A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles
Abstract
1. Introduction
2. Development Status of Power Batteries for Electric and Hybrid Vehicles
3. Future Technologies of Power Batteries
4. Development Status of BMS
4.1. Basic Functions of BMS
4.2. Basic Composition of BMS
4.3. Four Generations of Development of BMS
5. Future Technologies of Intelligent BMS
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANN | Artificial neural network |
BEV | Battery electric vehicle |
BMS | Battery management system |
CAN | Controller area network |
DL | Deep learning |
EKF | Extended Kalman filter |
EV | Electric vehicle |
EIS | Electrochemical impedance spectroscopy |
HEV | Hybrid electric vehicle |
KF | Kalman filter |
LIB | Lithium-ion battery |
LFP | Lithium iron phosphate |
LCO | Lithium cobalt oxide |
LMO | Lithium manganese oxide |
LNO | Lithium nickel oxide |
LSTM | Long short-term memory |
MAE | Mean absolute error |
NCM | Lithium nickel cobalt manganese oxide |
NiMH | Nickel metal hydride |
OCV | Open-circuit voltage |
RUL | Remaining useful life |
SIB | Sodium ion battery |
SOC | State of charge |
SOH | State of health |
SOP | State of power |
SOE | State of energy |
SSB | Solid-state battery |
V2G | Vehicle to power grid |
V2X | Vehicle to everything |
References
- Shang, Y.; Zhang, Q.; Cui, N.; Zhang, C. A Cell-to-Cell Equalizer Based on Three-Resonant-State Switched-Capacitor Converters for Series-Connected Battery Strings. Energies 2017, 10, 206. [Google Scholar] [CrossRef]
- Sureshbabu, M.D.; Bagyaveereswaran, V. Advanced Battery Management for Lithium-Ion EVs: Integrating Extended Kalman Filter and Modified Multi-Layer Perceptron for Enhanced State Monitoring. World Electr. Veh. J. 2025, 16, 234. [Google Scholar] [CrossRef]
- Sylvestrin, G.R.; Maciel, J.N.; Amorim, M.L.M.; Carmo, J.P.; Afonso, J.A.; Lopes, S.F.; Ando Junior, O.H. State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review. Energies 2025, 18, 746. [Google Scholar] [CrossRef]
- Tripp-Barba, C.; Aguilar-Calderón, J.A.; Urquiza-Aguiar, L.; Zaldívar-Colado, A.; Ramírez-Noriega, A. A Systematic Mapping Study on State Estimation Techniques for Lithium-Ion Batteries in Electric Vehicles. World Electr. Veh. J. 2025, 16, 57. [Google Scholar] [CrossRef]
- Ali, A.; Sedghi, M.; Elkamel, A.; Fowler, M.; Golkar, M.A. Plug-in electric vehicle batteries degradation modeling for smart grid studies: Review, assessment and conceptual framework. Renew. Sustain. Energy Rev. 2018, 81, 2609–2624. [Google Scholar] [CrossRef]
- Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Zhuang, W.; Lu, S.; Lu, H. Progress in materials for lithium-ion power batteries. In Proceedings of the 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, China, 23–25 April 2014; pp. 1–2. [Google Scholar]
- Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J. A nickel metal hydride battery for electric vehicles. Science 1993, 260, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Zhi, M.; Fan, R.; Yang, X.; Zheng, L.; Yue, S.; Liu, Q.; He, Y. Recent Research Progress on Phase Change Materials for Thermal Management of Lithium-Ion Batteries. J. Energy Storage 2022, 45, 103694. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Masquelier, C.; Okada, S.; Goodenough, J.B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Johnson, C.S.; Amine, K.; Kim, J. Lithium Metal Oxide Electrodes for Lithium Cells and Batteries. US Patents 6677082B2, 13 January 2004. [Google Scholar]
