Show Figures

Figure 1

19 pages, 3848 KiB  
Article
Power Generation Control of Renewable Energy Based Hybrid Deregulated Power System
by Zahid Farooq, Asadur Rahman, S. M. Suhail Hussain and Taha Selim Ustun
Energies 2022, 15(2), 517; https://doi.org/10.3390/en15020517 - 12 Jan 2022
Cited by 55 | Viewed by 2536
Abstract
This work presents the power generation control of a two-area, hybrid, deregulated power system integrated with renewable energy sources (RES). The incorporation of appropriate system non-linearities and RES into the power system makes it complex, but more practical. The hybrid deregulated power system [...] Read more.
This work presents the power generation control of a two-area, hybrid, deregulated power system integrated with renewable energy sources (RES). The incorporation of appropriate system non-linearities and RES into the power system makes it complex, but more practical. The hybrid deregulated power system with RES is a complex nonlinear system that regularly exposes the major issue of system dynamic control due to insufficient damping under varying loading circumstances. The generation-demand equilibrium point of the power system varies following a contingency; hence, it becomes difficult to maintain the appropriate equilibrium point via traditional control approaches. To solve this problem, novel control approaches, along with rapid-acting energy storage devices (ESD), are immediate need for advanced power systems. As a result, various secondary controllers are inspected for improvements in system dynamics. A performance comparison infers the cascaded ID-PD controller as the optimum one. The secondary controller gains are successfully optimized by the powerful satin bowerbird optimization (SBO) technique. Additionally, the impact of a super-conducting-magnetic-energy-storage (SMES) device in system dynamics and control of developed power system is analyzed in this study. A sensitivity evaluation (SE) infers that SBO-optimized cascaded ID-PD controller gains are strong enough for alterations in load perturbations, system loading, inertial constant (H), solar irradiance and the DISCO involvement matrix (DIM). Full article
Show Figures

Figure 1

22 pages, 10381 KiB  
Article
A Study of the Energy Exchange within a Hybrid Energy Storage System and a Comparison of the Capacities, Lifetimes, and Costs of Different Systems
by Yang Jiao and Daniel Månsson
Energies 2021, 14(21), 7045; https://doi.org/10.3390/en14217045 - 28 Oct 2021
Cited by 12 | Viewed by 2569
Abstract
By combining the advantages of different energy storage technologies, the hybrid energy storage system (HESS) can satisfy the multiple requirements of prosumer systems. However, the required capacity of the HESS is larger than that of the single-battery energy storage system (ESS). This paper [...] Read more.
By combining the advantages of different energy storage technologies, the hybrid energy storage system (HESS) can satisfy the multiple requirements of prosumer systems. However, the required capacity of the HESS is larger than that of the single-battery energy storage system (ESS). This paper investigates the energy exchange within the HESS caused by the phase shift of the low-pass filter controller and its relevant impact on the HESS. The results show that unnecessary energy exchange results in an oversized capacity and increased energy loss. In addition, the increase in the time constant of the low-pass filter controller leads to a larger phase shift, further contributing to the increases in the total capacity and energy loss. Furthermore, this paper compares the single-battery ESS, the battery-supercapacitor HESS, and the battery-flywheel HESS implemented in a household-prosumer system along with a renewable energy source (RES). The comparison of the ESS combinations demonstrates the differences between their power flows, the required capacities of their individual energy storage devices (ESDs), their energy losses, their battery lifetimes, and their project costs. The results indicate that techno-economic analysis should be performed carefully to select the appropriate ESS solution for specific household-prosumer systems. Full article
Show Figures

Figure 1

25 pages, 25709 KiB  
Article
Operation Strategy of Electricity Retailers Based on Energy Storage System to Improve Comprehensive Profitability in China’s Electricity Spot Market
by Ting Lu, Weige Zhang and Xiaowei Ding
Energies 2021, 14(19), 6424; https://doi.org/10.3390/en14196424 - 8 Oct 2021
Cited by 7 | Viewed by 2489
Abstract
Due to the development of China’s electricity spot market, the peak-shifting operation modes of energy storage devices (ESD) are not able to adapt to real-time fluctuating electricity prices. The settlement mode of the spot market aggravates the negative impact of deviation assessments on [...] Read more.
Due to the development of China’s electricity spot market, the peak-shifting operation modes of energy storage devices (ESD) are not able to adapt to real-time fluctuating electricity prices. The settlement mode of the spot market aggravates the negative impact of deviation assessments on the cost of electricity retailers. This article introduces the settlement rules of China’s power spot market. According to the electricity cost settlement process and the assessment methods, this paper proposes a comprehensive electricity cost optimization algorithm that optimizes day-ahead market (DA) electricity cost, real-time market (RT) electricity cost and deviation assessment through ESD control. According to the trial electricity price data of the power trading center in Guangdong province (China), many typical load curves and different deviation assessment policies, the algorithm calculates DA electricity cost, RT electricity cost and deviation assessment cost by utilizing a comprehensive electricity cost optimization algorithm. Compared with the original electricity cost and optimization cost, this method is proven to effectively save overall electricity costs under the spot market settlement system. Based on three different initial investment prices of ESD, this paper analyzes the economics of the ESD system and proves that ESD investment can be recovered within 5 years. Considering the small amounts of operating data in China’s power spot market, the algorithm generates random data according to characteristics of these data. Then, this paper verifies that the comprehensive electricity cost optimization algorithm remains reliable under random circumstances. Full article
Show Figures

