Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,240)

Search Parameters:
Keywords = energy policy design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 (registering DOI) - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 111
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Data-Driven Symmetry and Asymmetry Investigation of Vehicle Emissions Using Machine Learning: A Case Study in Spain
by Fei Wu, Jinfu Zhu, Hufang Yang, Xiang He and Qiao Peng
Symmetry 2025, 17(8), 1223; https://doi.org/10.3390/sym17081223 - 2 Aug 2025
Viewed by 231
Abstract
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and [...] Read more.
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and explainable AI techniques can effectively capture both symmetric and asymmetric emission patterns across different vehicle types, thereby contributing to more sustainable transport planning. Addressing a key gap in the existing literature, the study poses the following question: how do structural and behavioral factors contribute to asymmetric emission responses in internal combustion engine vehicles compared to new energy vehicles? Utilizing a large-scale Spanish vehicle registration dataset, the analysis classifies vehicles by powertrain type and applies five supervised learning algorithms to predict CO2 emissions. SHapley Additive exPlanations (SHAPs) are employed to identify nonlinear and threshold-based relationships between emissions and vehicle characteristics such as fuel consumption, weight, and height. Among the models tested, the Random Forest algorithm achieves the highest predictive accuracy. The findings reveal critical asymmetries in emission behavior, particularly among hybrid vehicles, which challenge the assumption of uniform policy applicability. This study provides both methodological innovation and practical insights for symmetry-aware emission modeling, offering support for more targeted eco-design and policy decisions that align with long-term sustainability goals. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 3746 KiB  
Article
DCP: Learning Accelerator Dataflow for Neural Networks via Propagation
by Peng Xu, Wenqi Shao and Ping Luo
Electronics 2025, 14(15), 3085; https://doi.org/10.3390/electronics14153085 - 1 Aug 2025
Viewed by 148
Abstract
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency [...] Read more.
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency and energy consumption. Unlike prior works that required considerable efforts from HW engineers to design suitable dataflows for different DNNs, this work proposes an efficient data-centric approach, named Dataflow Code Propagation (DCP), to automatically find the optimal dataflow for DNN layers in seconds without human effort. It has several attractive benefits that prior studies lack, including the following: (i) We translate the HW dataflow configuration into a code representation in a unified dataflow coding space, which can be optimized by back-propagating gradients given a DNN layer or network. (ii) DCP learns a neural predictor to efficiently update the dataflow codes towards the desired gradient directions to minimize various optimization objectives, e.g., latency and energy. (iii) It can be easily generalized to unseen HW configurations in a zero-shot or few-shot learning manner. For example, without using additional training data, Extensive experiments on several representative models such as MobileNet, ResNet, and ViT show that DCP outperforms its counterparts in various settings. Full article
(This article belongs to the Special Issue Applied Machine Learning in Data Science)
Show Figures

Figure 1

22 pages, 5581 KiB  
Article
PruneEnergyAnalyzer: An Open-Source Toolkit for Evaluating Energy Consumption in Pruned Deep Learning Models
by Cesar Pachon, Cesar Pedraza and Dora Ballesteros
Big Data Cogn. Comput. 2025, 9(8), 200; https://doi.org/10.3390/bdcc9080200 - 1 Aug 2025
Viewed by 205
Abstract
Currently, various pruning strategies including different methods and distribution types are commonly used to reduce the number of FLOPs and parameters in deep learning models. However, their impact on actual energy savings remains insufficiently studied, particularly in resource-constrained settings. To address this, we [...] Read more.
Currently, various pruning strategies including different methods and distribution types are commonly used to reduce the number of FLOPs and parameters in deep learning models. However, their impact on actual energy savings remains insufficiently studied, particularly in resource-constrained settings. To address this, we introduce PruneEnergyAnalyzer, an open-source Python tool designed to evaluate the energy efficiency of pruned models. Starting from the unpruned model, the tool calculates the energy savings achieved by pruned versions provided by the user, and generates comparative visualizations based on previously applied pruning hyperparameters such as method, distribution type (PD), compression ratio (CR), and batch size. These visual outputs enable the identification of the most favorable pruning configurations in terms of FLOPs, parameter count, and energy consumption. As a demonstration, we evaluated the tool with 180 models generated from three architectures, five pruning distributions, three pruning methods, and four batch sizes, using another previous library (e.g. FlexiPrune). This experiment revealed the significant impact of the network architecture on Energy Reduction, the non-linearity between FLOPs savings and energy savings, as well as between parameter reduction and energy efficiency. It also showed that the batch size strongly influences the energy consumption of the pruned model. Therefore, this tool can support researchers in making pruning policy decisions that also take into account the energy efficiency of the pruned model. Full article
Show Figures

