On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking
Abstract
1. Introduction
2. Materials and Methods
2.1. Coal Sample Preparation
2.2. Experimental Procedure
2.2.1. Strength Tests of Coal Samples
2.2.2. Isothermal Adsorption Tests
2.2.3. Gas Seepage Tests of Stressed Coal Samples
3. Results and Discussion
3.1. Strength Characteristics of Coal Samples
3.2. Adsorption Characteristics of Coal Samples
3.3. Gas Seepage Regularity in Different Structural Bituminous Coal Samples
3.4. Influence of Gas Seepage on Outburst-Coal Breaking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Wang, E.Y.; Li, Z.H.; Shen, R.; Liu, X.F. Study and application of a new gas pressure inversion model in coal seam while drilling based on directional drilling technology. Fuel 2021, 306, 121679. [Google Scholar] [CrossRef]
- Beamish, B.B.; Crosdale, P.J. Instantaneous outbursts in underground coal mines: An overview and association with coal type. Int. J. Coal Geol. 1998, 35, 27–55. [Google Scholar] [CrossRef]
- Chen, K.P. A new mechanistic model for prediction of instantaneous coal outbursts–Dedicated to the memory of Prof. Daniel D. Joseph. Int. J. Coal Geol. 2011, 87, 72–79. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G.; Cheng, Q.; Zhen, L.B.; Cai, Y.; Wang, W.Z. Degradation of mechanical and microporous properties of coal subjected to long-term sorption. Fuel 2022, 315, 123245. [Google Scholar] [CrossRef]
- Wen, S.M.; Zhou, K.; Lu, Q. A discussion on CBM development strategies in China: A case study of PetroChina Coalbed Methane Co., Ltd. Nat. Gas Ind. B 2019, 6, 610–618. [Google Scholar] [CrossRef]
- Su, E.; Zhu, X.; Chen, X.; Zou, Q.L.; Yang, K.; Chen, H.D.; Wei, J.Q. Analysis of methane diffusion on permeability rebound and recovery in coal reservoirs: Implications for deep coalbed methane-enhanced extraction. Phys. Fluids 2024, 36, 076622. [Google Scholar] [CrossRef]
- An, H.; Wei, X.; Wang, G.; Massarotto, P.; Wang, F.Y.; Rudolph, V.; Golding, S.D. Modeling anisotropic permeability of coal and its effects on CO2 sequestration and enhanced coalbed methane recovery. Int. J. Coal Geol. 2015, 152, 15–24. [Google Scholar] [CrossRef]
- Black, D.J. Review of coal and gas outburst in Australian underground coal mines. Int. J. Min. Sci. Technol. 2019, 29, 815–824. [Google Scholar] [CrossRef]
- Xoдoт, B.; Song, S.; Wang, Y. Coal and Gas Outburst; China Industrial Press: Beijing, China, 1966. [Google Scholar]
- Fan, C.J.; Li, S.; Luo, M.K.; Du, W.Z.; Yang, Z.H. Coal and gas outburst dynamic system. Int. J. Rock Mech. Min. Sci. 2017, 27, 49–55. [Google Scholar] [CrossRef]
- Shepherd, J.; Rixon, L.K.; Griffiths, L. Outbursts and geological structures in coal mines: A review. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 267–283. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, J.; Peng, S.J.; Yan, F.Z.; Yang, W.; Cheng, L.; Ni, G.H. Influence of Geo-stress on Dynamic Response Characteristics of Coal and Gas Outburst. Rock Mech. Rock Eng. 2020, 53, 4819–4837. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G.; Cheng, Q.; Jia, J.K.; Cai, Z.H. A Novel Experimental Apparatus for Evaluating Coal-and-Gas Outburst Risk. Nat. Resour. Res. 2022, 31, 535–550. [Google Scholar] [CrossRef]
- Skoczylas, N. Laboratory study of the phenomenon of methane and coal outburst. Int. J. Rock Mech. Min. Sci. 2012, 55, 102–107. [Google Scholar] [CrossRef]