Graphical abstract

22 pages, 3777 KiB  
Article
Bio-Based Plasticized PVA Based Polymer Blend Electrolytes for Energy Storage EDLC Devices: Ion Transport Parameters and Electrochemical Properties
by Shujahadeen B. Aziz, Muaffaq M. Nofal, M. F. Z. Kadir, Elham M. A. Dannoun, Mohamad A. Brza, Jihad M. Hadi and Ranjdar M. Abdullah
Materials 2021, 14(8), 1994; https://doi.org/10.3390/ma14081994 - 16 Apr 2021
Cited by 38 | Viewed by 3694
Abstract
This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10−3 S/cm. It is shown that the number density, [...] Read more.
This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10−3 S/cm. It is shown that the number density, mobility and diffusion coefficient of ions are enhanced by increasing the glycerol. A number of electric and electrochemical properties of the electrolyte—impedance, dielectric properties, transference numbers, potential window, energy density, specific capacitance (Cs) and power density—were determined. From the determined electric and electrochemical properties, it is shown that PVA: MC-NH4I proton conducting polymer electrolyte (PE) is adequate for utilization in energy storage device (ESD). The decrease of charge transfer resistance with increasing plasticizer was observed from Bode plot. The analysis of dielectric properties has indicated that the plasticizer is a novel approach to increase the number of charge carriers. The electron and ion transference numbers were found. From the linear sweep voltammetry (LSV) response, the breakdown voltage of the electrolyte is determined. From Galvanostatic charge-discharge (GCD) measurement, the calculated Cs values are found to drop with increasing the number of cycles. The increment of internal resistance is shown by equivalent series resistance (ESR) plot. The energy and power density were studied over 250 cycles that results to the value of 5.38–3.59 Wh/kg and 757.58–347.22 W/kg, respectively. Full article
(This article belongs to the Special Issue Conducting Polymers, Composites and Polymer Blends)
Show Figures

Figure 1

23 pages, 3340 KiB  
Article
Cost–Benefit Analysis of Energy Storage in Distribution Networks
by Yu Ji, Xiaogang Hou, Lingfeng Kou, Ming Wu, Ying Zhang, Xiong Xiong, Baodi Ding, Ping Xue, Junlong Li and Yue Xiang
Energies 2019, 12(17), 3363; https://doi.org/10.3390/en12173363 - 1 Sep 2019
Cited by 7 | Viewed by 3562
Abstract
Due to the challenges posed to power systems because of the variability and uncertainty in clean energy, the integration of energy storage devices (ESD) has provided a rigorous approach to improve network stability in recent years. Moreover, with the rapid development of the [...] Read more.
Due to the challenges posed to power systems because of the variability and uncertainty in clean energy, the integration of energy storage devices (ESD) has provided a rigorous approach to improve network stability in recent years. Moreover, with the rapid development of the electricity market, an ESD operation strategy, which can maximize the benefits of ESD owners as well as the contribution to the electricity network stability, plays an important role in the marketization of ESDs. Although the benefits for ESD owners are discussed in many studies, the economic impact of ESD operation on distribution networks has not been commendably taken into account. Therefore, a cost–benefit analysis method of ESD which quantifies the economic impact of ESD operation on distribution networks is proposed in this paper. Considering the time-of-use (TOU) price and load demand, the arbitrage of ESD is realized through a strategy with low price charging and high price discharging. Then, the auxiliary service of ESD is realized by its capability of peak shaving and valley filling. In this paper, the long-run incremental cost (LRIC) method is adopted to calculate the network price based on the congestion cost. Based on the dynamic cost–benefit analysis method, the cost–benefit marginal analysis model in the ESD life cycle is proposed through the calculation of the present value of benefit. Subsequently, the optimal ESD capacity and charge/discharge rate is obtained to get the shortest payback period by analyzing different operation parameters. Finally, a case study is undertaken, where the ESD operation model mentioned above is simulated on a two-bus system and a 33-bus system, and the ESD cost–benefit analysis and the analysis of corresponding influence factors are carried out adequately. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Graphical abstract

25 pages, 5647 KiB  
Article
Intelligent Control of Converter for Electric Vehicles Charging Station
by Mayank Jha, Frede Blaabjerg, Mohammed Ali Khan, Varaha Satya Bharath Kurukuru and Ahteshamul Haque
Energies 2019, 12(12), 2334; https://doi.org/10.3390/en12122334 - 18 Jun 2019
Cited by 38 | Viewed by 11756
Abstract
Electric vehicles (EVs) are envisaged to be the future transportation medium, and demonstrate energy efficiency levels much higher than conventional gasoline or diesel-based vehicles. However, the sustainability of EVs is only justified if the electricity used to charge these EVs is availed from [...] Read more.
Electric vehicles (EVs) are envisaged to be the future transportation medium, and demonstrate energy efficiency levels much higher than conventional gasoline or diesel-based vehicles. However, the sustainability of EVs is only justified if the electricity used to charge these EVs is availed from a sustainable source of energy and not from any fossil fuel or carbon generating source. In this paper, the challenges of the EV charging stations are discussed while highlighting the growing use of distributed generators in the modern electrical grid system. The benefits of the adoption of photovoltaic (PV) sources along with battery storage devices are studied. A multiport converter is proposed for integrating the PV, charging docks, and energy storage device (ESD) with the grid system. In order to control the bidirectional flow between the generating sources and the loads, an intelligent energy management system is proposed by adapting particle swarm optimization for efficient switching between the sources. The proposed system is simulated using MATLAB/Simulink environment, and the results depicted fast switching between the sources and less switching time without obstructing the fast charging to the EVs. Full article
(This article belongs to the Special Issue Distributed Energy Storage Devices in Smart Grids)
Show Figures

Figure 1

Back to TopTop