- Janek, J.; Zeier, W.G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; He, Z.; Li, Y.; Mao, J.; Dai, K.; Yan, C.; Zheng, J. An Advance Review of Solid-State Battery: Challenges, Progress and Prospects. Sustain. Mater. Technol. 2021, 29, e00297. [Google Scholar] [CrossRef]
- Bates Alex, M.; Preger, Y.; Torres-Castro, L.; Harrison Katharine, L.; Harris Stephen, J.; Hewson, J. Are solid-state batteries safer than lithium-ion batteries? Joule 2022, 6, 742–755. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G. Lead acid battery storage model for hybrid energy systems. Sol. Energy 1993, 50, 399–405. [Google Scholar] [CrossRef]
- Heller, B. Advances in plate making and expanders for lead acid batteries. In Proceedings of the 13th Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, 16 January 1998; pp. 147–151. [Google Scholar]
- Dhar, S.K.; Ovshinsky, S.R.; Gifford, P.R.; Corrigan, D.A.; Fetcenko, M.A. Nickel/metal hydride technology for consumer and electric vehicle batteries—A review and up-date. J. Power Sources 1997, 65, 1–7. [Google Scholar] [CrossRef]
- Arun, V.; Kannan, R.; Ramesh, S.; Vijayakumar, M.; Raghavendran, P.S.; Siva Ramkumar, M.; Anbarasu, P.; Sundramurthy, V.P. Review on Li-Ion Battery vs Nickel Metal Hydride Battery in EV. Adv. Mater. Sci. Eng. 2022, 2022, 7910072. [Google Scholar] [CrossRef]
- Sakai, T.; Uehara, I.; Ishikawa, H. R&D on metal hydride materials and Ni–MH batteries in Japan. J. Alloys Compd. 1999, 293, 762–769. [Google Scholar]
- Mahmud, M.A.P.; Huda, N.; Farjana, S.H.; Lang, C. Comparative Life Cycle Environmental Impact Analysis of Lithium-Ion (LiIo) and Nickel-Metal Hydride (NiMH) Batteries. Batteries 2019, 5, 22. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Y.; Li, Y.; Cui, N.; Duan, B.; Zhang, C. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries. ISA Trans. 2020, 97, 448–457. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, N.; Li, Y.; Duan, B.; Zhang, C. Fractional calculus based modeling of open circuit voltage of lithium-ion batteries for electric vehicles. J. Energy Storage 2020, 27, 100945.1–100945.8. [Google Scholar] [CrossRef]
- Ianniciello, L.; Biwolé, P.H.; Achard, P. Electric vehicles batteries thermal management systems employing phase change materials. J. Power Sources 2018, 378, 383–403. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kundu, R. Outlook of Doping Engineering in NMC and LMNO Cathode Materials for Next-Generation Li-Ion Batteries. Energy Fuels 2025, 39, 10933–10966. [Google Scholar] [CrossRef]
- Qiao, S.; Hu, M.; Fu, C.; Qin, D.; Zhou, A.; Wang, P.; Lin, F. Experimental Study on Storage and Maintenance Method of Ni-MH Battery Modules for Hybrid Electric Vehicles. Appl. Sci. 2019, 9, 1742. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A. NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries. Energies 2020, 13, 6363. [Google Scholar] [CrossRef]
- Hu, S.; Liu, Z.; Tan, Y.; Cheng, X.; Chen, Z.; Long, Z. The status quo and future trends of new energy vehicle power batteries in China—Analysis from policy perspective. Energy Rep. 2022, 8, 63–80. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820–6877. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Bo, S.H.; Kim, J.C.; Miara, L.J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2020, 5, 105–126. [Google Scholar] [CrossRef]
- Grey, C.P.; Hall, D.S. Prospects for lithium-ion batteries and beyond—A 2030 vision. Nat. Commun. 2020, 11, 6279. [Google Scholar] [CrossRef]
