Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (342)

Search Parameters:
Keywords = energy safety and security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 283
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 285
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

87 pages, 5171 KiB  
Review
Toward Secure Smart Grid Systems: Risks, Threats, Challenges, and Future Directions
by Jean Paul A. Yaacoub, Hassan N. Noura, Ola Salman and Khaled Chahine
Future Internet 2025, 17(7), 318; https://doi.org/10.3390/fi17070318 - 21 Jul 2025
Viewed by 522
Abstract
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. [...] Read more.
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. However, with the integration of complex technologies and interconnected systems inherent to smart grids comes a new set of safety and security challenges that must be addressed. First, this paper provides an in-depth review of the key considerations surrounding safety and security in smart grid environments, identifying potential risks, vulnerabilities, and challenges associated with deploying smart grid infrastructure within the context of the Internet of Things (IoT). In response, we explore both cryptographic and non-cryptographic countermeasures, emphasizing the need for adaptive, lightweight, and proactive security mechanisms. As a key contribution, we introduce a layered classification framework that maps smart grid attacks to affected components and defense types, providing a clearer structure for analyzing the impact of threats and responses. In addition, we identify current gaps in the literature, particularly in real-time anomaly detection, interoperability, and post-quantum cryptographic protocols, thus offering forward-looking recommendations to guide future research. Finally, we present the Multi-Layer Threat-Defense Alignment Framework, a unique addition that provides a methodical and strategic approach to cybersecurity planning by aligning smart grid threats and defenses across architectural layers. Full article
(This article belongs to the Special Issue Secure Integration of IoT and Cloud Computing)
Show Figures

Figure 1

31 pages, 759 KiB  
Article
Secure Optimization Dispatch Framework with False Data Injection Attack in Hybrid-Energy Ship Power System Under the Constraints of Safety and Economic Efficiency
by Xiaoyuan Luo, Weisong Zhu, Shaoping Chang and Xinyu Wang
Electricity 2025, 6(3), 38; https://doi.org/10.3390/electricity6030038 - 3 Jul 2025
Viewed by 439
Abstract
Hybrid-energy vessels offer significant advantages in reducing carbon emissions and air pollutants by integrating traditional internal combustion engines, electric motors, and new energy technologies. However, during operation, the high reliance of hybrid-energy ships on networks and communication systems poses serious data security risks. [...] Read more.
Hybrid-energy vessels offer significant advantages in reducing carbon emissions and air pollutants by integrating traditional internal combustion engines, electric motors, and new energy technologies. However, during operation, the high reliance of hybrid-energy ships on networks and communication systems poses serious data security risks. Meanwhile, the complexity of energy scheduling presents challenges in obtaining feasible solutions. To address these issues, this paper proposes an innovative two-stage security optimization scheduling framework aimed at simultaneously improving the security and economy of the system. Firstly, the framework employs a CNN-LSTM hybrid model (WOA-CNN-LSTM) optimized using the whale optimization algorithm to achieve real-time detection of false data injection attacks (FDIAs) and post-attack data recovery. By deeply mining the spatiotemporal characteristics of the measured data, the framework effectively identifies anomalies and repairs tampered data. Subsequently, based on the improved multi-objective whale optimization algorithm (IMOWOA), rapid optimization scheduling is conducted to ensure that the system can maintain an optimal operational state following an attack. Simulation results demonstrate that the proposed framework achieves a detection accuracy of 0.9864 and a recovery efficiency of 0.969 for anomaly data. Additionally, it reduces the ship’s operating cost, power loss, and carbon emissions by at least 1.96%, 5.67%, and 1.65%, respectively. Full article
Show Figures

Figure 1

34 pages, 1962 KiB  
Article
Light Pollution Beyond the Visible: Insights from People’s Perspectives
by Thanos Balafoutis, Christina Skandali, Spyros Niavis, Lambros T. Doulos and Stelios C. Zerefos
Urban Sci. 2025, 9(7), 251; https://doi.org/10.3390/urbansci9070251 - 1 Jul 2025
Viewed by 1158
Abstract
Light pollution, most visible in large cities through the absence of star-filled night skies, has become a growing issue of concern across many disciplines. It is not just an esthetic or astronomical problem, but a complex phenomenon with widespread effects on various sectors. [...] Read more.
Light pollution, most visible in large cities through the absence of star-filled night skies, has become a growing issue of concern across many disciplines. It is not just an esthetic or astronomical problem, but a complex phenomenon with widespread effects on various sectors. The scientific literature highlights several key areas impacted either directly or indirectly by light pollution: astronomy, ecology and biodiversity, the environment and climate change, human health and well-being, the ongoing energy crisis, economy, tourism, public safety and security, and finally politics. A survey was conducted to explore two main objectives. The first was to evaluate public awareness of light pollution, particularly how individuals perceive its impact across different societal sectors. The second objective was to consult lighting experts to obtain detailed insights into how severely each sector is affected by light pollution. The data collected from both the general public and lighting experts were analyzed and compared to provide a clearer picture of light pollution’s actual consequences. This dual-perspective approach aims to identify potential gaps between public perception and expert knowledge. Understanding these gaps is essential for shaping effective awareness campaigns and informing policy decisions. Ultimately, this research serves as a foundational step toward prioritizing mitigation strategies. By aligning scientific data with social understanding, stakeholders can develop targeted interventions that reduce light pollution’s negative effects while promoting sustainable lighting practices for the future. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

20 pages, 1710 KiB  
Article
On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking
by Jie Zheng, Linfan Chen, Gun Huang, Jun Wang and Weile Geng
Appl. Sci. 2025, 15(13), 7167; https://doi.org/10.3390/app15137167 - 25 Jun 2025
Viewed by 233
Abstract
Coal and gas outburst remains a critical and persistent challenge in coal extraction, posing a profound threat for mine safety. The underlying mechanisms of such disaster, particularly the gas-driven coal fragmentation, continue to elude comprehensive understanding. To explore this problem, in this paper, [...] Read more.
Coal and gas outburst remains a critical and persistent challenge in coal extraction, posing a profound threat for mine safety. The underlying mechanisms of such disaster, particularly the gas-driven coal fragmentation, continue to elude comprehensive understanding. To explore this problem, in this paper, gas seepage regularity in different structural bituminous coal and its influence on outburst-coal breaking were investigated through strength tests, isothermal adsorption tests, and gas seepage tests of stressed coal under various conditions. The results indicated that coal permeability decreased as axial stress, confining pressure, and gas kinetic diameter increased. That meant outburst-induced abrupt stress unloading and coal matrix destabilization changed gas seepage characteristics. As a result, a self-reinforcing cycle effect where outburst-coal breaking and gas seepage are mutually stimulated was formed in a short time period when outbursts initiated, which further promoted outburst-coal breaking and outburst initiation. The findings of this study enhance our understanding of the mechanism of gas participating in coal fragmentation during outbursts, which are significantly conducive to gas disaster prevention, sustainable coal production, and efficient CBM development, further ensuring global energy security. Full article
Show Figures

Figure 1

27 pages, 833 KiB  
Article
Prioritization of the Critical Factors of Hydrogen Transportation in Canada Using the Intuitionistic Fuzzy AHP Method
by Monasib Romel and Golam Kabir
Energies 2025, 18(13), 3318; https://doi.org/10.3390/en18133318 - 24 Jun 2025
Viewed by 333
Abstract
Hydrogen is a potential source of imminent clean energy in the future, with its transportation playing a crucial role in allowing large-scale deployment. The challenge lies in selecting an effective, sustainable, and scalable transportation alternative. This study develops a multi-criteria decision-making (MCDM) framework [...] Read more.
Hydrogen is a potential source of imminent clean energy in the future, with its transportation playing a crucial role in allowing large-scale deployment. The challenge lies in selecting an effective, sustainable, and scalable transportation alternative. This study develops a multi-criteria decision-making (MCDM) framework based on the intuitionistic fuzzy analytic hierarchy process (IF-AHP) to evaluate land-based hydrogen transportation alternatives across Canada. The framework includes uncertainty and decision-maker hesitation through the application of triangular intuitionistic fuzzy numbers (TIFNs). Seven factors, their subsequent thirty-three subfactors, and three alternatives to hydrogen transportation were identified through a literature review. Pairwise comparison was aggregated among factors, subfactors, and alternatives from three decision makers using an intuitionistic fuzzy weighted average, and priority weights were computed using entropy-based weight. The results show that safety and economic efficiency emerged as the most influential factors in the evaluation of hydrogen transportation alternatives, followed by environmental impact, security, and social impact and public health in ascending order. Among the alternatives, tube truck transport obtained the highest overall weight (0.3551), followed by pipelines (0.3272) and rail lines (0.3251). The findings suggest that the tube ruck is currently the most feasible transport option for land-based hydrogen distribution that aims to provide a transition of Canada’s energy mix. Full article
(This article belongs to the Special Issue Advanced Studies on Clean Hydrogen Energy Systems of the Future)
Show Figures

Figure 1

29 pages, 2057 KiB  
Article
Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel
by Ewelina Orysiak, Jakub Figas, Maciej Prygiel, Maksymilian Ziółek and Bartosz Ryłko
Appl. Sci. 2025, 15(13), 7118; https://doi.org/10.3390/app15137118 - 24 Jun 2025
Viewed by 393
Abstract
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the [...] Read more.
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the safe and efficient use of liquefied natural gas (LNG) as bunkering fuel in the region. The analysis draws on long-term meteorological and hydrological datasets (1971–2020), including satellite observations and in situ measurements. It identifies operational constraints, such as wind speed, wave height, visibility, and ice cover, and assesses their impact on LNG logistics and terminal functionality. Thresholds for safe operations are evaluated in accordance with IMO and ISO safety standards. An ice severity forecast for 2011–2030 was developed using the ECHAM5 global climate model under the A1B emission scenario, indicating potential seasonal risks to LNG operations. While baseline safety criteria are generally met, environmental variability in the region may still cause temporary disruptions. Findings underscore the need for resilient port infrastructure, including anti-icing systems, heated transfer equipment, and real-time environmental monitoring, to ensure operational continuity. Integrating weather forecasting into LNG logistics supports uninterrupted deliveries and contributes to EU goals for energy diversification and emissions reduction. The study concludes that strategic investments in LNG infrastructure—tailored to regional climatic conditions—can enhance energy security in the southern Baltic, provided environmental risks are systematically accounted for in operational planning. Full article
Show Figures

Figure 1

23 pages, 8121 KiB  
Article
Investigating Light Hydrocarbon Pipeline Leaks: A Comprehensive Study on Diffusion Patterns and Energy Safety Implications
by Shuxin Zhang, Xiaohui Xia, Yufa Deng, Xiaochun Han, Banghui Deng, Huituan Liu, Xi Yan and Liqiong Chen
Energies 2025, 18(12), 3151; https://doi.org/10.3390/en18123151 - 16 Jun 2025
Viewed by 342
Abstract
Light hydrocarbon fuels are widely utilized in industrial production and transportation due to their high calorific value and clean combustion characteristics. Compared to traditional oil tanker transportation, pipelines not only reduce transportation costs but also minimize environmental impact. To understand the leakage and [...] Read more.
Light hydrocarbon fuels are widely utilized in industrial production and transportation due to their high calorific value and clean combustion characteristics. Compared to traditional oil tanker transportation, pipelines not only reduce transportation costs but also minimize environmental impact. To understand the leakage and diffusion law of light hydrocarbon pipelines, this paper takes light hydrocarbon pipelines as the research object, establishes the conceptual model of the process of light hydrocarbon leakage and diffusion, divides the four major processes of leakage and diffusion, analyzes the relevant theory, and deduces a formula. The numerical model of pipeline–air–soil leakage and diffusion was established to analyze the whole process of light hydrocarbon leakage and diffusion. The diffusion behavior of individual hydrocarbon components is examined, along with a comparative analysis between multi-component and single-component leakage scenarios. Simulation results reveal that the leakage process comprises three stages: an initial rapid diffusion phase, a transitional phase where a stable region begins to form, and a final stage where the diffusion pattern stabilizes around 800 s. C3 and C5 exhibit the largest diffusion ranges among gaseous and liquid hydrocarbons, respectively. In multi-component systems, the vaporization sequence suppresses the overall diffusion range compared to single-component cases, though gas-phase hydrocarbons tend to accumulate near the leakage source. Understanding the leakage and diffusion behavior of light hydrocarbon pipelines is crucial for energy security. By accurately modeling these processes, we can determine the impact zones of potential pipeline failures and establish appropriate safety buffers. This proactive approach not only safeguards human life and the environment but also ensures the reliable and uninterrupted delivery of energy resources. Consequently, such research is instrumental in fortifying the resilience and dependability of energy infrastructure. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