- Sobczyk, J. A comparison of the influence of adsorbed gases on gas stresses leading to coal and gas outburst. Fuel 2014, 115, 288–294. [Google Scholar] [CrossRef]
- Zheng, J.; Liang, Q.M.; Zhang, X.; Huang, J.Y.; Yan, W.; Huang, G.; Liu, H.L. On Gas Desorption-Diffusion Regularity of Bituminous Coal with Different Particle Sizes and Its Influence on Outburst-Coal Breaking. Sustainability 2023, 15, 9894. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, T.; Jia, C.Z.; Li, X.F.; Wu, K.L.; He, M.X. Numerical simulation on natural gas migration and accumulation in sweet spots of tight reservoir. J. Nat. Gas Sci. Eng. 2020, 81, 103454. [Google Scholar] [CrossRef]
- Pan, Z.J.; Connell, L.D. A theoretical model for gas adsorption-induced coal swelling. Int. J. Coal Geol. 2007, 69, 243–252. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Liu, J.X.; Yu, S.; Sun, Z.H.; Wang, L.; Wu, S.W.; Ni, G.H.; Hao, C.M.; Zhang, R. Kinetic properties of coal gas desorption based on fractional order fractal diffusion equation in time. Energy 2025, 316, 134608. [Google Scholar] [CrossRef]
- An, F.H.; Cheng, Y.P.; Wu, D.M.; Wang, L. The effect of small micropores on methane adsorption of coals from Northern China. Adsorption 2013, 19, 83–90. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.H.; Xu, C.; Li, X.P.; Guo, H.J.; Yi, K.Q. Influence of gas diffusion in coal matrix on gas extraction process: Modeling, definition, and quantitative analysis. Gas Sci. Eng. 2025, 134, 205545. [Google Scholar] [CrossRef]
- Butt, S.D. Development of an apparatus to study the gas permeability and acoustic emission characteristics of an outburst-prone sandstone as a function of stress. Int. J. Rock Mech. Min. Sci. 1999, 36, 1079–1085. [Google Scholar] [CrossRef]
- Wang, H.P.; Liu, Z.Z.; Yuan, L.; Wang, S.G.; Wei, S.M.; Zhang, D.M. Experimental test and particle mechanical analysis of gas adsorption-induced coal rock degradation. Powder Technol. 2020, 362, 75–83. [Google Scholar] [CrossRef]
- Sampath, K.H.S.M.; Perera, M.S.A.; Ranjith, P.G.; Matthai, S.K. CO2 interaction induced mechanical characteristics alterations in coal: A review. Int. J. Coal Geol. 2019, 204, 113–129. [Google Scholar] [CrossRef]
- Zhang, C.L.; Wang, E.Y.; Xu, J.; Peng, S.J. Experimental investigation on mechanics and seepage characteristics of tectonic and intact coal containing gas. Appl. Sci. 2020, 10, 7290. [Google Scholar] [CrossRef]
- Zhao, P.X.; Liu, H.; Li, S.G.; Lin, H.F.; Jia, Y.Y.; Yan, M.; Yuan, M.Q.; Lin, J. Experimental Investigation of the Adsorption Characteristics of Mixed Coal and Variations of Specific Surface Areas before and after CH4 Adsorption. Appl. Sci. 2019, 9, 524. [Google Scholar] [CrossRef]
- Shilova, T.; Serdyukov, S. Permeability of Coking Coals and Patterns of Its Change in Leninsky Area, Kuznetsk Coal Basin, Russia. Appl. Sci. 2021, 11, 3969. [Google Scholar] [CrossRef]
- Xie, H.P.; Xie, J.; Gao, M.Z.; Zhang, R.; Zhou, H.W.; Gao, F.; Zhang, Z.T. Theoretical and experimental validation of mining-enhanced permeability for simultaneous exploitation of coal and gas. Environ. Earth. Sci. 2015, 73, 5951–5962. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhao, D.; Li, Y.T.; Zhang, L. Permeability Evolution of Intact and Fractured Coal during Progressive Deformation Subjected to True Triaxial Stresses. Processes 2023, 11, 2826. [Google Scholar] [CrossRef]
