Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (588)

Search Parameters:
Keywords = energy recovery in water systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 1508 KB  
Review
Renewable Energy-Driven Pumping Systems and Application for Desalination: A Review of Technologies and Future Directions
by Levon Gevorkov, Ehsan Saebnoori, José Luis Domínguez-García and Lluis Trilla
Appl. Sci. 2026, 16(2), 862; https://doi.org/10.3390/app16020862 - 14 Jan 2026
Abstract
Desalination is a vital solution to global water scarcity, yet its substantial energy demand persists as a major challenge. As the core energy-consuming components, pumps are fundamental to both membrane and thermal desalination processes. This review provides a comprehensive analysis of renewable energy [...] Read more.
Desalination is a vital solution to global water scarcity, yet its substantial energy demand persists as a major challenge. As the core energy-consuming components, pumps are fundamental to both membrane and thermal desalination processes. This review provides a comprehensive analysis of renewable energy source (RES)-driven pumping systems for desalination, focusing on the integration of solar photovoltaic and wind technologies. It examines the operational principles and efficiency of key pump types, such as high-pressure feed pumps for reverse osmosis, and underscores the critical role of energy recovery devices (ERDs) in minimizing net energy consumption. Furthermore, the paper highlights the importance of advanced control and energy management systems (EMS) in mitigating the intermittency of renewable sources. It details essential control strategies, including maximum power point tracking (MPPT), motor drive control, and supervisory EMS, that optimize the synergy between pumps, ERDs, and variable power inputs. By synthesizing current technologies and control methodologies, this review aims to identify pathways for designing more resilient, energy-efficient, and cost-effective desalination plants, supporting a sustainable water future. Full article
(This article belongs to the Section Energy Science and Technology)
21 pages, 7900 KB  
Article
Mechanisms and Multi-Field-Coupled Responses of CO2-Enhanced Coalbed Methane Recovery in the Yanchuannan and Jinzhong Blocks Toward Improved Sustainability and Low-Carbon Reservoir Management
by Hequn Gao, Yuchen Tian, Helong Zhang, Yanzhi Liu, Yinan Cui, Xin Li, Yue Gong, Chao Li and Chuncan He
Sustainability 2026, 18(2), 765; https://doi.org/10.3390/su18020765 - 12 Jan 2026
Viewed by 141
Abstract
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite [...] Read more.
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite and kaolinite. These synergistic processes remove pore fillings, enlarge flow channels, and generate new dissolution pores, thereby increasing the total pore volume while making the pore–fracture network more heterogeneous and structurally complex. Such reservoir restructuring provides the intrinsic basis for CO2 injectivity and subsequent CH4 displacement. Both adsorption capacity and volumetric strain exhibit Langmuir-type growth characteristics, and permeability evolution follows a three-stage pattern—rapid decline, slow attenuation, and gradual rebound. A negative exponential relationship between permeability and volumetric strain reveals the competing roles of adsorption swelling, mineral dissolution, and stress redistribution. Swelling dominates early permeability reduction at low pressures, whereas fracture reactivation and dissolution progressively alleviate flow blockage at higher pressures, enabling partial permeability recovery. Injection pressure is identified as the key parameter governing CO2 migration, permeability evolution, sweep efficiency, and the CO2-ECBM enhancement effect. Higher pressures accelerate CO2 adsorption, diffusion, and sweep expansion, strengthening competitive adsorption and improving methane recovery and CO2 storage. However, excessively high pressures enlarge the permeability-reduction zone and may induce formation instability, while insufficient pressures restrict the effective sweep volume. An optimal injection-pressure window is therefore essential to balance injectivity, sweep performance, and long-term storage integrity. Importantly, the enhanced methane production and permanent CO2 storage achieved in this study contribute directly to greenhouse gas reduction and improved sustainability of subsurface energy systems. The multi-field coupling insights also support the development of low-carbon, environmentally responsible CO2-ECBM strategies aligned with global sustainable energy and climate-mitigation goals. The integrated experimental–numerical framework provides quantitative insight into the coupled adsorption–deformation–flow–geochemistry processes in deep coal seams. These findings form a scientific basis for designing safe and efficient CO2-ECBM injection strategies and support future demonstration projects in heterogeneous deep coal reservoirs. Full article
Show Figures

