Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (422)

Search Parameters:
Keywords = energy performance upgrade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 901 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 (registering DOI) - 2 Aug 2025
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
17 pages, 2016 KiB  
Article
DFT-Guided Next-Generation Na-Ion Batteries Powered by Halogen-Tuned C12 Nanorings
by Riaz Muhammad, Anam Gulzar, Naveen Kosar and Tariq Mahmood
Computation 2025, 13(8), 180; https://doi.org/10.3390/computation13080180 (registering DOI) - 1 Aug 2025
Abstract
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then [...] Read more.
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then halogens (X = Br, Cl, and F) as counter anions are studied for the enhancement of Na-ion battery cell voltage and overall performance. Isolated C12 nanorings showed a lower cell voltage (−1.32 V), which was significantly increased after adsorption with halide anions as counter anions. Adsorption of halides increased the Gibbs free energy, which in turn resulted in higher cell voltage. Cell voltage increased with the increasing electronegativity of the halide anion. The Gibbs free energy of Br@C12 was −52.36 kcal·mol1, corresponding to a desirable cell voltage of 2.27 V, making it suitable for use as an anode in sodium-ion batteries. The estimated cell voltage of these considered complexes ensures the effective use of these complexes in sodium-ion secondary batteries. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Viewed by 86
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 117
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 145
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

36 pages, 4084 KiB  
Review
Exploring Activated Carbons for Sustainable Biogas Upgrading: A Comprehensive Review
by Deneb Peredo-Mancilla, Alfredo Bermúdez, Cécile Hort and David Bessières
Energies 2025, 18(15), 4010; https://doi.org/10.3390/en18154010 - 28 Jul 2025
Viewed by 129
Abstract
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy [...] Read more.
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy mix. Biomethane, obtained by upgrading biogas, simultaneously allows the local production of clean energy, waste valorization, and greenhouse gas emissions mitigation. Among various upgrading technologies, the use of activated carbons in adsorption-based separation systems has attracted significant attention due to their versatility, cost-effectiveness, and sustainability potential. The present review offers a comprehensive analysis of the factors that influence the efficiency of activated carbons on carbon dioxide adsorption and separation for biogas upgrading. The influence of activation methods, activation conditions, and precursors on the biogas adsorption performance of activated carbons is revised. Additionally, the role of adsorbent textural and chemical properties on gas adsorption behavior is highlighted. By synthesizing current knowledge and perspectives, this work provides guidance for future research that could help in developing more efficient, cost-effective, and sustainable adsorbents for biogas upgrading. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 150
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 383
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

19 pages, 3080 KiB  
Article
A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings
by Ruey-Lung Hwang and Hung-Chi Chiu
Energies 2025, 18(14), 3854; https://doi.org/10.3390/en18143854 - 20 Jul 2025
Viewed by 301
Abstract
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label [...] Read more.
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label and over 50% energy savings from retrofit technologies. This study proposes an integrated assessment framework for retrofitting small- to medium-sized office buildings into nZEBs, incorporating diagnostics, technical evaluation, policy alignment, and resource integration. A case study of a bank branch in Kaohsiung involved on-site energy monitoring and EnergyPlus V22.2 simulations to calibrate and assess the retrofit impacts. Lighting improvements and two HVAC scenarios—upgrading the existing fan coil unit (FCU) system and adopting a completely new variable refrigerant flow (VRF) system—were evaluated. The FCU and VRF scenarios reduced the energy use intensity from 141.3 to 82.9 and 72.9 kWh/m2·yr, respectively. Combined with rooftop photovoltaics and green power procurement, both scenarios met Taiwan’s nZEB criteria. The proposed framework demonstrates practical and scalable strategies for decarbonizing existing office buildings, supporting Taiwan’s 2050 net-zero target. Full article
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 420
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