- Randau, S.; Weber, D.A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W.G.; et al. Benchmarking the performance of all-solid-state. Nat. Energy 2020, 5, 259–270. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. Engineering of Sodium-Ion Batteries: Opportunities and Challenges. Engineering 2023, 24, 172–183. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Yue, Y.; Yi, Z.; Liu, J.; Sheng, Y.; Lu, Y. Challenges and industrial perspectives on the development of sodium ion batteries. Nano Energy 2024, 129, 110052. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, X.; Gu, X.; Qiu, T.; Shang, Y. A fast charging method for lithium-ion batteries considering Charging urgency of the user. IEEE Trans. Energy Convers. 2025, 40, 1237–1248. [Google Scholar] [CrossRef]
- Qiu, T.; Hou, L.; Mao, Z.; Wang, S.; Shang, Y. A multi-closed-loop constant-current constant-strain fast charging strategy for lithium-ion batteries. J. Energy Storage 2024, 102 Pt A, 114031. [Google Scholar] [CrossRef]
- Lih, W.-C.; Yen, J.-H.; Shieh, F.-H.; Liao, Y.-M. Second-use applications of retired lithium-ion batteries from electric vehicles: A review. IEEE Trans. Energy Convers. 2012, 27, 705–714. [Google Scholar]
- Martinez-Laserna, E.; Gandiaga, I.; Sarasketa-Zabala, E.; Badeda, J.; Stroe, D.-I.; Swierczynski, M.; Goikoetxea, A. Battery second life: Hype, hope or reality? A critical review of the state of the art. Renew. Sustain. Energy Rev. 2018, 93, 701–718. [Google Scholar] [CrossRef]
- Xu, P.; Dai, Q.; Gao, H.; Liu, H.; Zhang, M.; Li, M.; Chen, Y.; An, K.; Meng, Y.S.; Liu, P.; et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 2020, 4, 2609–2626. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef] [PubMed]
- Emanet, B.; Kıyak, İ. Performance Effective Battery Management System (BMS) Design of Mini Electric Vehicles. In Proceedings of the 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 21–23 October 2021; pp. 744–749. [Google Scholar]
- Manivannan, R. Research on IoT-based hybrid electrical vehicles energy management systems using machine learning-based algorithm. Sustain. Comput. Inform. Syst. 2024, 41, 100943. [Google Scholar] [CrossRef]
- Ghazali, A.K.; Aziz, N.A.A.; Hassan, M.K. Advanced Algorithms in Battery Management Systems for Electric Vehicles: A Comprehensive Review. Symmetry 2025, 17, 321. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Afshar, S.; Morris, K.; Khajepour, A. State-of-Charge Estimation Using an EKF-Based Adaptive Observer. IEEE Trans. Control Syst. Technol. 2019, 27, 1907–1923. [Google Scholar] [CrossRef]
- Hou, E.; Wang, Z.; Zhang, X.; Wang, Z.; Qiao, X.; Zhang, Y. Combined State of Charge and State of Energy Estimation for Echelon-Use Lithium-Ion Battery Based on Adaptive Extended Kalman Filter. Batteries 2023, 9, 362. [Google Scholar] [CrossRef]
- Kim, K.-H.; Oh, K.-H.; Ahn, H.-S.; Choi, H.-D. Time–Frequency Domain Deep Convolutional Neural Network for Li-Ion Battery SoC Estimation. IEEE Trans. Power Electron. 2024, 39, 125–134. [Google Scholar] [CrossRef]
- Tejaswini, P.; Sivraj, P. Artificial Intelligence based State of Charge estimation of Li-ion battery for EV applications. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 1356–1361. [Google Scholar]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; Van Mierlo, J.; Van den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Shao, B.; Zhong, J.; Tian, J.; Li, Y.; Chen, X.; Dou, W.; Liao, Q.; Lai, C.; Lu, T.; Xie, J. State-of-Health Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy Features and Fusion Interpretable Deep Learning Framework. Energies 2025, 18, 1385. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, H.; Li, J.; Du, C.; Yu, Z.; Cui, Y.; Fang, Y.; Wang, Z. State of power estimation for LIBs in electric vehicles: Recent progress, challenges, and prospects. J. Energy Storage 2025, 115, 116042. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, L.; Deng, Z.; Xie, Y.; Couture, J.; Lin, X.; Zhou, J.; Hu, X. An Early Soft Internal Short-Circuit Fault Diagnosis Method for Lithium-Ion Battery Packs in Electric Vehicles. IEEE/ASME Trans. Mechatron. 2023, 28, 644–655. [Google Scholar] [CrossRef]