Figure 1

34 pages, 802 KB  
Review
Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery
by Charith Akalanka Dodangodage, Jagath C. Kasturiarachchi, Induwara Arsith Wijesekara, Thilini A. Perera, Dilan Rajapakshe and Rangika Halwatura
Phycology 2026, 6(1), 14; https://doi.org/10.3390/phycology6010014 - 12 Jan 2026
Viewed by 96
Abstract
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient [...] Read more.
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient food production and water recovery. This critical review synthesizes empirical findings and engineering advancements published between 2008 and 2024, evaluating IAMS performance relative to traditional agriculture and recirculating aquaculture systems (RAS). Reported under controlled laboratory and pilot-scale conditions, IAMS have achieved nitrogen and phosphorus recovery efficiencies exceeding 95% while potentially reducing water consumption by up to 90% compared to conventional farming. The integration of microalgal photobioreactors enhances nutrient retention, may contribute to internal carbon capture, and enables the generation of diversified co-products, including biofertilizers and protein-rich aquafeeds. Nevertheless, significant barriers to commercial scalability persist, including the biological complexity of maintaining multi-trophic synchrony, high initial capital expenditure (CAPEX), and regulatory ambiguity regarding the safety of waste-derived algal biomass. Technical challenges such as photobioreactor upscaling, biofouling control, and energy optimization are critically discussed. Finally, the review evaluates the alignment of IAMS with UN Sustainable Development Goals 2, 6, and 13, and outlines future research priorities in techno-economic modeling, automation, and policy development to facilitate the transition of IAMS from pilot-scale innovations to viable industrial solutions. Full article
Show Figures

Graphical abstract

27 pages, 1847 KB  
Article
Title Use of Waste Heat from Generator Sets as the Low-Temperature Heat Source for Heat Pumps
by Sławomir Rabczak, Krzysztof Nowak and Karol Nowak
Energies 2026, 19(2), 361; https://doi.org/10.3390/en19020361 - 12 Jan 2026
Viewed by 137
Abstract
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator [...] Read more.
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator and an air-to-water heat pump operate within an insulated thermal chamber, enabling the recovery of waste heat to maintain a stable 15 °C inlet temperature for the heat pump. Theoretical analysis was supplemented with preliminary experimental tests performed on a small generator placed in a thermally insulated enclosure. Measurements of temperature rise and heat output allowed for verification of the real heat-recovery efficiency, which reached approximately 28%. Based on real household heating demand, this study evaluated annual heat demand, heat pump electricity consumption, and fuel requirements for several recovery scenarios (28%, 45%, and 60%). The results show that maintaining a constant 15 °C source temperature significantly improves heat-pump efficiency, reducing annual electricity demand. Increasing heat-recovery efficiency from 28% to 60% reduces fuel consumption by more than half and lowers the annual operating costs. The findings confirm the potential of generator-supported heat-pump systems to enhance energy efficiency in off-grid applications and provide a sound basis for further optimization and real-scale validation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

27 pages, 8235 KB  
Article
A Rock-on-a-Chip Approach to Investigate Flow Behavior for Underground Gas Storage Applications
by Marialuna Loffredo, Cristina Serazio, Nicolò Santi Vasile, Eloisa Salina Borello, Matteo Scapolo, Donatella Barbieri, Andrea Mantegazzi, Fabrizio Candido Pirri, Francesca Verga, Christian Coti and Dario Viberti
Energies 2026, 19(2), 348; https://doi.org/10.3390/en19020348 - 10 Jan 2026
Viewed by 107
Abstract
Large-scale storage solutions play a critical role in the ongoing energy transition, with Underground Hydrogen Storage (UHS) emerging as a possible option. UHS can benefit from existing natural gas storage expertise; however, key differences in hydrogen’s behavior compared to CH4 must be [...] Read more.
Large-scale storage solutions play a critical role in the ongoing energy transition, with Underground Hydrogen Storage (UHS) emerging as a possible option. UHS can benefit from existing natural gas storage expertise; however, key differences in hydrogen’s behavior compared to CH4 must be characterized at the pore scale to optimize the design and the management of these systems. This work investigates two-phase (gas–water) flow behavior using microfluidic devices mimicking reservoir rocks’ pore structure. Microfluidic tests provide a systematic side-by-side comparison of H2–water and CH4–water displacement under the same pore-network geometries, wettability, and flow conditions, focusing on the drainage phase. While all experiments fall within the transitional flow regime between capillary and viscous fingering, clear quantitative differences between H2 and CH4 emerge. Indeed, the results show that hydrogen’s lower viscosity enhances capillary fingering and snap-off events, while methane exhibits more stable viscous-dominated behavior. Both gases show rapid breakthrough; however, H2’s flow instability—especially at low capillary numbers (Ca)—leads to spontaneous water imbibition, suggesting stronger capillary forces. Relative permeability endpoints are evaluated when steady state conditions are reached: they show dependence on Ca, not just saturation, aligning with recent scaling laws. Despite H2 showing a different displacement regime, closer to capillary fingering, H2 mobility remains comparable to CH4. These findings highlight differences in flow behavior between H2 and CH4, emphasizing the need for tailored strategies for UHS to manage trapping and optimize recovery. Full article
(This article belongs to the Special Issue Advanced Underground Energy Storage Technologies)
Show Figures