- Liu, Y.B.; Yin, G.Z.; Zhang, D.M.; Li, M.H.; Deng, B.Z.; Liu, C.; Zhao, H.G.; Yin, S.Y. Directional permeability evolution in intact and fractured coal subjected to true-triaxial stresses under dry and water-saturated conditions. Int. J. Rock Mech. Min. 2019, 119, 22–34. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; He, G.C.; Zhou, Z.L.; Wang, D.K.; Zhang, D.M. Research on a permeability model of coal damaged under triaxial loading and unloading. Fuel 2023, 354, 129375. [Google Scholar] [CrossRef]
- Li, Z.B.; Fan, Z.C.; Wang, H.; Wang, S.R.; Li, C. The mechanism of pore pressure and adsorption swelling effect on permeability during geological storage of carbon dioxide in coal seams. Fuel 2025, 381, 133437. [Google Scholar] [CrossRef]
- Zhu, W.C.; Wei, C.H.; Liu, J.; Xu, T.; Elsworth, D. Impact of Gas Adsorption Induced Coal Matrix Damage on the Evolution of Coal Permeability. Rock Mech. Rock Eng. 2013, 46, 1353–1366. [Google Scholar] [CrossRef]
- Tan, Y.L.; Pan, Z.J.; Liu, J.S.; Zhou, F.B.; Connell, L.D.; Sun, W.J.; Haque, A. Experimental study of impact of anisotropy and heterogeneity on gas flow in coal. Part II: Permeability. Fuel 2018, 230, 397–409. [Google Scholar] [CrossRef]
- Yan, Z.M.; Wang, K.; Zang, J.; Wang, C.; Liu, A. Anisotropic coal permeability and its stress sensitivity. Int. J. Min. Sci. Technol. 2019, 29, 507–511. [Google Scholar] [CrossRef]
- Wang, D.K.; Zhang, P.; Wei, J.P.; Yu, C. The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures. J. Nat. Gas Sci. Eng. 2020, 77, 103242. [Google Scholar] [CrossRef]
- Li, X.C.; Yan, X.P.; Kang, Y.L. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions. J. Geophys. Eng. 2018, 15, 386–396. [Google Scholar] [CrossRef]
- Zou, G.G.; Zhang, Q.H.; Peng, S.P.; She, J.S.; Teng, D.L.; Jin, C.C.; Che, Y.Y. Influence of geological factors on coal permeability in the Sihe coal mine. Int. J. Coal Sci. Technol. 2022, 9, 6. [Google Scholar] [CrossRef]
- Wu, S.; Tang, D.Z.; Li, S.; Wu, H.Y.; Hu, X.; Zhu, X.G. Effects of geological pressure and temperature on permeability behaviors of middle-low volatile bituminous coals in eastern Ordos Basin. Chin. J. Pet. Sci. Eng. 2017, 153, 372–384. [Google Scholar] [CrossRef]
- Lu, S.Q.; Li, M.J.; Ma, Y.K.; Wang, S.C.; Zhao, W. Permeability changes in mining-damaged coal: A review of mathematical models. J. Nat. Gas Sci. Eng. 2022, 106, 104739. [Google Scholar] [CrossRef]
- Yin, G.Z.; Li, M.H.; Li, W.P.; Jiang, C.B.; Cao, J.; Zhang, Q.G. Influence of gas pressure on mechanical and seepage characteristics of coal under unloading condition. J. Chin. Coal Soc. 2012, 37, 1499–1504. [Google Scholar]
- Peng, S.J.; Xu, J.; Yang, H.W.; Liu, D. Experimental study on the influence mechanism of gas seepage on coal and gas outburst disaster. Saf. Sci. 2012, 50, 816–821. [Google Scholar] [CrossRef]
- Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O. Adsorption and strain: The CO2-induced swelling of coal. J. Mech. Phys. Solids 2010, 58, 1489–1505. [Google Scholar] [CrossRef]
- Nikoosokhan, S.; Vandamme, M.; Dangla, P. A poromechanical model for coal seams saturated with binary mixtures of CH4 and CO2. J. Mech. Phys. Solids 2014, 71, 97–111. [Google Scholar] [CrossRef]