Figure 1

36 pages, 1921 KiB  
Article
Policy Synergies for Advancing Energy–Environmental Productivity and Sustainable Urban Development: Empirical Evidence from China’s Dual-Pilot Energy Policies
by Si Zhang and Xiaodong Zhu
Sustainability 2025, 17(15), 6992; https://doi.org/10.3390/su17156992 - 1 Aug 2025
Viewed by 353
Abstract
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity [...] Read more.
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity (UEP) across 279 prefecture-level cities from 2006 to 2023. Utilizing a Non-Radial Directional Distance Function (NDDF) approach, combined with Difference-in-Differences (DID) estimation and spatial econometric models, the analysis reveals that these synergistic policies significantly enhance both comprehensive and net measures of UEP. Mechanism analysis highlights the roles of industrial restructuring, technological innovation, and energy transition in driving these improvements, while heterogeneity analysis indicates varying effects across different city types. Spatial spillover analysis further demonstrates that policy impacts extend beyond targeted cities, contributing to broader regional gains in UEP. These findings offer important insights for the design of integrated energy and environmental policies and support progress toward key Sustainable Development Goals (SDG 7, SDG 11, and SDG 12). Full article
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 147
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 278
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 632 KiB  
Article
When Do Innovation and Renewable Energy Transition Drive Environmental Sustainability?
by Anis Omri, Fadhila Hamza and Noura Alkahtani
Sustainability 2025, 17(15), 6910; https://doi.org/10.3390/su17156910 - 30 Jul 2025
Viewed by 267
Abstract
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) [...] Read more.
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) estimator and confirming robustness through the Dynamic Common Correlated Effects Mean Group (DCCE-MG) method, the study explores both direct and indirect effects of RET and EI on two key environmental indicators: the Environmental Performance Index and the Load Capacity Factor. The results reveal that both RET and EI have a significant impact on environmental performance. Moreover, green finance and environmental governance serve as crucial channels through which RET and EI exert their influence. These findings underscore the importance of developing effective financial instruments and robust regulatory frameworks to translate energy and innovation policies into tangible environmental benefits. By highlighting the interplay between technological advancement, financial capacity, and institutional quality, this study provides novel insights into the environmental policy landscape of advanced economies and offers guidance for designing integrated strategies to achieve long-term sustainability goals. Full article
Show Figures

Figure 1

19 pages, 717 KiB  
Article
Advancing Nuclear Energy Governance Through Strategic Pathways for Q-NPT Adoption
by Hassan Qudrat-Ullah
Energies 2025, 18(15), 4040; https://doi.org/10.3390/en18154040 - 29 Jul 2025
Viewed by 190
Abstract
This paper proposes a strategic framework to enhance nuclear energy governance by advancing the Qudrat-Ullah Nuclear Peace and Trust (Q-NPT) framework. Designed to complement existing treaties such as the Nuclear Non-Proliferation Treaty (NPT) and International Atomic Energy Agency (IAEA) safeguards, Q-NPT integrates principles [...] Read more.
This paper proposes a strategic framework to enhance nuclear energy governance by advancing the Qudrat-Ullah Nuclear Peace and Trust (Q-NPT) framework. Designed to complement existing treaties such as the Nuclear Non-Proliferation Treaty (NPT) and International Atomic Energy Agency (IAEA) safeguards, Q-NPT integrates principles of equity, transparency, and trust to address persistent governance challenges. The framework emphasizes sustainable nuclear technology access, multilateral cooperation, and integration with global energy transition goals. Through an analysis of institutional, economic, technological, and geopolitical barriers, the study outlines actionable pathways for adoption, including legal harmonization, differentiated financial instruments, and deployment of advanced verification technologies such as blockchain, artificial intelligence (AI), and remote monitoring. A phased implementation timeline is presented, enabling adaptive learning and stakeholder engagement over short-, medium-, and long-term horizons. Regional case studies, including Serbia and Latin America, demonstrate the framework’s applicability in diverse contexts. By linking nuclear policy to broader climate, energy equity, and global security objectives, Q-NPT offers an operational and inclusive roadmap for future-ready governance. This approach contributes to the literature on energy systems transformation by situating nuclear governance within a sustainability-oriented, trust-centered paradigm. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

28 pages, 2959 KiB  
Article
Trajectory Prediction and Decision Optimization for UAV-Assisted VEC Networks: An Integrated LSTM-TD3 Framework
by Jiahao Xie and Hao Hao
Information 2025, 16(8), 646; https://doi.org/10.3390/info16080646 - 29 Jul 2025
Viewed by 144
Abstract
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage [...] Read more.
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage of ground infrastructure is effectively supplemented. However, there is still the problem of decision-making lag in a highly dynamic environment. This paper proposes a deep reinforcement learning framework based on the long short-term memory (LSTM) network for trajectory prediction to optimize resource allocation in UAV-assisted VEC networks. Uniquely integrating vehicle trajectory prediction with the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, this framework enables proactive computation offloading and UAV trajectory planning. Specifically, we design an LSTM network with an attention mechanism to predict the future trajectory of vehicles and integrate the prediction results into the optimization decision-making process. We propose state smoothing and data augmentation techniques to improve training stability and design a multi-objective optimization model that incorporates the Age of Information (AoI), energy consumption, and resource leasing costs. The simulation results show that compared with existing methods, the method proposed in this paper significantly reduces the total system cost, improves the information freshness, and exhibits better environmental adaptability and convergence performance under various network conditions. Full article
Show Figures