Figure 1

34 pages, 1819 KB  
Review
Textile Wastewater Treatment by Membrane and Electrooxidation Processes: A Critical Review
by Milena Espinosa, César Afonso, Bárbara Saraiva, Davide Vione and Annabel Fernandes
Clean Technol. 2026, 8(1), 9; https://doi.org/10.3390/cleantechnol8010009 - 8 Jan 2026
Viewed by 276
Abstract
The textile industry is one of the largest consumers of water worldwide and generates highly complex and pollutant-rich textile wastewater (TWW). Due to its high load of recalcitrant organic compounds, dyes, salts, and heavy metals, TWW represents a major environmental concern and a [...] Read more.
The textile industry is one of the largest consumers of water worldwide and generates highly complex and pollutant-rich textile wastewater (TWW). Due to its high load of recalcitrant organic compounds, dyes, salts, and heavy metals, TWW represents a major environmental concern and a challenge for conventional treatment processes. Among advanced alternatives, electrooxidation (EO) and membrane technologies have shown great potential for the efficient removal of dyes, organic matter, and salts. This review provides a critical overview of the application of EO and membrane processes for TWW treatment, highlighting their mechanisms, advantages, limitations, and performance in real industrial scenarios. Special attention is given to the integration of EO and membrane processes as combined or hybrid systems, which have demonstrated synergistic effects in pollutant degradation, fouling reduction, and water recovery. Challenges such as energy consumption, durability of electrode and membrane materials, fouling, and concentrate management are also addressed. Finally, future perspectives are proposed, emphasizing the need to optimize hybrid configurations and ensure cost-effectiveness, scalability, and environmental sustainability, thereby contributing to the development of circular water management strategies in the textile sector. Full article
Show Figures

Figure 1

22 pages, 1115 KB  
Review
Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review
by Akmaral Darmenbayeva, Reshmy Rajasekharan, Zhanat Idrisheva, Roza Aubakirova, Zukhra Dautova, Gulzhan Abylkassova, Manira Zhamanbayeva, Irina Afanasenkova and Bakytgul Massalimova
Polymers 2026, 18(2), 153; https://doi.org/10.3390/polym18020153 - 6 Jan 2026
Viewed by 225
Abstract
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and [...] Read more.
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and oilseed by-products. Emphasis is placed on the relationship between feedstock composition and extraction efficiency, highlighting how lignin distribution, hemicellulose content, and mineral impurities influence pretreatment severity, cellulose yield, and process sustainability. The review systematically analyzes chemical, enzymatic, and mechanical processing routes, with particular attention being paid to pretreatment strategies, fibrillation intensity, and yield variability. Beyond cellulose recovery, key sustainability indicators—such as energy demand, water and chemical consumption, waste generation, and chemical recovery—are evaluated to provide a system-level perspective on process efficiency. The analysis demonstrates that cellulose yield alone is an insufficient criterion for sustainable process design and must be considered alongside environmental and techno-economic metrics. Advanced applications of agro-waste-derived cellulose are discussed using a feedstock-driven approach, showing that high functional performance can often be achieved with moderately processed cellulose tailored to specific end uses. Finally, the review addresses challenges related to feedstock heterogeneity, mineral management, standardization, and industrial scale-up, underscoring the importance of biorefinery integration, closed-loop resource management, and harmonized quality descriptors. These insights provide a foundation for the development of scalable and sustainable cellulose production pathways based on agro-industrial waste. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