21 pages, 1037 KiB  
Systematic Review
Evaluating the Sustainability of the Natural Gas-Based Methanol-to-Gasoline Industry: A Global Systematic Review
by Hussein Al-Yafei, Saleh Aseel and Ali Ansaruddin Kunju
Sustainability 2025, 17(12), 5355; https://doi.org/10.3390/su17125355 - 10 Jun 2025
Viewed by 917
Abstract
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing [...] Read more.
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing environmental concerns and the demand for cleaner fuels. This review’s rationale is to assess MTG’s ability to lessen environmental impact while preserving compatibility with current fuel infrastructure. The goal is to examine methanol and gasoline’s effects on the environment, society, and economy throughout their life cycles. This review used a two-phase systematic literature review methodology, filtering and evaluating studies that were indexed by Scopus using bibliometric and thematic analysis. A total of 25 documents were reviewed, in which 22 documents analyzed part of this study, and 68% employed LCA or techno-economic analysis, with the U.S. contributing 35% of the overall publications. A comparative analysis of the reviewed literature indicates that methanol-based fuels offer significantly lower greenhouse gas (GHG) emissions and life cycle environmental impacts than gasoline, particularly when combined with carbon capture and renewable feedstocks. This review also highlights benefits, such as improved safety and energy security, while acknowledging challenges, including high production costs, infrastructure adaptation, and toxicity concerns. Several drawbacks are high manufacturing costs, the necessity to adjust infrastructure, and toxicity issues. The report suggests investing in renewable methanol production, AI-driven process optimization, and robust legislative frameworks for integrating green fuels. The life cycle sustainability assessment (LCSA) of NGTM and MTG systems should be investigated in future studies, particularly in light of different feedstock and regional circumstances. The findings emphasize NGTM and MTG’s strategic role in aligning with several UN Sustainable Development Goals (SDGs) and add to the worldwide conversation on sustainable fuels. A strong transition necessitates multi-stakeholder cooperation, innovation, and supporting policies to fully realize the sustainability promise of cleaner fuels like methanol. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

46 pages, 3547 KiB  
Review
Powering the Future: Unveiling the Potential of Na, K, and Mg Solid-State Batteries
by Ruoxu Shang, Yi Ma, Kathrine Anduaga-Quiros, Gustavo Briseno, Yuying Ning, Hung-Ju Chang, Mihrimah Ozkan and Cengiz S. Ozkan
Nanomaterials 2025, 15(11), 859; https://doi.org/10.3390/nano15110859 - 3 Jun 2025
Cited by 1 | Viewed by 711
Abstract
In the pursuit of advancing sustainable energy storage solutions, solid-state batteries (SSBs) have emerged as a formidable contender to traditional lithium-ion batteries, distinguished by their superior energy density, augmented safety measures, and improved cyclability. Amid escalating concerns regarding resource scarcity, environmental ramifications, and [...] Read more.
In the pursuit of advancing sustainable energy storage solutions, solid-state batteries (SSBs) have emerged as a formidable contender to traditional lithium-ion batteries, distinguished by their superior energy density, augmented safety measures, and improved cyclability. Amid escalating concerns regarding resource scarcity, environmental ramifications, and the safety hazards posed by lithium-ion technologies, the exploration into non-lithium SSBs has emerged as a crucial frontier for technological breakthroughs. This exhaustive review delves into the latest progressions and persisting challenges within the sphere of sodium (Na), potassium (K), and magnesium (Mg) SSBs, spotlighting seminal materials, cutting-edge technologies, and strategic approaches propelling advancements in this vibrant domain. Despite considerable progress, hurdles such as amplifying ionic conductivity, mitigating the intricacies at the electrode–electrolyte interface, and realizing scalable production methodologies continue to loom. Nevertheless, the trajectory for non-lithium SSBs holds considerable promise, poised to redefine the landscape of electric vehicles, portable electronics, and grid stabilization technologies, thereby marking a significant leap toward realizing a sustainable and energy-secure future. This review article aims to provide a detailed overview of the materials and methodologies underpinning the development of these next-generation energy storage devices, underscoring their potential to catalyze a paradigm shift in our approach to energy storage and utilization. Full article
(This article belongs to the Special Issue Nanomaterials for Battery Applications)
Show Figures

Graphical abstract

15 pages, 2769 KiB  
Article
Converting Agroforestry Biowaste into Stable Near-Natural Chars via Hydrothermal Humification and Pyrolysis for Immobilizing Plasticizer
by Tao Xue, Yi Li, Zimo Chen, Chao Kong, Biyun Feng, Changyin Zhu, Yinlong Zhang, Jianming Xue and Hu Cheng
Agriculture 2025, 15(11), 1177; https://doi.org/10.3390/agriculture15111177 - 29 May 2025
Viewed by 326
Abstract
To ensure agricultural safety and ecological security, it is crucial to effectively immobilize emerging organic pollutants, such as plasticizers, to prevent their migration in various environmental matrices. However, the ideal immobilization agent with the advantages of being environmentally friendly is very rare. In [...] Read more.
To ensure agricultural safety and ecological security, it is crucial to effectively immobilize emerging organic pollutants, such as plasticizers, to prevent their migration in various environmental matrices. However, the ideal immobilization agent with the advantages of being environmentally friendly is very rare. In this study, low-cost and stable near-natural immobilization agents, char-derived artificial humic acids, CHAs, were proposed and prepared via hydrothermal humification (180 °C) and pyrolysis (300, 500, or 700 °C) of agroforestry biowaste. The resulting CHAs exhibit high purity (composed primarily of C (67.28–81.35%), O (6.65–21.64%), H (1.40–5.28%), and N (0.36–0.58%)) with remarkably low ash content (5.43–10.02%). Characterization revealed a compact structure with a limited porosity with small surface area (0.27–0.32 m2 g−1) and pore volume (2.99–3.43 × 10−4 cm3 g−1). Notably, high-temperature pyrolysis induced consumption of oxygen-containing functional groups while promoting aromatic structure formation. The sorption behavior of diethyl phthalate, a representative plasticizer, on CHAs was well described by both Langmuir isotherm and pseudo-second-order kinetic models. The CHAs exhibited remarkable sorption performance for diethyl phthalate, with a maximum sorption capacity reaching 3345 mg kg−1 as determined by the Langmuir model. The sorption of diethyl phthalate onto CHAs is mainly multi-layer sorption dominated by physical processes, mainly including pore filling, partitioning, hydrogen bonding, and π–π stacking. Mean sorption energies ranging from 2.56 to 4.99 × 10−3 kJ mol−1 indicate the predominance of physical sorption mechanisms. This study developed a method to convert the liquid by-product produced during hydrothermal humification of biowaste into stable near-natural and carbon-rich char materials, and the proposed materials show great promise in immobilizing pollutants from various environmental matrices. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

26 pages, 4267 KiB  
Review
Ammonia-Based Clean Energy Systems: A Review of Recent Progress and Key Challenges
by Mengwei Sun, Zhongqian Ling, Jiani Mao, Xianyang Zeng, Dingkun Yuan and Maosheng Liu
Energies 2025, 18(11), 2845; https://doi.org/10.3390/en18112845 - 29 May 2025
Viewed by 868
Abstract
Ammonia is gaining increasing attention as a zero-carbon fuel and hydrogen carrier, offering high energy density, mature liquefaction infrastructure, and strong compatibility with existing energy systems. This review presents a comprehensive summary of the recent advances in ammonia-based clean energy systems. It covers [...] Read more.
Ammonia is gaining increasing attention as a zero-carbon fuel and hydrogen carrier, offering high energy density, mature liquefaction infrastructure, and strong compatibility with existing energy systems. This review presents a comprehensive summary of the recent advances in ammonia-based clean energy systems. It covers the fuel’s physicochemical properties, green synthesis pathways, storage and transport technologies, combustion behavior, NOX formation mechanisms, emission control strategies, and safety considerations. Co-firing approaches with hydrogen, methane, coal, and DME are evaluated to address ammonia’s low reactivity and narrow flammability limits. This paper further reviews engineering applications across power generation, maritime propulsion, and long-duration energy storage, drawing insights from current demonstration projects. Key technical barriers—including ignition delay, NOX emissions, ammonia slip, and economic feasibility—are critically examined. Finally, future development trends are discussed, highlighting the importance of integrated system design, low-NOX combustor development, solid-state storage materials, and supportive policy frameworks. Ammonia is expected to serve as a strategic energy vector bridging green hydrogen production with zero-carbon end-use, facilitating the transition to a sustainable, secure, and flexible energy future. Full article
Show Figures

Figure 1

30 pages, 20750 KiB  
Article
A Proposal for Alternative Navigation Routes Following the Development of Offshore Wind Farms in the Waters of the Republic of Korea
by Sung-Wook Ohn and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(5), 980; https://doi.org/10.3390/jmse13050980 - 19 May 2025
Viewed by 885
Abstract
In the future, electricity generation through eco-friendly renewable energy will accelerate. Surrounded by sea on three sides, the Republic of Korea is gaining attention for offshore wind power as a future industry, leveraging advantages of its maritime environment. However, maritime navigation remains active [...] Read more.
In the future, electricity generation through eco-friendly renewable energy will accelerate. Surrounded by sea on three sides, the Republic of Korea is gaining attention for offshore wind power as a future industry, leveraging advantages of its maritime environment. However, maritime navigation remains active in waters, with maritime transportation being crucial, as it accounts for over 95% of the country’s cargo volume. Therefore, ensuring the safety of vessel operations is vital when constructing offshore wind farms. This study proposed alternative routes to ensure the safety of vessels and secure existing routes in the waters of the southwestern sea, where intensive development of OWFs is expected. The routes were determined based on the Permanent International Association of Navigation Congresses (PIANC) Guidelines and Maritime Traffic Safety Act’s implementation guidelines. Clearance between a maritime route and OWF was set to the rule of 6 L + 0.3 NM + 500 m for safety. The route width was calculated while considering vessel maneuverability, environmental factors, seabed conditions, the depth-to-draft ratio, and two-way traffic. The alternative routes were categorized into four types—maritime highways, maritime provincial routes, approach routes for departure/arrival, and recommended routes based on vessel positions, engine status, and route function. By considering traffic flow and applying international and domestic standards, these routes will ensure safe, efficient, and orderly vessel operations. Full article
(This article belongs to the Special Issue Maritime Traffic Engineering)
Show Figures

Figure 1

Back to TopTop