Figure 1

21 pages, 4738 KiB  
Article
Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network
by Haixiang Gao
Entropy 2025, 27(8), 803; https://doi.org/10.3390/e27080803 - 28 Jul 2025
Viewed by 301
Abstract
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, [...] Read more.
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, UAVs and LEO satellites, traditional optimization methods encounter significant limitations due to non-convexity and the combinatorial explosion in possible solutions. A multi-agent deep deterministic policy gradient (MADDPG)-based optimization algorithm is proposed to address these challenges. This algorithm is designed to minimize the total system costs, balancing energy consumption and latency through partial task offloading within a cloud–edge-device collaborative mobile edge computing (MEC) system. A comprehensive system model is proposed, with the problem formulated as a partially observable Markov decision process (POMDP) that integrates association control, power control, computing resource allocation, and task distribution. Each M-IoT device and UAV acts as an intelligent agent, collaboratively learning the optimal offloading strategies through a centralized training and decentralized execution framework inherent in the MADDPG. The numerical simulations validate the effectiveness of the proposed MADDPG-based approach, which demonstrates rapid convergence and significantly outperforms baseline methods, and indicate that the proposed MADDPG-based algorithm reduces the total system cost by 15–60% specifically. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

25 pages, 3791 KiB  
Article
Optimizing Multitenancy: Adaptive Resource Allocation in Serverless Cloud Environments Using Reinforcement Learning
by Mohammed Naif Alatawi
Electronics 2025, 14(15), 3004; https://doi.org/10.3390/electronics14153004 - 28 Jul 2025
Viewed by 159
Abstract
The growing adoption of serverless computing has highlighted critical challenges in resource allocation, policy fairness, and energy efficiency within multitenancy cloud environments. This research proposes a reinforcement learning (RL)-based adaptive resource allocation framework to address these issues. The framework models resource allocation as [...] Read more.
The growing adoption of serverless computing has highlighted critical challenges in resource allocation, policy fairness, and energy efficiency within multitenancy cloud environments. This research proposes a reinforcement learning (RL)-based adaptive resource allocation framework to address these issues. The framework models resource allocation as a Markov Decision Process (MDP) with dynamic states that include latency, resource utilization, and energy consumption. A reward function is designed to optimize the throughput, latency, and energy efficiency while ensuring fairness among tenants. The proposed model demonstrates significant improvements over heuristic approaches, achieving a 50% reduction in latency (from 250 ms to 120 ms), a 38.9% increase in throughput (from 180 tasks/s to 250 tasks/s), and a 35% improvement in energy efficiency. Additionally, the model reduces operational costs by 40%, achieves SLA compliance rates above 98%, and enhances fairness by lowering the Gini coefficient from 0.25 to 0.10. Under burst loads, the system maintains a service level objective success rate of 94% with a time to scale of 6 s. These results underscore the potential of RL-based solutions for dynamic workload management, paving the way for more scalable, cost-effective, and sustainable serverless multitenancy systems. Full article
(This article belongs to the Special Issue New Advances in Cloud Computing and Its Latest Applications)
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 224
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

18 pages, 1040 KiB  
Article
A TDDPG-Based Joint Optimization Method for Hybrid RIS-Assisted Vehicular Integrated Sensing and Communication
by Xinren Wang, Zhuoran Xu, Qin Wang, Yiyang Ni and Haitao Zhao
Electronics 2025, 14(15), 2992; https://doi.org/10.3390/electronics14152992 - 27 Jul 2025
Viewed by 285
Abstract
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and [...] Read more.
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and communication by superimposing the communication and sensing signals within the same waveform. To decouple the complex joint design problem, a dual-DDPG architecture is introduced, in which one agent optimizes the transmit beamforming vector and the other adjusts the RIS phase shift matrix. Both agents share a unified reward function that comprehensively considers multi-user interference (MUI), total transmit power, RIS noise power, and sensing accuracy via the CRLB constraint. Simulation results demonstrate that the proposed TDDPG algorithm significantly outperforms conventional DDPG in terms of sum rate and interference suppression. Moreover, the adoption of a hybrid RIS enables an effective trade-off between communication performance and system energy efficiency, highlighting its practical deployment potential in dynamic IoV environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop