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Abstract: With increasing concerns on transportation decarbonization, fuel cell hybrid trains (FCHTs)
attract many attentions due to their zero carbon emissions during operation. Since fuel cells alone
cannot recover the regenerative braking energy (RBE), energy storage devices (ESDs) are commonly
deployed for the recovery of RBE and provide extra traction power to improve the energy efficiency.
This paper aims to minimize the net hydrogen consumption (NHC) by co-optimizing both train speed
trajectory and onboard energy management using a time-based mixed integer linear programming
(MILP) model. In the case with the constraints of speed limits and gradients, the NHC of co-
optimization reduces by 6.4% compared to the result obtained by the sequential optimization, which
optimizes train control strategies first and then the energy management. Additionally, the relationship
between NHC and employed ESD capacity is studied and it is found that with the increase of ESD
capacity, the NHC can be reduced by up to 30% in a typical route in urban railway transit. The study
shows that ESDs play an important role for FCHTs in reducing NHC, and the proposed time-based
co-optimization model can maximize the energy-saving benefits for such emerging traction systems
with hybrid energy sources, including both fuel cells and ESD.

Keywords: co-optimization; energy-efficient train control; optimal train control; energy management;
energy storage devices; fuel-cell hybrid trains; mixed integer linear programming

1. Introduction

According to the report published by the International Energy Agency (IEA) in 2017,
CO2 emissions of transportation sector from fuel combustion reached 7.74 billion tons in
2015 [1], of which the rail sector emitted 336 million tons, accounting for 4.34% [2]. One
major source of carbon in railway transportation is the trains using fossil fuel directly
and indirectly. To minimize fossil fuel consumption in rail transportation, hydrogen is
regarded as a feasible and effective solution. As a kind of clean and renewable energy
source, hydrogen can greatly reduce carbon emission and the use of non-renewable energy
when applied to transportation. As a typical study, Chang et al. established an energy
consumption model based on traffic data from various parts of China, demonstrating that
the use of hydrogen fuel cells in transportation represents one of the future development
trends, especially in public transportation [3]. The feasibility of fuel cell hybrid trains
(FCHTs) had been verified in many studies [4,5]. Although the technical cost is relatively
high at the current stage, FCHTs have some advantages over electric trains and diesel
trains on railways with lower traffic density [6]. In this case, optimizing train control and
energy management of hybrid power systems is one of the main focuses in the study of
cost reduction.
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The optimal train speed trajectory with minimum traction energy demand exists when
a train is running between two adjacent stations based on Pontryagin’s maximum prin-
ciple (PMP) [7,8]. Based on PMP, the optimal train control modes, i.e., accelerating with
maximum acceleration rate, braking with maximum braking rate, cruising, and coasting,
and their optimal sequences, can be obtained for one inter-station journey. The PMP-based
method obtains the optimal solution via solving the co-state function and it is referred
to as the “indirect method” [9]. Another commonly used method is the direct method,
which transforms the optimal control problem into a mathematical programming prob-
lem, typically represented by pseudospectral method, mixed integer linear programming
(MILP), and other mathematical programming methods. In [10], both pseudospectral
and MILP methods were proposed to optimize the train control strategies under fixed
arrival time. The MILP method can easily improve the model to add other engineering
constraints [11]. In addition, dynamic programming (DP) and various heuristic algorithms
are also used to locate the optimal train control strategies. DP simplifies a complex problem
by decomposing it into simpler sub-problems in a recursive manner. In [12], two heuristic
algorithms, ant colony optimization and genetic algorithm, and DP were applied to search
the speed trajectory, and the results show that the optimum train trajectory cannot be solved
analytically, and numerical methods must be used.

While the train optimal control of FCHTs shares similar characteristics with other
rail vehicles, the optimization of the speed trajectory of FCHTs can generally locate the
minimum energy demand from the traction system. However, there are two important
traction components of FCHT, i.e., energy storage devices (ESDs) and fuel cell, that deserve
further study when the onboard energy management strategies are studied. For FCHTs,
the characteristics of ESDs should be considered along with the train optimal control
strategies, especially when the ESDs are charging and discharging along with the train
control strategies such as braking and motoring. In [13], Snoussi et al. used sliding
mode control for energy management, which well absorbed the peak power in fuel cell
trains. In the past few years, many studies have focused on the the ESDs applied to
electric trains to increase the recovery of regenerative braking energy and to improve the
system performances. In [14], ESD is equipped on the electric train to increase the use
of regenerative energy and stabilize the voltage, and the DP algorithm-based heuristic is
designed to find the optimal speed trajectory. In [15], Wu et al. employed the MILP to locate
the optimal train control, and the results indicated that ESD has a significant influence on
the speed trajectory of electric train.

On the one hand, the characteristics of ESDs play an important role in train control;
on the other hand, the nonlinear characteristics of fuel cell efficiency impose further com-
plexity on the onboard energy management and train controls. The energy management
strategy determines the power distribution between fuel cell and ESDs, and has a sig-
nificant impact on the total consumption of hydrogen fuel. In recent years, there have
been many methods to optimize energy management strategies, such as state machine
strategy, fuzzy logic control, equivalent consumption minimization strategy, etc. [16,17].
Current studies are conducted with the fixed power–demand [18]. In [19], the convex-
ity of the specific consumption curve is applied to improve the fuel economy. Based on
a suggested power–demand curve, a scalable energy management strategy is designed.
In [20], an online extremum-seeking method is used to estimate the maximum efficiency
and maximum power points of the fuel cell. In [21], a fixed speed trajectory in FCHTs
is divided into four states: traction, braking, coasting, and station parking, and then the
power distributions between fuel cell and the supercapacitor (SC) are distributed through a
multi-mode equivalent energy consumption method. The work in [22] extended to multiple
fuel cells, and realized the power splits among multiple fuel cells by means of the equiva-
lent fitting circle method, and optimized the power output of SC by means of equivalent
energy consumption method. In [23], Yan et al. optimized the speed trajectory with the
aim of achieving the minimum energy consumption, then determined the hybrid system
control strategy based on minimum hydrogen consumption. In [24], a rule-based energy
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management strategy was proposed to maximize regenerative braking energy recovery.
In [25], the braking process speed trajectory was obtained based on motor characteristic
curve, supercapacitor capacity, maximum acceleration, and other information to ensure
that the supercapacitor can obtain more regenerative braking energy, but this method does
not consider the efficiency of the fuel cell. In [26], sequential optimization was applied
to improve the potential of fuel efficiency, which develops a speed-smoothing strategy
first then optimizes the battery charge based on the smoothed speed profile. However, the
train control strategies impose direct impacts on the traction energy demand and are not
included in the energy management process in the sequential optimization process. This
may undermine the effectiveness of the optimization methods.

In the research area of hydrogen reduction for FCHTs, some recent papers proposed
different methods in co-optimizing both train control strategies and onboard energy man-
agement concurrently. In [27,28], PMP and DP were combined to solve this problem by
applying the Hamiltonian as the objective function of DP, but its application was inevitably
constrained by ”the curse of dimensionality” and the boundary-value problem. In [29],
Peng et al. proposed dynamic programming for co-optimization of train driving cycles and
energy management for fuel cell trains. The parallelization of DP has been proposed to re-
duce computation time. However, when the dimension of the state variables in the dynamic
programming model increases, the calculation time of the model will increase significantly
due to the characteristics of the algorithm characteristics. In [30], Jibrin et al. solved the
co-optimization of both energy management and speed trajectory by formulating a convex
optimization model using convexity relaxation techniques which greatly improved the
calculation efficiency, but convex optimization requires that every constraint in the model
is convex, which affects the flexibility of the model. The above-mentioned state-of-the-art
studies adopted DP and convex programming in dealing with the co-optimization, and
they all promoted the advantages of applying co-optimization for FCHTs.

However, it can be seen from the above research that the existing research on co-
optimization mainly adopts dynamic programming [27–29] and convex optimization [30].
Different from the existing methods of co-optimization, a new method is proposed in this
paper to solve the co-optimization problem, and the hydrogen-saving mechanism of a fuel
cell train is studied by using the co-optimization model. In addition, the energy-saving
potential of regenerative braking process and enhancement of fuel cell efficiency during
application by taking the advantage of the hybridization of both fuel cell and onboard ESDs
needs further investigation. A detailed overview and comparison of the existing research
and this paper are given in Table 1.

This paper aims to develop a time-based MILP model, which has a relatively short
computational time, to find the optimal speed trajectory and energy management strategy
simultaneously to minimize the net hydrogen consummations. The contributions of this
paper are as follows.

(1) A time-based co-optimization model based on MILP for FCHT is proposed to tackle
the intrinsic nonlinear efficiency characteristics of fuel cell and convert the traditional
energy-saving problem into a more realistic hydrogen-saving one. The train control,
namely, the train speed trajectory, and energy management between two adjacent
stations are optimized simultaneously to guide the autonomous driving.

(2) The impact of capacity of ESD on the hydrogen consumption has been studied for
FCHTs, and the corresponding hydrogen-saving mechanisms are explored with the
quantitative simulation results, giving an insightful analysis and discussion on the
mutual influence on optimal train operation.

The remainder of the paper is organized as follows: Section 2 proposes the mathemati-
cal model in detail, including motion model, energy flow model, piecewise linearization,
and objective modeling. Section 3 analyzes the impact of ESD capacity on hydrogen con-
sumption and gives the comparison between co-optimization and sequential optimization
under different scenarios. Section 4 concludes the study and discusses the future research
directions.
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Table 1. Overview of the existing research of FCHT energy management.

Publication Objective Solution Approach (es) Energy Management
Method (s)

Snoussi et al. [13] Minimize hydrogen consumption
and preserve battery life Sliding mode control Given speed trajectory

Kamal et al. [17]
Minimize hydrogen consumption
and maintain the state of charge of

the battery

A new fuel cell fuel consumption
minimization strategy Given speed trajectory

Zhang et al. [18] Minimize hydrogen consumption
Battery state of charge (SOC)

balanced strategy and dynamic
programming

Given speed trajectory and
power–demand curve

Peng et al. [19] Minimize hydrogen consumption
and battery loss

Adaptive Pontryagin’s minimum
principle-based strategies Given speed trajectory

Li et al. [20] Minimize hydrogen consumption
and the degradation of the stack Online extremum-seeking Given power–demand curve

Yan et al. [21] Minimize hydrogen consumption Multimode equivalent energy
consumption Given power–demand curve

Yan et al. [22] The lowest system energy
consumption Hierarchical control method Given power–demand curve

Yan et al. [23] Minimize hydrogen consumption Lagrangian algorithm Sequential optimization

Mendoza et al. [24] Maximize the energy recovered
during braking

A rule-based energy management
strategy

Given reference speed
trajectory.