23 pages, 3422 KB  
Article
Evolution of Urban–Agricultural–Ecological Spatial Structure Driven by Irrigation and Drainage Projects and Water–Heat–Vegetation Response
by Tianqi Su and Yongmei
Agriculture 2026, 16(2), 142; https://doi.org/10.3390/agriculture16020142 - 6 Jan 2026
Viewed by 152
Abstract
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal [...] Read more.
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal remote sensing data from 1985 to 2015, this study takes the Inner Mongolia Hetao Plain as the research area, constructs a “multifunctionality–dynamic evolution” dual-principle classification system for urban–agricultural–ecological space, and adopts the technical process of “separate interpretation of each single land type using the maximum likelihood algorithm followed by merging with conflict pixel resolution” to improve the classification accuracy to 90.82%. Through a land use transfer matrix, a standard deviation ellipse model, surface temperature (LST) inversion, and vegetation fractional coverage (VFC) analysis, this study systematically reveals the spatiotemporal differentiation patterns of spatial structure evolution and surface parameter responses throughout the project’s life cycle. The results show the following: (1) The spatial structure follows the path of “short-term intense disturbance–long-term stable optimization”, with agricultural space stability increasing by 4.8%, the ecological core area retention rate exceeding 90%, and urban space expanding with a shift from external encroachment to internal filling, realizing “stable grain yield with unchanged cultivated land area and improved ecological quality with controlled green space loss”. (2) The overall VFC shows a trend of “central area stable increase (annual growth rate 0.8%), eastern area fluctuating recovery (cyclic amplitude ±12%), and western area local improvement (key patches increased by 18%)”. (3) The LST-VFC relationship presents spatiotemporal misalignment, with a 0.8–1.2 °C anomalous cooling in the central region during the construction period (despite a 15% VFC decrease), driven by irrigation water thermal inertia, and a disrupted linear correlation after completion due to crop phenology changes and plastic film mulching. (4) Irrigation and drainage projects optimize water resource allocation, constructing a hub regulation model integrated with the Water–Energy–Food (WEF) Nexus, providing a replicable paradigm for ecological effect assessment of major water conservancy projects in arid regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

24 pages, 666 KB  
Review
Green Extraction at Scale: Hydrodynamic Cavitation for Bioactive Recovery and Protein Functionalization—A Narrative Review
by Francesco Meneguzzo, Federica Zabini and Lorenzo Albanese
Molecules 2026, 31(1), 192; https://doi.org/10.3390/molecules31010192 - 5 Jan 2026
Viewed by 344
Abstract
Hydrodynamic cavitation (HC) is a green and readily scalable platform for the recovery and upgrading of bioactives from agri-food and forestry byproducts. This expert-led narrative review examines HC processing of citrus and pomegranate peels, softwoods, and plant protein systems, emphasizing process performance, ingredient [...] Read more.
Hydrodynamic cavitation (HC) is a green and readily scalable platform for the recovery and upgrading of bioactives from agri-food and forestry byproducts. This expert-led narrative review examines HC processing of citrus and pomegranate peels, softwoods, and plant protein systems, emphasizing process performance, ingredient functionality, and realistic routes to market, and contrasts HC with other green extraction technologies. Pilot-scale evidence repeatedly supports water-only operation with high solids and short residence times; in most practical deployments, energy demand is dominated by downstream water removal rather than the extraction step itself, which favors low water-to-biomass ratios. A distinctive outcome of HC is the spontaneous formation of stable pectin–flavonoid–terpene phytocomplexes with improved apparent solubility and bioaccessibility, and early studies indicate that HC may also facilitate protein–polyphenol complexation while lowering anti-nutritional factors. Two translational pathways appear near term: (i) blending HC-derived dry extracts with commercial dry protein isolates to deliver measurable functional benefits at low inclusion levels and (ii) HC-based extraction of plant proteins to obtain digestion-friendly isolates and conjugate-ready ingredients. Priority gaps include harmonized reporting of specific energy consumption and operating metrics, explicit solvent/byproduct mass balances, matched-scale benchmarking against subcritical water extraction and pulsed electric field, and evidence from continuous multi-ton operation. Overall, HC is a strong candidate unit operation for circular biorefineries, provided that energy accounting, quality retention, and regulatory documentation are handled rigorously. Full article
(This article belongs to the Special Issue Bioproducts for Health, 4th Edition)
Show Figures