- Andrade, E.N.; Randall, R.F.; Makin, M.J. The Rehbinder Effect. In Proceedings of the Physical Society Section B; IOP Publishing: London, UK, 1950. [Google Scholar] [CrossRef]
- Liu, Y.J.; Xing, H.; Duan, Z.Y.; Yu, C.Y.; Tian, Z.C.; Teng, T. Study on Mechanical Characteristics of Deformation and the Failure of Gas-Containing Coal in the Wuhai Mining Area of China under Different Gas Pressure Conditions. Appl. Sci. 2022, 12, 10139. [Google Scholar] [CrossRef]
- Cai, F.; Yin, J.W.; Feng, J.Q. Effect of Methane Adsorption on Mechanical Performance of Coal. Appl. Sci. 2022, 12, 6597. [Google Scholar] [CrossRef]
- Ding, X.L.; Yu, S.B.; Ding, Y.S.; Kou, S.Q.; Tan, Q.M.; Zheng, Z.M. The mechanism of continuous failure of coal under the effect of gas seepage. Sci. Chin. 1989, 6, 600–607. [Google Scholar]
- Tan, Q.M.; Yu, S.B.; Zhu, H.Q.; Zheng, Z. Fracture of coal containing pressurized gas by sudden relieving. J. Chin. Coal Soc. 1997, 22, 514–518. [Google Scholar]
- Lei, Y.; Cheng, Y.P.; Ren, T.; Tu, Q.Y.; Shu, L.Y.; Li, Y.X. The Energy Principle of Coal and Gas Outbursts: Experimentally Evaluating the Role of Gas Desorption. Rock Mech. Rock Eng. 2021, 54, 11–30. [Google Scholar] [CrossRef]
- Guan, P.; Wang, H.Y.; Zhang, Y.X. Mechanism of instantaneous coal outbursts. Geology 2009, 37, 915–918. [Google Scholar] [CrossRef]
- Wang, S.G.; Elsworth, D.; Liu, J.S. Rapid decompression and desorption induced energetic failure in coal. J. Rock Mech. Geotech. 2015, 7, 345–350. [Google Scholar] [CrossRef]
- AQ 1024-2006; Specification for Identification of Coal and Gas Outburst Mine. Coal Industry Press: Beijing, China, 2006.
- Jiang, C.B.; Yin, G.Z.; Li, X.Q.; Cai, B. Experimental study of gas permeability of outburst coal briquettes in complete stress-strain process. Chin. J. Rock Mech. Eng. 2010, 29, 3482–3487. [Google Scholar]
- GB/T 212-2008; Proximate Analysis of Coal. Standards Press of China: Beijing, China, 2008.
- Kondo, S.; Ishikawa, T. Adsorption Science, 2nd ed.; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Kong, X.Y. Advanced Seepage Mechanics; University of Science and Technology of China Press: Hefei, China, 2010. [Google Scholar]
- Yin, S.; Wang, E.Y.; Li, Z.H.; Zang, Z.S.; Liu, X.F.; Zhang, C.L.; Ding, X.P.; Aihemaiti, A. Multifractal and b-value nonlinear time-varying characteristics of acoustic emission for coal with different impact tendency. Measurement 2025, 248, 116896. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, S.M. Experimental and theoretical characterization of methane and CO2 sorption hysteresis in coals based on Langmuir desorption. Int. J. Coal Geol. 2017, 171, 49–60. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Hill, T.L. Adsorption from a one-dimensional lattice gas and the Brunauer–Emmett–Teller equation. Proc. Natl. Acad. Sci. USA 1996, 93, 14328–14332. [Google Scholar] [CrossRef]
- Guria, C. Pressure- and temperature-dependent klinkenberg slippage effect in porous media to non-ideal gases. Geoenergy Sci. Eng. 2023, 224, 211629. [Google Scholar] [CrossRef]
- Moghadam, A.A.; Chalaturnyk, R. Expansion of the Klinkenberg’s slippage equation to low permeability porous media. Int. J. Coal Geol. 2014, 123, 2–9. [Google Scholar] [CrossRef]
- Luo, J.; Huang, G.; Zhang, L.; Huang, F.; Zheng, J. Micro shape of coal particle and crushing energy. Int. J. Min. Sci. Technol. 2018, 28, 1009–1014. [Google Scholar] [CrossRef]