Li et al. [25] Maximize regenerative braking
energy Pontryagin‘s minimum principle Sequential optimization

Chen et al. [26] Minimize fuel consumption Velocity smoothing strategy Sequential optimization

Uebel et al. [27] Minimize fuel consumption Dynamic programming and
Pontryagin’s maximum principle Co-optimization

Kim et al. [28] Minimize hydrogen consumption Dynamic programming and
Pontryagin’s maximum principle

The possible optimal control
state is determined first for

co-optimization
Peng et al. [29] Minimize energy consumption Dynamic programming Co-optimization
Jibrin et al. [30] Minimize hydrogen consumption Convex optimization Co-optimization

This paper Minimize net hydrogen consumption Mixed Integer Linear
Programming Co-optimization

2. Methods
2.1. Motion Model

In this paper, the train is modeled as a particle. In [31], a distance-based MILP
model is established to find the optimal speed trajectory of a FCHT, where ∆di are known
parameters and ∆ti are variables, as shown in Figure 1. However, heavy computational
loads are required when calculating the output power from the fuel cells, Pi = Ei/ti. It is
noted that both Ei and ti are both variables and the linearization of the ratio in the MILP
model results in computational complexity due to the large magnitude difference and
nonlinear relationship between the energy consumption and the corresponding time in the
ith distance segment. Alternatively, this paper proposes a time-based MILP model to avoid
this nonlinear relationship, where ∆ti are known parameters and ∆di are variables. The
train speed at each time instance is determined by the MILP model, and it is considered that
the train accelerates or decelerates uniformly in each time segment. As shown in Figure 1,
the speed trajectory is divided into N time segments, and the train travels through each
segment with a fixed period of time, ∆ti, the length of which can vary according to different
case scenarios. The distance traveled in the ith segment is denoted by ∆di.
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Figure 1. The discretization process of speed trajectory based on time and distance. vi is the speed at
di; ti is the time required for the train to reach the distance di. The time elapsed and distance traveled
between two adjacent speeds are ∆ti and ∆di, respectively.

In this study, we assume that the train travels at a constant acceleration or deceleration
rate during each time period; thus, ∆di can be calculated by (1).

∆di = vi,ave∆t (1)

where vi,ave is the average speed in ith segment denoted by (2).
When the total running time and travel distance are T and D, respectively, the number

of the segments is N = T/∆t. Therefore, the total distance of the train should meet the
constraint (3).

vi,ave = (vi+1 + vi)/2 (2)
N

∑
i=1

∆di = D. (3)

When the train is running, it will be subjected to the resistance from the rotating shaft,
rail, and air drag. In the model, the train resistance is modeled by the the Davis equation,
Equation (4):

fi,drag = A + Bvi,ave + Cv2
i,ave (4)

where fi,drag is the drag force in the ith segment. A, B, and C are Davis coefficients.
To ensure safe operation of the train and the comfort of the passenger, the acceler-

ation and deceleration cannot exceed their maximum value. The values for maximum
acceleration and deceleration can follow the data from dealing with similar train operation
optimization problems [10].

−Ab,max ≤ (vi+1 − vi)/∆t = ai ≤ Aa,max (5)

where Aa,max and Ab,max are the maximum acceleration and deceleration rate, respectively.
The speed of the train should not exceed its speed limit, vi,L, at each time instance ti.

The definition of vi,L is given by (29).

vi ≤ vi,L. (6)



Energies 2022, 15, 2891 6 of 21

2.2. Energy Flow Model

Similar to normal train operations, there are four control strategies of FCHTs: traction,
cruising, coasting, and braking. When the train is in traction or cruising, the hydrogen fuel
cell and ESD provide the power to the train. During coasting, there is no need to provide
energy to the train, and kinetic energy is used to overcome resistance. Because the fuel
cells cannot absorb the regenerative braking energy (RBE) when the train is braking, ESD
is used to recover the RBE. A simple schematic diagram of a fuel cell hybrid system is
shown in Figure 2. This paper will optimize the train energy distribution strategy from the
perspective of energy flow.

MotorFC

ESD

Motor

ESD

Energy from fuel cell Energy provided by ESD

Energy recovered by ESD Energy consumed by resistor

Figure 2. Energy flow during the traction and regenerative braking operations of an FCHT. Fuel cell
(FC) and ESD both provide energy to the electric motor during traction mode and the electric motor
conducts regenerative braking to charge ESD or convert the energy directly into heat in braking
resistors.

The conservation laws of energy in traction and braking process are modeled by (7)
and (8), respectively. There are four types of energy: the traction energy or braking energy
by the electric machines, the change of potential energy and kinetic energy of the train, and
the energy converted to heat due to the drag force.

Ei,segηm −Mg∆hi −
1
2

M(v2
i+1 − v2

i )− fi,drag∆di ≥ 0 (7)

Ei,seg/ηm −Mg∆hi −
1
2

M(v2
i+1 − v2

i )− fi,drag∆di ≥ 0 (8)

where M is the total mass of the train, g is the acceleration rate due to gravity, ∆hi is the
altitude difference of ith segment, Ei,seg is the traction or braking energy of the motor in
the ith segment, and ηm is the efficiency of the motor. When Ei,seg is greater than zero, it
means the train is in traction or cruising mode, and Ei,segηm is smaller than Ei,seg/ηm. (7)
will be applied while (8) is relaxed. When Ei,seg is equal to zero, the train is coasting; when
Ei,seg is less than zero, the train is braking, and Ei,segηm is greater than Ei,seg/ηm. (8) will be
applied while (7) is relaxed. The relaxation corresponding to different train state is listed
in Table 2. In addition, it should be noted that during the braking mode, the mechanical
braking and electrical braking can both be applied. In this case, (8) will reach “>” when
mechanical braking and regenerative braking happens at the same time, transforming the
kinetic energy to heat and electricity, and it will reach “=” when only regenerative braking
energy happens, transforming the kinetic energy to electricity.

Table 2. Different values of Ei,seg and their corresponding train state.

Ei,seg + − 0

Train state Traction, cruising Braking Coasting
Motoring (7) Applied Relaxed Applied
Braking (8) Relaxed Applied Applied
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In order to model the physical characteristic constraints of the motor, the operation
of the motor should conform to its traction and braking characteristics. During motoring,
the sum of the output power of the fuel cell and ESD should be less than the maximum
traction power of the motor. During braking, the braking power should not exceed the
maximum braking power of the motor. These related constraints are as follows:

−Fb,max∆diηm ≤ Ei,seg ≤ Ft,max∆di/ηm (9)

−Pb,max∆tηm ≤ Ei,seg ≤ Pt,max∆t/ηm (10)

where Pt,max and Pb,max are the maximum traction power and maximum braking power
respectively. Ft,max and Fb,max are maximum traction force and maximum braking force,
respectively.