Graphical abstract

21 pages, 4915 KB  
Article
Performance Analysis of Seawater Desalination Using Reverse Osmosis and Energy Recovery Devices in Nouadhibou
by Ahmed Ghadhy, Amine Lilane, Hamza Faraji, Said Ettami, Abdelkader Boulezhar and Dennoun Saifaoui
Liquids 2026, 6(1), 2; https://doi.org/10.3390/liquids6010002 - 24 Dec 2025
Viewed by 624
Abstract
Arid zones, such as the MENA regions and the Sahara countries, are experiencing significant water stress. To address this global challenge, desalination technologies provide a crucial solution, particularly the reverse osmosis (RO) technique, which is widely used to treat Seawater or Brackish water. [...] Read more.
Arid zones, such as the MENA regions and the Sahara countries, are experiencing significant water stress. To address this global challenge, desalination technologies provide a crucial solution, particularly the reverse osmosis (RO) technique, which is widely used to treat Seawater or Brackish water. Mauritania is among the countries facing a scarcity of potable water resources and relies on desalination technologies to meet its water demand. In this work, a numerical and experimental study was carried out on the functional and productive parameters of the Nouadhibou desalination plant in Mauritania using MATLAB/Simulink (R2016a). The study considered two operating scenarios: with and without the energy recovery unit. The objective of this paper is to perform an analytical study of the operating procedures of the Nouadhibou RO desalination plant by varying several parameters, such as the pressure exchanger, and the feed water mixing ratio in the pressure exchanger unit, etc., in order to determine the system’s optimal operating point. This paper analyzes the system’s performance under different conditions, including recovery rate, feed water temperature, and PEX splitter ratio. In Case No. 1 (without a pressure recovery unit), and with a recovery rate of 20%, doubling the plant’s productivity from 400 to 800 m3/d requires 400 kW of power. In contrast, in Case No. 2 (with a pressure recovery unit), achieving the same productivity requires only 100 kW, with a 75% of energy saving. When the desalination plant operates at a productivity of 400 m3/d@40%, the SPC decreases from 6 kWh/m3 (Case No. 1) to 2.7 kWh/m3 (Case No. 2), resulting in a 55% specific power consumption saving. The results also indicate that power consumption increases with both feed water temperature and PEX splitter ratio, while variations in these parameters have a negligible effect on permeate salinity. Full article
(This article belongs to the Special Issue Energy Transfer in Liquids)
Show Figures

Figure 1

45 pages, 9477 KB  
Review
Decarbonization Pathways in Underground Mining in Cold and Arctic Climates: A Review of Heat Recovery Systems with Case Studies in Canada
by Hosein Kalantari and Seyed Ali Ghoreishi-Madiseh
Energies 2026, 19(1), 22; https://doi.org/10.3390/en19010022 - 19 Dec 2025
Viewed by 247
Abstract
In cold climates, mine air conditioning systems are essential for preventing liners and shaft components from freezing. Traditionally, fossil fuel burners are used to heat intake air, resulting in high energy consumption and significant greenhouse gas emissions. As part of efforts to reduce [...] Read more.
In cold climates, mine air conditioning systems are essential for preventing liners and shaft components from freezing. Traditionally, fossil fuel burners are used to heat intake air, resulting in high energy consumption and significant greenhouse gas emissions. As part of efforts to reduce both environmental impacts and energy use, mining companies are increasingly adopting innovative solutions, such as heat recovery systems. These systems offer a promising approach to significantly reduce energy demand for underground mine heating. This study evaluates several heat recovery technologies including exhaust air, water, hybrid exhaust air–water, diesel exhaust, jacket water, and hybrid diesel exhaust–jacket-water systems, through numerical modeling. Two case studies are presented: a grid-connected mine in British Columbia with moderately cold conditions, and an off-grid mine in the Northwest Territories, which experiences Arctic climate extremes. Results show that heat recovery can reduce heating costs by up to 89% in British Columbia and as much as 90% in the Northwest Territories, depending on the system applied. The findings also demonstrate substantial associated carbon emission reductions. Furthermore, a comprehensive feasibility analysis was carried out to evaluate the thermodynamic performance, financial savings, and carbon emission reductions of these systems across various mining operations, offering a preliminary assessment of their potential for mining settings. Full article
(This article belongs to the Special Issue Numerical Study of Waste and Exhaust Heat Recovery)
Show Figures