23 pages, 3721 KiB  
Article
Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors
by Jixing Ye and Gian-Franco Dalla Betta
Sensors 2025, 25(14), 4478; https://doi.org/10.3390/s25144478 - 18 Jul 2025
Viewed by 187
Abstract
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D [...] Read more.
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D pixel sensors have been used to equip the innermost tracking layers of the ATLAS and CMS detector upgrades at the High-Luminosity Large Hadron Collider. Additionally, the next generation of vertex detectors calls for precise measurement of charged particle timing at the pixel level. Owing to their fast response times, 3D sensors present themselves as a viable technology for these challenging applications. Nevertheless, both radiation hardness and fast timing require 3D sensors to be operated with high bias voltages on the order of ∼150 V and beyond. Special attention should therefore be devoted to avoiding problems that could cause premature electrical breakdown, which could limit sensor performance. In this paper, TCAD simulations are used to gain deep insight into the impact of surface isolation layers (i.e., p-stop and p-spray) used by different vendors on the high-voltage tolerance of small-pitch 3D sensors. Results relevant to different geometrical configurations and irradiation scenarios are presented. The advantages and disadvantages of the available technologies are discussed, offering guidance for design optimization. Experimentalmeasurements from existing samples based on both isolation techniques show good agreement with simulated breakdown voltages, thereby validating the simulation approach. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

19 pages, 3119 KiB  
Article
Aquathermolytic Upgrading of Zarafshanian Extra Heavy Oil Using Ammonium Alum
by Amirjon Ali Akhunov, Firdavs Aliev, Nurali Mukhamadiev, Oscar Facknwie Kahwir, Alexey Dengaev, Mohammed Yasin Majeed, Mustafa Esmaeel, Abdulvahhab Al-Qaz, Oybek Mirzaev and Alexey Vakhin
Molecules 2025, 30(14), 3013; https://doi.org/10.3390/molecules30143013 - 18 Jul 2025
Viewed by 314
Abstract
The growing global demand for energy necessitates the efficient utilization of unconventional petroleum resources, particularly heavy oil reserves. However, extracting, transporting, and processing these resources remain challenging due to their low mobility, low API gravity, and significant concentrations of resins, asphaltenes, heteroatoms, and [...] Read more.
The growing global demand for energy necessitates the efficient utilization of unconventional petroleum resources, particularly heavy oil reserves. However, extracting, transporting, and processing these resources remain challenging due to their low mobility, low API gravity, and significant concentrations of resins, asphaltenes, heteroatoms, and metals. In recent years, various in situ upgrading techniques have been explored to enhance heavy oil quality, with catalytic aquathermolysis emerging as a promising approach. The effectiveness of this process largely depends on the development of cost-effective, environmentally friendly catalysts. This study investigates the upgrading performance of water-soluble ammonium alum, (NH4)Al(SO4)2·12H2O, for an extra-heavy oil sample from the Zarafshan Depression, located along the Tajikistan–Uzbekistan border. Comprehensive analyses demonstrate that the catalyst facilitates the breakdown of heavy oil components, particularly resins and asphaltenes, into lighter fractions. As a result, oil viscosity was significantly reduced by 94%, while sulfur content decreased from 896 ppm to 312 ppm. Furthermore, thermogravimetric (TG-DTG) analysis, coupled with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD), revealed that the thermal decomposition of ammonium alum produces catalytically active Al2O3 nanoparticles. These findings suggest that ammonium alum is a highly effective water-soluble pre-catalyst for hydrothermal upgrading, offering a viable and sustainable solution for the development of extra-heavy oil fields. Full article
Show Figures

Figure 1

19 pages, 3236 KiB  
Article
Performance Evaluation of a Hybrid Power System for Unmanned Aerial Vehicles Applications
by Tiberius-Florian Frigioescu, Gabriel-Petre Badea, Mădălin Dombrovschi and Maria Căldărar
Electronics 2025, 14(14), 2873; https://doi.org/10.3390/electronics14142873 - 18 Jul 2025
Viewed by 279
Abstract
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, [...] Read more.
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, but limitations in control stability and output power constrained their practical implementation. This study aimed to finalize the design and experimental validation of an optimized hybrid power system featuring a micro-turboprop engine mechanically coupled to an upgraded electric generator. A fuzzy logic-based control algorithm was implemented on a single-board computer to enable autonomous voltage regulation. The test bench architecture was reinforced and instrumented to allow stable multi-stage testing across increasing power levels. Results demonstrated stable voltage control at 48 VDC and electrical power outputs up to 3 kW, with an estimated maximum of 3.5 kW at full throttle. Efficiency was calculated at approximately 67%, and analysis of the generator’s KV constant revealed that using a lower KV variant (KV80) could reduce required rotational speed (RPM) and improve performance. These findings underscore the value of adaptive hybridization in UAVs and suggest that tuning generator electromechanical parameters can significantly enhance overall energy efficiency and platform autonomy. Full article
Show Figures

Figure 1

16 pages, 2376 KiB  
Review
A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles
by Qi Zhang, Yunlong Shang, Yan Li and Rui Zhu
Energies 2025, 18(14), 3750; https://doi.org/10.3390/en18143750 - 15 Jul 2025
Viewed by 381
Abstract
The core powertrain components of electric vehicles (EVs) and hybrid electric vehicles (HEVs) are the power batteries and battery management system (BMS), jointly determining the performance, safety, and economy of the vehicle. This review offers a comprehensive overview of the evolution and current [...] Read more.
The core powertrain components of electric vehicles (EVs) and hybrid electric vehicles (HEVs) are the power batteries and battery management system (BMS), jointly determining the performance, safety, and economy of the vehicle. This review offers a comprehensive overview of the evolution and current advancements in power battery and BMS technology for electric vehicles (EVs). It emphasizes product upgrades and replacements while also analyzing future research hotspots and development trends driven by the increasing demand for EVs and hybrid electric vehicles (HEVs). This review aims to give recommendations and support for the future development of power batteries and BMSs that are widely used in EVs, HEVs, and energy storage systems, which will lead to industry and research progress. Full article
Show Figures

Figure 1

24 pages, 2080 KiB  
Article
Techno-Economic Analysis of Non-Wire Alternative (NWA) Portfolios Integrating Energy Storage Systems (ESS) with Photovoltaics (PV) or Demand Response (DR) Resources Across Various Load Profiles
by Juwon Park and Sung-Kwan Joo
Energies 2025, 18(13), 3568; https://doi.org/10.3390/en18133568 - 7 Jul 2025
Viewed by 324
Abstract
The Non-Wire Alternative (NWA) approach has gained attention as a strategy to replace or defer traditional grid infrastructure upgrades by leveraging integrated solutions combining Energy Storage Systems (ESSs) with Distributed Energy Resources (DERs). The overall feasibility and economics of distributed flexibility solutions can [...] Read more.
The Non-Wire Alternative (NWA) approach has gained attention as a strategy to replace or defer traditional grid infrastructure upgrades by leveraging integrated solutions combining Energy Storage Systems (ESSs) with Distributed Energy Resources (DERs). The overall feasibility and economics of distributed flexibility solutions can be enhanced by leveraging the synergies among various DERs for NWA deployment. This study presents the results of a techno-economic analysis of an NWA portfolio that integrates Photovoltaic (PV) generation and Demand Response (DR) resources with ESSs. Three representative load profiles are analyzed under different load growth scenarios: a balanced mix of industrial, commercial, and residential loads; residential-dominant loads; and commercial/industrial-dominant loads. The analysis shows that the combined deployment of PVs and DRs significantly reduces the required ESS capacity. Furthermore, economic analysis based on Benefit–Cost Analysis (BCA) demonstrated that combining ESSs with either PVs or DRs enhances economic efficiency compared with an NWA portfolio that relies on ESSs alone, particularly under low-capacity factor conditions. However, the effectiveness of a DR or PV varies depending on the load profile. DR is less effective when the peak load durations are prolonged, whereas PV offers limited economic benefits under residential loads with the evening peak demand. These techno-economic results highlight the importance of tailoring NWA portfolios to specific load conditions to maximize both technical performance and economic value. Full article
Show Figures

Figure 1

Back to TopTop