The energy flow during each time segment can be modeled by using a binary variable
λi (11).

λi(Ei, f c + Ei,disηESD)− (1− λi)Ei,ch/ηESD ≥ Ei,seg (11)

Etrac =
N

∑
i=1

(Ei, f c + Ei,dis) (12)

E f c =
N

∑
i=1

Ei, f c (13)

where ηESD is efficiency of ESD. Etrac is the energy required for train traction, which can
be calculated by (12). Ei, f c is the energy from hydrogen fuel cell, Ei,dis is the energy from
ESD. Ei,ch is the energy recovered by ESD at the ith segment. E f c is the energy provided by
the fuel cell throughout the operation. When the train is braking, regenerative energy is
generated and charged into ESD.

λi is a binary variable; it guarantees that the charging and discharging of ESD will
not occur simultaneously, and the fuel cell will not charge ESD directly, as constrained by
(14)–(16). L is a sufficiently large number that it is greater than the maximum energy that
the fuel cell and ESD can provide in ∆t. When λi = 1, ESD discharges and the fuel cell
operates, and the constraints (15) and (16) are relaxed, and Ei,ch is equal to 0. When λi = 0,
ESD is charged and the fuel cell stops operating, and the constraint (14) is relaxed.

0 ≤ Ei,ch ≤ (1− λi)L (14)

0 ≤ Ei,dis ≤ λiL (15)

0 ≤ Ei, f c ≤ λiL. (16)

In this study, the state of energy (SOE) is used to denote the energy state of ESD; a
similar modeling was adopted in [32], and its value is the current available energy of ESD
divided by its total capacity (17). To ensure that the total charged and discharged energy
does not exceed the capacity of ESD, (18) should be satisfied.

SOEi =
Eini + ∑i

j=1 Ej,ch −∑i
j=1 Ej,dis

Ecap
(17)

0 ≤ SOEi ≤ 1 (18)

where Eini is the initial available energy in ESD. Ecap is the capacity of ESD.
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For the output power of the fuel cell and ESD, they should be less than the rated
power, and the charging power of ESD should be less than the rated charging power. These
constraints are given by

Ei, f c ≤ Pf c,max∆t (19)

Ei,ch ≤ Pd,max∆t (20)

Ei,dis ≤ Pc,max∆t (21)

where Pf c,max is the maximum output power of the fuel cell, and Pd,max and Pc,max are the
maximum discharging and charging power of ESD, respectively.

2.3. Piecewise Linearization Using Special Ordered Set Type 2 (SOS2)
2.3.1. Speed-Related Variables

In the MILP model, a series of variables related to speed are included, and the rela-
tionship between them is nonlinear. Piecewise linearization (PWL) is applied to handle
nonlinear relationships, which can represent a nonlinear function with a series of nonneg-
ative variables of the special ordered set type 2 (SOS2), among which only two adjacent
ones can be greater than 0, with the total sum of all variables equal to 1 [33]. To linearize
the nonlinear constraints in (4) and (7), a series of ascending numbers, C1, C2, . . . , CK, are
defined to represent any speed within the range from v0 to vN . As a result, the decision
variables v2

i , the approximation of the speed v
′
i, v

′
i,ave, and v

′2
i,ave, can be expressed by

v2
i =

K

∑
j=1

C2
j αi,j (22)

v
′
i =

K

∑
j=1

Cjαi,j (23)

v
′
i,ave =

v
′
i + v

′
i+1

2
=

K

∑
j=1

Cjβi,j (24)

v
′2
i,ave =

K

∑
j=1

C2
j βi,j (25)

where αi,j and βi,j are variables of SOS2. The two variable of SOS2 should satisfy the
constraints (26) and (27).

K

∑
j=1

αi,j = 1,
K

∑
j=1

βi,j = 1 (26)

0 ≤ αi,j ≤ 1, 0 ≤ βi,j ≤ 1. (27)

Using the preset points, e.g., C1, C2, . . . , CK and C2
1 , C2

2 , . . . , C2
K, along any nonlinear 2D

curve to present the relationship between two variables, it is possible to apply a variable of
SOS2 to approximate the PWL relationship in between. In this section, we present the PWL
modeling technique to approximate the quadratic relationship between the instant speed vi
and its square v2

i . In the following sections, our discussion will be focused on identifying
the preset points, and the detailed modeling technique can be referred to the one using
SOS2 variables discussed in this section.
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2.3.2. Speed Limit and Altitude

For speed limits, as shown in Figure 3, the speed at each point cannot exceed the
speed limit of the red curve, but speed limit generally is based on distance, so di is used to
indicate the position of the train (28) where i = 2, 3, . . . , N, and d1 = ∆d1.

di =
i

∑
j=1

∆dj. (28)

Figure 3. The modeling of speed limit and altitude, where Vj is the maximum speed at DL
j , and Hk is

the altitude at Dh
k . Altitude and speed limit curve are divided into O and M segments, respectively.

The values of O and M can be adjusted according to the actual engineering situation to ensure that
the linear relationship between two adjacent points is close to the actual situation.