Figure 1

24 pages, 2759 KB  
Review
Harnessing High-Valent Metals for Catalytic Oxidation: Next-Gen Strategies in Water Remediation and Circular Chemistry
by Muhammad Qasim, Sidra Manzoor, Muhammad Ikram Nabeel, Sabir Hussain, Raja Waqas, Collin G. Joseph and Jonathan Suazo-Hernández
Catalysts 2025, 15(12), 1168; https://doi.org/10.3390/catal15121168 - 15 Dec 2025
Cited by 1 | Viewed by 740
Abstract
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review [...] Read more.
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review discusses recent advances in the synthesis, stabilization, and catalytic applications of high-valent metals in aqueous environments. This study highlights their dual functionality, not only as conventional oxidants but also as mechanistic mediators within redox cycles that underpin next-generation AOPs. In this review, the formation mechanisms of these species in various oxidant systems are critically evaluated, highlighting the significance of ligand design, supramolecular confinement, and single-atom engineering in enhancing their stability. The integration of high-valent metal-based AOPs into photocatalysis, sonocatalysis, and electrochemical regeneration is explored through a newly proposed classification framework, highlighting their potential in the development of energy efficient hybrid systems. In addition, this work addresses the critical yet underexplored area of environmental fate, elucidating the post-oxidation transformation pathways of high-valent species, with particular attention to their implications for metal recovery and nutrient valorization. This review highlights the potential of high-valent metal-based AOPs as a promising approach for zero wastewater treatment within circular economies. Future frontiers, including bioinspired catalyst design, machine learning-guided optimization, and closed loop reactor engineering, will bridge the gap between laboratory research and real-world applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

22 pages, 1393 KB  
Review
Biogas Upgrading and Bottling Technologies: A Critical Review
by Yolanda Mapantsela and Patrick Mukumba
Energies 2025, 18(24), 6506; https://doi.org/10.3390/en18246506 - 12 Dec 2025
Viewed by 640
Abstract
Biogas upgrading and bottling represent essential processes in transforming raw biogas produced via the anaerobic digestion of organic waste into high-purity biomethane (≥95% CH4), a renewable energy source suitable for applications in cooking, transportation, and electricity generation. Upgrading technologies, such as [...] Read more.
Biogas upgrading and bottling represent essential processes in transforming raw biogas produced via the anaerobic digestion of organic waste into high-purity biomethane (≥95% CH4), a renewable energy source suitable for applications in cooking, transportation, and electricity generation. Upgrading technologies, such as membrane separation, pressure swing adsorption (PSA), water and chemical scrubbing, and emerging methods, like cryogenic distillation and supersonic separation, play a pivotal role in removing impurities like CO2, H2S, and moisture. Membrane and hybrid systems demonstrate high methane recovery (>99.5%) with low energy consumption, whereas chemical scrubbing offers superior gas purity but is limited by high operational complexity and cost. Challenges persist around material selection, safety standards, infrastructure limitations, and environmental impacts, particularly in rural and off-grid contexts. Bottled biogas, also known as bio-compressed natural gas (CNG), presents a clean, portable alternative to fossil fuels, contributing to energy equity, greenhouse gases (GHG) reduction, and rural development. The primary aim of this research is to critically analyze and review the current state of biogas upgrading and bottling systems, assess their technological maturity, identify performance optimization challenges, and evaluate their economic and environmental viability. The research gap identified in this study demonstrates that there is no comprehensive comparison of biogas upgrading technologies in terms of energy efficiency, price, scalability, and environmental impact. Few studies directly compare these technologies across various operational contexts (e.g., rural vs. urban, small vs. large scale). Additionally, the review outlines insights into how biogas can replace fossil fuels in transport, cooking, and electricity generation, contributing to decarbonization goals. Solutions should be promoted that reduce methane emissions, lower operational costs, and optimize resource use, aligning with climate targets. This synthesis highlights the technological diversity, critical barriers to scalability, and the need for robust policy mechanisms to accelerate the deployment of biogas upgrading solutions as a central component of a low-carbon, decentralized energy future. Full article
Show Figures