Coal Type | Visual Density (g/cm3) | Real Density (g/cm3) | Porosity (%) | Aad (%) | Vdaf (%) | Mad (%) | FCad (%) |
---|---|---|---|---|---|---|---|
Bituminous coal | 1.405 | 1.485 | 9.16 | 14.93 | 17.28 | 1.10 | 66.73 |
Coal Sample | Axial Stress (MPa) | Confining Pressure (MPa) | Gas Pressure (MPa) | Gas Type | Sample Forming Pressure (MPa) |
---|---|---|---|---|---|
Raw coal samples | 4, 6, 8, 10 | 2, 4, 6 | 0.5, 1, 1.5, 2, 2.5, 3, 3.5 | CO2 N2 CH4 | -- |
Briquette coal samples | 2, 4 | 50, 70, 100, 130 |
Coal Sample | Sample Size | UCS (MPa) | Mean Value of (MPa) | Elastic Modulus (GPa) | Mean Value of (GPa) | Poisson’s Ratio | Mean Value of | |
---|---|---|---|---|---|---|---|---|
Diameter (mm) | Height (mm) | |||||||
RS-1 | 48.55 | 100.17 | 6.22 | 5.63 | 0.867 | 1.014 | - | 0.310 |
RS-2 | 48.69 | 100.05 | 5.57 | 0.923 | - | |||
RS-3 | 48.80 | 99.40 | 5.89 | 1.255 | 0.32 | |||
RS-4 | 49.10 | 104.14 | 4.83 | 1.011 | 0.30 |
Coal Sample | Sample Size | Sample Forming Pressure (MPa) | UCS (MPa) | Elastic Modulus (MPa) | Poisson’s Ratio | |
---|---|---|---|---|---|---|
Diameter (mm) | Height (mm) | |||||
BS-1 | 50.80 | 99.70 | 30 | 0.19 | 12.14 | 0.297 |
BS-2 | 50.80 | 99.80 | 50 | 0.31 | 16.32 | 0.329 |
BS-3 | 50.80 | 100.00 | 70 | 0.33 | 17.18 | 0.348 |
BS-4 | 50.80 | 98.60 | 100 | 0.62 | 28.78 | 0.353 |
BS-5 | 50.80 | 97.86 | 130 | 0.78 | 32.03 | 0.388 |
Coal Sample | Sample Size | Confining Pressure (MPa) | Cohesion Force (MPa) | Mean Value of (MPa) | Internal Friction Angle (°) | Mean Value of (°) | |
---|---|---|---|---|---|---|---|
Diameter (mm) | Height (mm) | ||||||
RT-1 | 48.45 | 100.02 | 2 | 0.94 | 1.35 | 60.94 | 49.43 |
RT-2 | 48.52 | 100.14 | 4 | 1.27 | 51.62 | ||
RT-3 | 48.48 | 100.05 | 5 | 1.41 | 47.69 | ||
RT-4 | 48.63 | 100.08 | 6 | 1.59 | 42.84 | ||
RT-5 | 48.59 | 100.11 | 8 | 1.54 | 44.06 |
Coal Sample | Sample Size | Sample Forming Pressure (MPa) | Cohesion Force (MPa) | Internal Friction Angle (°) | |
---|---|---|---|---|---|
Diameter (mm) | Height (mm) | ||||
BT-1 | 50.80 | 98.24 | 50 | 0.048 | 51.23 |
BT-2 | 50.80 | 99.06 | 70 | 0.053 | 52.06 |
BT-3 | 50.80 | 99.12 | 100 | 0.103 | 53.34 |
BT-4 | 50.80 | 99.20 | 130 | 0.125 | 54.54 |
Adsorbed Gas | Langmuir Adsorption Constant | ||
---|---|---|---|
(cm3/g) | (MPa−1) | Correlation Coefficient R2 | |
N2 | 9.42 | 3.61 | 0.998 |
CH4 | 17.46 | 1.93 | 0.982 |
CO2 | 37.30 | 1.22 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Chen, L.; Huang, G.; Wang, J.; Geng, W. On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking. Appl. Sci. 2025, 15, 7167. https://doi.org/10.3390/app15137167
Zheng J, Chen L, Huang G, Wang J, Geng W. On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking. Applied Sciences. 2025; 15(13):7167. https://doi.org/10.3390/app15137167
Chicago/Turabian StyleZheng, Jie, Linfan Chen, Gun Huang, Jun Wang, and Weile Geng. 2025. "On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking" Applied Sciences 15, no. 13: 7167. https://doi.org/10.3390/app15137167
APA StyleZheng, J., Chen, L., Huang, G., Wang, J., & Geng, W. (2025). On Gas Seepage Regularity in Different Structural Bituminous Coal and Its Influence on Outburst-Coal Breaking. Applied Sciences, 15(13), 7167. https://doi.org/10.3390/app15137167