By introducing PWL, the maximum speed limit at each point, vi,L, can be formulated by

vi,L = al
jdi + bl

j, di ∈ [DL
j , DL

j+1) (29)

al
j =

Vj+1 −Vj

DL
j+1 − DL

j
, bl

j = Vj −
Vj+1 −Vj

DL
j+1 − DL

j
DL

j (30)

Let αv
i,j be the SOS2 variable sets to formulate the piecewise linear relationship of the

speed limit for each di; the calculation can be conducted as shown in (31).

vi,L =
Vj+1 −Vj

DL
j+1 − DL

j
di + Vj −

Vj+1 −Vj

DL
j+1 − DL

j
DL

j =
M−1

∑
j=1

Djα
v
i,j,

M−1

∑
j=1

αv
i,j = 1 (31)

where j = 0, 1, 2, . . . , M− 1, DL
0 = 0, DL

M = D. The speed at the distance of D is limited by

vN,L = VM. (32)

Similarly, the piecewise linear function of altitude, fh, can be obtained. It is shown in
Figure 3, and the gradient of di can be calculated by

hi = ah
k di + bh

k , di ∈ [Dh
k , Dh

k+1) (33)

ah
k =

Hk+1 − Hk

Dh
k+1 − Dh

k
, bh

k = Hk −
Hk+1 − Hk

Dh
k+1 − Dh

h
Dh

k (34)
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Let αh
i,k be the SOS2 variable sets to formulate the piecewise linear relationship of the

altitude for each di; the calculation can be conducted as shown in (35).

hi =
Hk+1 − Hk

Dh
k+1 − Dh

k
di + Hk −

Hk+1 − Hk

Dh
k+1 − Dh

h
Dh

k =
O−1

∑
k=1

Dkαh
i,k,

O−1

∑
k=1

αh
i,k = 1 (35)

where k = 0, 1, 2, . . . , O− 1, Dh
0 = 0, Dh

O = D. The altitude at distance D is given as follows.

hN = HO (36)

Then, the gradient difference can be obtained by

∆hi = hi+1 − hi. (37)

2.3.3. Hydrogen Efficiency

In this model, hydrogen consumption rate is used to calculate the final consumption
of the hybrid system. Based on the fuel-cell efficiency, the hydrogen consumption rate can
be calculated by

Cri f c =
Pi, f c

H · ηi, f c
(38)

where Pi, f c and ηi, f c are the power output and efficiency of the fuel cell in ith segment,
H is the combustion heat value of hydrogen, and Cri, f c is the corresponding hydrogen
consumption rate whose modeling is further illustrated in Figure 4.

Figure 4. The modeling of hydrogen consumption rate curve which is divided into S segments. Xr is
the normalized power of the fuel cell and Zr is the corresponding hydrogen consumption rate.

The hydrogen consumption rate for fuel cell is closely related to its output power,
and it is normally represented with respect to the normalized power [29,34]; thus, in this
proposed method, the hydrogen consumption rate can be modeled as follows:

Cri, f c = a f c
r θi, f c + b f c

r , θi, f c ∈ [Xr, Xr+1) (39)

a f c
r =

Zr+1 − Zr

Xr+1 − Xr
, b f c

r = Zr −
Zr+1 − Zr

Xr+1 − Xr
Xr (40)
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Let αC
i,r be the SOS2 variable sets to formulate the piecewise linear relationship of the

hydrogen consumption rate; the calculation can be conducted as shown in (41).

Cri, f c =
Zr+1 − Zr

Xr+1 − Xr
θi, f c + Zr −

Zr+1 − Zr

Xr+1 − Xr
Xr =

S−1

∑
r=1

XrαC
i,r,

S−1

∑
r=1

αC
i,r = 1 (41)

where r = 0, 1, 2, . . . , S− 1, X0 = 0, XS = 100, θi, f c is the fuel cell normalized power which
can be calculated by

θi, f c =
Pi, f c

Pf c,max
· 100%. (42)

When the normalized power is XS, the hydrogen consumption rate is given by

CrN, f c = ZS. (43)

In the time-based MILP model, the power of the fuel cell is obtained by

Pi, f c = Ei, f c/∆t. (44)

2.4. Co-Optimization and Sequential Optimization Model

For a hydrogen fuel cell, the consumption of the hydrogen fuel in ith segment, mi,
can be calculated by (45). The total consumption of hydrogen fuel, m f c, can be calculated
by (46).

mi, f c = Cri, f c∆t (45)

m f c =
N

∑
i=1

mi, f c. (46)

To evaluate the value of hydrogen consumption, we apply an equivalent conversion
of the energy discharged from or charged into ESD to hydrogen consumption, i.e., the
hydrogen consumed by the fuel cell operating at the fixed efficiency to produce the same
amount of energy discharged from ESD. In this paper, we take the maximum efficiency of
the fuel cell, η f c,max.

mi,ESD =
Pi,ESD · ∆t
Hη f c,max

(47)

where mi,ESD is the equivalent hydrogen consumption of ESD in the ith segment. Pi,ESD is
the power of ESD in the ith segment. The value of Pi,ESD is calculated by

Pi,ESD =
Ei,dis − Ei,ch

∆t
. (48)

In the whole operation process, the RBE recovered by ESD can be calculated by (49),
and its equivalent hydrogen can be calculated by (50).

Ech =
N

∑
i=1

Ei,ch (49)

mch =
Ech

Hη f c,max
. (50)
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2.4.1. Co-Optimization

The objective function of co-optimization is applied in the co-optimization model, as
shown in (51), which is to minimize the net hydrogen consumption (NHC) in the whole
operation process.

NHC = min
vi ,Pi, f c ,Pi,ESD

N

∑
i=1

(mi,ESD(vi, Pi,ESD)

+mi, f c(vi, Pi, f c))

(51)

where vi, Pi, f c, and Pi,ESD are the decision variables. The demanded power curve is
determined by vi, and the energy management strategies are determined by Pi, f c and
Pi,ESD, both of which help the train operate at the minimum hydrogen consumption are
obtained simultaneously.

2.4.2. Sequential Optimization

On the other hand, the objective function of the sequential optimization is introduced
as follows. Compared with the control strategy of electric or fossil-fuel vehicles, hybrid
electric vehicles (HEV) are challenging, since there are more control states resulted by the
nonlinear characteristics of fuel cells and the charge and discharge states of ESD. Sequential
optimization can reduce the computing load and memory usage. The objective equations
of sequential optimization are as follows:

1. Step 1: Speed trajectory optimization
The first step is to obtain the speed trajectory with the aim of minimizing net energy
consumption (NEC) of the motor. Namely, we take (52) as the objective function. Thus,
it needs to be subject to constraints related to the solving speed trajectory, (1) ∼ (10)
and (22) ∼ (35).