Figure 1

28 pages, 39423 KB  
Article
Experimental Development and Field Validation of an Advanced Penstock Repair Process for Extending Service Life in a Hydropower Plant
by David A. del Río, Johann A. Caballero, Jessica T. Muñoz, Leonardo Rojas, Gerardo Galvis-Romero, Nhora Cecilia Parra-Rodriguez, Laidi Morales-Cruz, Alejandro Morales-Ortiz, Andrés F. Duque, Daniel Hincapié, Camilo Seifert-Yepes, Sebastián Acuña-Carmona, Wilber Silva-López, César Nieto-Londoño and Rafael E. Vásquez
Water 2025, 17(24), 3495; https://doi.org/10.3390/w17243495 - 10 Dec 2025
Viewed by 568
Abstract
The rehabilitation of critical water-conveyance infrastructure plays a fundamental role in the water–energy nexus and constitutes a key strategy for extending the operational lifetime of hydropower facilities. These interventions are aligned to the United Nations’ 2030 Agenda, which declare that ensuring access to [...] Read more.
The rehabilitation of critical water-conveyance infrastructure plays a fundamental role in the water–energy nexus and constitutes a key strategy for extending the operational lifetime of hydropower facilities. These interventions are aligned to the United Nations’ 2030 Agenda, which declare that ensuring access to affordable, reliable, sustainable, and modern energy systems is essential for long-term energy security. This paper presents a field-validated, non-thermal repair methodology developed for the Chivor II hydropower penstock, a critical water conduction tunnel used for energy production in Colombia, that has been affected by a circumferential fatigue crack. Due to the geometric confinement of the penstock within the rock mass, conventional thermal or stress-relief treatments were unfeasible. Therefore, the proposed methodology uses controlled material removal with a welding sequence designed to release stored elastic energy and induce compressive stresses through the Poisson effect. Its main contribution is demonstrated through pilot-scale validation and full-scale implementation under real operating conditions, achieving 50% reduction in tensile stresses and left 99% of the examined surface under compression, which represents effective residual-stress stabilization, structural recovery, and hydraulic reliability. The methodology ensures reliable water conveyance for hydropower generation and can be applied to other pressurized conduits and pipelines where accessibility and heat treatment are constrained, strengthening SDGs 7 and 9 on clean energy, water sustainability, and resilient infrastructure. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

20 pages, 3553 KB  
Article
Design and Operational Strategies for Enhancing Thermal Output in Coaxial Closed-Loop Geothermal Systems
by Keivan Khaleghi, Alireza Rangriz Shokri, Silviu Livescu and Kamy Sepehrnoori
Processes 2025, 13(12), 3969; https://doi.org/10.3390/pr13123969 - 8 Dec 2025
Viewed by 485
Abstract
Coaxial closed-loop geothermal systems, increasingly recognized as scalable and low-impact geothermal solutions, remain limited by conductive heat transfer between the reservoir and wellbore. This study investigates three strategies to enhance thermal output: (i) dynamic operation scheduling, (ii) substitution of conventional fluids with Organic [...] Read more.
Coaxial closed-loop geothermal systems, increasingly recognized as scalable and low-impact geothermal solutions, remain limited by conductive heat transfer between the reservoir and wellbore. This study investigates three strategies to enhance thermal output: (i) dynamic operation scheduling, (ii) substitution of conventional fluids with Organic Rankine Cycle (ORC) working fluids, and (iii) targeted conductive enhancements near the well. Using a CMG STARS simulation framework, system performance was evaluated over 1- to 20-year horizons, introducing a characteristic thermal recovery curve as a tool for analyzing long-term behavior. Results show that extended recovery durations raise outlet temperatures but with diminishing returns, identifying approximately 80% recovery as a practical optimization point. Fluids such as n-pentane and R245fa deliver substantially greater ORC-compatible heat than water, with thermo-siphoning observed under low-flow conditions. Conductive enhancement geometries, namely ring and fishbone configurations, exhibit distinct performance profiles, with rings outperforming fishbones due to larger injected volumes and greater advantage due to reservoir reach. One-year gains range from 4.5–9.4% for rings and 0.65–1.37% for fishbones, stabilizing at 3.7–7.8% and 0.55–1.18% after 20 years. These findings provide design and operational guidance for advancing coaxial closed-loop systems in low-carbon energy deployment. Full article
Show Figures

Figure 1

Back to TopTop