NEC = min
vi

N

∑
i=1

Ei,seg(vi) (52)

Subject to: (1)–(10) and (22)–(35) where vi is the decision variable.
2. Step 2: Energy management optimization

The second step is to optimize the energy management with the aim of minimizing
the net hydrogen consumption (NHC). In this step, the speed trajectory is obtained
during the first step, determining the energy demand of the motor, Ei,seg. Thus, the
second step can be described as (53).

NHC = min
Pi, f c ,Pi,ESD

N

∑
i=1

(mi,ESD(Pi,ESD)

+mi, f c(Pi, f c))

Subject to: (11)− (21) and (36)− (47)

(53)

where Pi, f c and Pi,ESD are the decision variables.

3. Results

The modeling parameters of FCHT in this paper are listed in Table 3 with references
to the design proposed in [29]. The global optimizer used in this study to solve the MILP
model is GUROBI9.0 [35]. In this section, the optimization results of the time-based MILP
model are analyzed. In this study, the supercapacitor is applied as ESD for FCHT. The
energy density of the supercapacitor is in the range of 2.5∼15 kWh/t [36], and it also has a
relatively high efficiency, generally around 95% [37]. In this paper, the energy density is
selected to be 10 kWh/t, i.e., 36 MJ/kg. At the same time, the converters (such as GTO
and IGBT), motors, and gear system also have energy losses. As mentioned in [38], the
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efficiency of them are in the range of 98.5∼99.5%, 90∼94%, and 96∼98%, respectively. In
this paper, the efficiency of the converters and gear system is incorporated in the motor
efficiency, set as 90%.

Table 3. Key parameters used in the FCHT model.

Symbol Description Value

M(t) Total mass of the train 72.2
D(km) Total travel distance 10

T(s) Total travel time 450
∆t(s) The time of each interval 9

A(kN) Davis coefficient 1.5
B( kN

m/s ) Davis coefficient 0.006
C( kN

m2/s2 ) Davis coefficient 0.0067
Aa,max(m/s2) Maximum acceleration 1
Ab,max(m/s2) Maximum deceleration −1

ηm(%) Motor efficiency 0.9
ηESD(%) ESD efficiency 0.95

H(MJ/kg) Combustion heat value of hydrogen 140
η f c,max Maximum efficiency of fuel cell 60%

Pf c,max(kW) Maximum power of fuel cell 250
PESD,max(kW) Maximum power of ESD 400
Pm,max(kW) Maximum traction power 600
Pb,max(kW) Maximum braking power 445
Fm,max(kN) Maximum traction effort 80

Proton exchange membrane fuel cells (PEMFCs) are widely used for their stability and
efficiency. A power–efficiency curve of a PEMFC stack is shown in Figure 5. The power–
efficiency model does not consider the characteristics of current and auxiliary system in
detail, but only considers the relationship between fuel cell efficiency and output power.
When the output power of the fuel cell is low, the efficiency is low due to the factors related
to the operation of the air compressor, cooling, and humidifying system. The efficiency
decreases due to the increase of current at high load demand. It is noted that since the
power–efficiency relationship shows that the lowest efficiency of the fuel cell is 20% with
the output power of it being 0, when the efficiency is 20%, the fuel cell can be regarded to
be in the non-working status.
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Figure 5. Typical profiles of instant efficiency and hydrogen consumption rate for a fuel cell stack.
The fuel cell power normalized power is the ratio of the instant power output of the fuel cell in each
distance segment to the maximum fuel-cell power. The curves are linearly scaled based on model
used in [39]. It can be seen that fuel cells are more efficient with intermediate power output, i.e., 40%
to 60% of the maximum power.



Energies 2022, 15, 2891 14 of 21

3.1. The Impact of ESD Capacity on Hydrogen Consumption

In this section, the effect of ESD on the equivalent hydrogen consumption of a hybrid
power system is studied based on the co-optimization model. Two case studies, i.e., Case 1
and Case 2, are proposed to model the FCHT with and without ESDs, respectively. In
Case 1, the capacity of ESD is assumed to be 0 MJ to indicate that the FCHT is not equipped
with ESD, and ESD capacity in Case 2 is set to be 40 MJ. Comparison of results between the
two cases is shown in Table 4. The initial SOE for ESD in Case 2 is 1.

Table 4. Key parameter settings and optimization results for Case 1 and Case 2.

Case 1 Case 2

Capacity(MJ) 0 40
Etrac(MJ) 78.25 75.78
E f c(MJ) 78.25 36.27
m f c(g) 1067.66 418.54
Ech(MJ) / 11.51
mch(g) / 137.02

NHC(g) 1067.66 751.87

In Figure 6a, the optimized speed trajectories are demonstrated. It can be seen that the
speed trajectory varies when ESD is introduced. The acceleration of Case 1 without ESD is
smaller, so a longer acceleration phase and higher coasting speed are required to meet the
time constraint and this leads to more traction energy needed for Case 1.
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Figure 6. (a) Optimized speed trajectory using the co-optimization model for Case 1 and Case 2.
In Case 1, with no ESD deployed and lower maximum traction power, the acceleration phase is
prolonged from around 85 s to around 250 s. (b) Power splits between fuel cell and ESD, and the
fuel cell efficiency. In Case 2, the train obtains the higher traction power which is the sum of fuel cell
output power and ESD output power. The train in Case 1 has higher fuel cell power since there is no
ESD to provide extra power. Compared with the fuel cell in Case 1, its counterpart in Case 2 works at
a higher efficiency in general, as can be seen by looking at the red solid line and dashed line.

Power splits between fuel cell and ESD are shown in Figure 6b, where the solid
line represents the optimization results when ESD capacity is 40 MJ, and the dashed line
represents the results without ESD. It can be seen from this figure that the fuel cell in Case 2
outputs 100 kW for all working hours except for 150 kW for 10 to 20 s. ESD provides extra
power so that fuel cell in Case 2 can work with a higher efficiency. In addition, in Case 1,
the RBE is consumed directly as heat while the RBE is recovered by 11.51 MJ, which allows
12.83% equivalent hydrogen consumption to be saved in Case 2.

It can be seen that the net hydrogen consumption of the two is significantly different.
The net hydrogen consumption of Case 2 can obtain a saving of 29.58% compared with
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Case 1. This comparison shows that the introduction of ESD can reduce net hydrogen
consumption from two aspects. On the one hand, ESD assists fuel cells to avoid high-power
but low-efficient working states; on the other hand, RBE can be recovered to improve the
energy efficiency.

To show the detailed mechanism on how the fuel cell and ESD influence each other,
the relationship between fuel cell and ESD capacity is studied for this hybrid power system.
Optimization results with the varied ESD capacities by using the proposed model are
shown in Figure 7a,b. Note that the initial SOE for ESD is 1.

As can be seen from Figure 7a, as ESD capacity increases, net hydrogen consumption
decreases, and this trend is particularly evident in the low capacity, from 0 to 13 MJ. At
this stage, the equivalent hydrogen consumption of ESD is 0. It can be seen from Figure 7b
that the reason is that the energy provided by ESD is equal to the energy recovered. This
indicates that at low capacity, the increase in recovered regenerative braking energy can
significantly reduce net hydrogen consumption.
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Figure 7. (a) The relationship between ESD capacity and hydrogen consumption. Net hydrogen con-
sumption is the sum of hydrogen consumed from the fuel cell and equivalent hydrogen consumption
from ESD. Fuel cell average efficiency is defined to represent the conversion rate of hydrogen gas
over the entire operation. It is calculated by ηe f f =

E f c
H·m f c

. (b) The relationship between ESD capacity
and energy flows between different components. The demanded energy is the energy required for
train traction, which is the sum of the energy output of the fuel cell and ESD.

When ESD capacity increases from 13 to 40 MJ, the net hydrogen consumption of the
train decreases slowly, while the equivalent hydrogen consumption of ESD increases and
the hydrogen consumption of the fuel cell decreases. From the perspective of energy flow,
the hybrid power system is more inclined to use the energy in ESD due to the higher energy
efficiency of ESD. This is reflected in the fact that with the increase of ESD capacity, ESD
provides more energy for traction, which allows the fuel cell to work at a higher efficiency
and obtain a higher average efficiency. In addition, although the net hydrogen consumption
decreases slowly, it can be seen from Figure 7b that the demanded traction energy of the
train increases slowly, while the RBE also slightly decreases. This also reflects the higher
energy efficiency of the hybrid power system.

It is noted that when ESD capacity is greater than 40 MJ, the net hydrogen consumption
remains unchanged, and it can be seen from Figure 7a that the fuel cell average efficiency is
60%, which is the maximum value. Since the efficiency of ESD in this model is a constant,
and in this model, the maximum efficiency of the fuel cell, which is 60%, is used to equate
the energy provided by ESD to hydrogen consumption, the energy conversion rate of
the system reaches the highest, and the net hydrogen consumption of the system is the
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minimum. Therefore, when the objective is to minimize hydrogen consumption, 40 MJ can
be considered as the optimal ESD capacity of the system.

3.2. Case Study on Flat Track

Sections 3.2 and 3.3 are the comparison between co-optimization and sequential
optimization. In this section, a simple case is conducted to explore the difference between
the two methods on a flat track to avoid the effect of gradient and speed limit on traction
or braking power. The capacity of ESD in this case is selected as 40 MJ and its initial SOE
is 1, and the travel distance and time are 10 km and 450 s. The performance comparison
between the two is listed in Table 5, where Case 2 and Case 3 are based on co-optimization
and sequential optimization, respectively.

Table 5. The performance comparison between co-optimization and sequential optimization without
speed limit and gradient.

Case 2 Case 3

Computation time(s) 6.65 step 1 1.94

step 2 0.19
NEC(MJ) 64.27 62.28
E f c(MJ) 36.27 34.58
m f c(g) 418.54 446.11

NHC(g) 751.87 775.87

The speed trajectory and motor power are shown in Figure 8a. The solid line and the
dashed line represent the results of co-optimization and sequential optimization, respec-
tively. It can be seen that the speed trajectory of sequential optimization can be divided into
four stages, acceleration with maximum acceleration, cruising, coasting, and deceleration
with maximum deceleration, which meets the optimal control theory, and it should be
noted that the train of Case 3 which is based on sequential optimization accelerates to the
cruise speed with the maximum traction power, while Case 2 does not. Figure 8b represents
the power output of the fuel cell and ESD. From this figure, it can be seen that ESD of Case
2 and Case 3 have reached the maximum power output in the acceleration stage, and the
power difference at this stage is only reflected in the output power of the fuel cell.
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Figure 8. (a) The comparison of motor power. It can be seen that the train in Case 3 accelerates to
cruising speed with the maximum acceleration, while the one in Case 2 does not. (b) The comparison
of power output and the instant efficiency of the fuel cell. The fuel cell in Case 3 outputs higher
power but works with generally lower efficiency.
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In Figure 8b, it is shown that in the acceleration stage, the fuel cell efficiency of Case 3
is 55%, but for Case 2, except for the fuel cell output power of 11 s to 22 s, which is 150 kW
when the efficiency of fuel cell is 58%, the output power of the other acceleration time is
100 kW when the efficiency of fuel cell is 60%. That is to say, the fuel cell in Case 2 worked
at the point of higher efficiency during the whole acceleration process. As shown in Table 5,
even though the fuel cell of Case 3 provides less traction energy, the hydrogen consumption
of the fuel cell is still higher, which means that the average efficiency of the fuel cell in
Case 3 is lower than the one in Case 2.

It can be seen from Table 5 that the calculation time of sequential optimization is
short and it has an advantage in terms of net energy consumption, i.e., 62.28 MJ. In the
meantime, the result by co-optimization consumes 64.27 MJ of net energy. However,
since the efficiency of the fuel cell is improved during the operation obtained by co-
optimization, the net hydrogen consumption in the co-optimization results is lower, saving
3.1% compared to the one in Case 3. The sequential optimization first optimizes the speed
trajectory with the minimum energy consumption, so the NEC is less than co-optimization.
In terms of hydrogen consumption, the nonlinear characteristics of fuel cell efficiency are
considered during optimization in the co-optimization model proposed in this paper. This
method allows energy management to actively change the speed trajectory accordingly,
thereby changing the corresponding power–demand curve to further improve the energy
conversion efficiency of the fuel cell. As a result, the fuel cell efficiency in the operation
obtained by the co-optimization result is higher than the one in the results of sequential
optimization.

3.3. Case Study with Speed Limits and Gradients

The above cases are carried out on the assumption that there is no speed limit and
gradient in the journey. However, in the real-world railway operations, there are speed
limits and gradients along the journey. In this case, ESD capacity, travel distance, and
time were 40 MJ, 10 km, and 450 s, respectively. The initial SOE of ESD is 1. Case 4 and
Case 5 indicate co-optimization and sequential optimization, respectively. The geographic
information is shown in Figure 9a; a speed limit section, an uphill area, and a downhill area
are added.

With extra constraints of gradients and speed limits introduced, from the speed
trajectory profiles presented in Figure 9b, it can be seen that the train cruises at 72 km/h
in 196 s to 450 s in the speed limit area, and the train of sequential optimization is still
accelerating with maximum acceleration, which requires higher traction power. There
are still some differences in the two acceleration phases; the traction power of the train
in Case 5, from 0 to 62 s and 252 s to 285 s, is 600 kW, which means that the train has the
maximum acceleration.

As shown in Figure 9c, the efficiency in Case 4 in general is higher than the one
in Case 5 due to a better energy management on the train load demand to enable a
higher working efficiency of the fuel cell. As can be seen from Table 6, the net hydrogen
consumption in Case 4, i.e., co-optimization, is reduced by 6.48% compared with that in
Case 5, i.e., sequential optimization.

Different from the case study on the flat railway track, the speed trajectories of the two
methods are different in the cruising phase. It can be seen from the discharge of ESD of
Case 4 in Figure 9d that ESD discharges all the available energy during the acceleration
process of the train, so the train in Case 4 is not running at a constant cruise speed to avoid
the high fuel cell power. From the energy-efficiency point of view, the train needs higher
power during acceleration, so ESD is more inclined to discharge during the acceleration
process to increase the train’s speed, and this will support the fuel cell to work in states
with higher efficiency.

It can be seen from the above case studies that the power split strategy of both the fuel
cell and ESD is determined by the algorithm itself but not preset by rules. In the model,
only the total energy demand or generation of the train is considered, and by conducting
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the optimization, the power and energy split of the fuel cell and the supercapacitor can be
configured by the model automatically to achieve the objective of minimizing the hydrogen
consumption.

Table 6. The performance comparison between co-optimization (Case 4) and sequential optimization
(Case 5) with speed limit and gradients.

Case 4 Case 5

Computation time(s) 12.71 step 1 4.57

step 2 0.06
NEC(MJ) 66.57 64.52
E f c(MJ) 39.28 37.15
m f c(g) 459.47 512.99

NHC(g) 784.48 838.85
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Figure 9. The comparison of (a) the optimal speed trajectories, (b) the traction power profiles, (c) the
output power and efficiency profile of the fuel cell, and (d) ESD power and SOE profile in Case 4 and
Case 5.

4. Conclusions and Future Work

In this paper, we establish a time-based MILP co-optimization model to optimize
the train control and energy management simultaneously to minimize the net hydrogen
consumption. Based on this model, two problems are discussed. The first is the relationship
between ESD capacity and net hydrogen consumption in a hybrid power system. The
results show that ESD can reduce net hydrogen consumption by up to 29.58% in the
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proposed case study. It provides extra power to enable the fuel cell to work at the point of
higher efficiency, leading to a significant reduction of net hydrogen consumption.

Another problem is the difference between co-optimization and sequential optimiza-
tion. Two specific scenarios are simulated to compare the net hydrogen consumption,
and the results show that co-optimization can save 6.48% net hydrogen consumption in
the proposed case study. The advantage of co-optimization is that it tends to avoid the
working states of high power and low efficiency for a fuel cell, which mainly exist during
the acceleration phase, and the power–demand curve can be optimized simultaneously to
find a global optimal solution.

In this paper, the optimal ESD capacity is obtained based on the minimum hydrogen
consumption, without considering the device initial cost and other engineering factors,
and the results may not fully reflect the economic indicators of the railway line operation.
In addition, the whole life-cycle optimization of fuel cell and ESD is not considered in
the proposed model, and the multi-station operation, considering optimal running time
allocation, can also be explored in the future. Therefore, in future, the cost and detailed
characteristics of ESD and the whole life-cycle cost can be further studied in the model to
achieve a more realistic optimization result, and flexible running time can be considered. It
also should be noted that the linearization technique we used in the paper is to transfer
the nonlinear optimization problem into an MILP problem to achieve a more efficient
method of finding the global optimal solution. However, the approximation applied in the
modeling process brings the errors, and the evaluation of the error and the comparison
between the linearized and nonlinear method on the same problem is also the potential
future direction from the perspective of methodology. The size of voltage of the energy
system is also an important variable in the train control, which is of great significance to
implement the energy management strategy of the train and ensure that the train runs at
the optimal speed trajectory. Therefore, in the future work, the voltage will be considered
in the model.
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