- Ouyang, M.; Chu, Z.; Lu, L.; Li, J.; Han, X.; Feng, X.; Liu, G. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. J. Power Sources 2015, 286, 309–320. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, S.; Li, D.; Liu, P.; Wang, Z. Prediction and Diagnosis of Electric Vehicle Battery Fault Based on Abnormal Voltage: Using Decision Tree Algorithm Theories and Isolated Forest. Processes 2024, 12, 136. [Google Scholar] [CrossRef]
- Ma, Z.; Huo, Q.; Wang, W.; Zhang, T. Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain. Energy 2023, 278, 127747. [Google Scholar] [CrossRef]
- Su, Y.-D.; Preger, Y.; Burroughs, H.; Sun, C.; Ohodnicki, P.R. Fiber Optic Sensing Technologies for Battery Management Systems and Energy Storage Applications. Sensors 2021, 21, 1397. [Google Scholar] [CrossRef]
- Krishna, T.; Kumar, S.V.P.D.; Srinivasa Rao, S.; Chang, L. Powering the Future: Advanced Battery Management Systems (BMS) for Electric Vehicles. Energies 2024, 17, 3360. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, E.W.M.; Tsui, K.L.; Pecht, M. Battery Management Systems in Electric and Hybrid Vehicles. Energies 2011, 4, 1840–1857. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of Battery Management Systems (BMS) Development and Industrial Standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 2018, 6, 1832–1843. [Google Scholar] [CrossRef]
- Zheng, Y.; Ouyang, M.; Han, X.; Lu, L.; Li, J. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J. Power Sources 2018, 377, 161–188. [Google Scholar] [CrossRef]
- Brandl, M.; Gall, H.; Wenger, M.; Lorentz, V.; Giegerich, M.; Baronti, F.; Fantechi, G.; Fanucci, L.; Roncella, R.; Saletti, R.; et al. Batteries and battery management systems for electric vehicles. In Proceedings of the 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 12–16 March 2012; pp. 971–976. [Google Scholar]
- Hazra, A. Exploring Machine Learning and Deep Learning Approaches for Battery Management Systems in EVs: A Comprehensive Review. J. Electr. Comput. Eng. 2025, 2025, 9962670. [Google Scholar] [CrossRef]
- Xu, D.; Pei, W.; Zhang, Q. Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience. Energies 2022, 15, 5027. [Google Scholar] [CrossRef]
- Li, Y.; Pei, W.; Zhang, Q. Improved Whale Optimization Algorithm Based on Hybrid Strategy and Its Application in Location Selection for Electric Vehicle Charging Stations. Energies 2022, 15, 7035. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Mulpuri, S.K.; Sah, B.; Kumar, P. An intelligent Battery Management System (BMS) with End-Edge-Cloud Connectivity—A Perspective. Sustain. Energy Fuels 2025, 9, 1142–1159. [Google Scholar] [CrossRef]
- Nagarale, S.D.; Patil, B.P. Accelerating AI-Based Battery Management System’s SOC and SOH on FPGA. Appl. Comput. Intell. Soft Comput. 2023, 2023, 2060808. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, C.; Chen, Z. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm. J. Power Sources 2018, 376, 191–199. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, C.; Duan, B.; Shang, Y.; Kang, Y.; Zhu, R. State-of-Health Estimation with Anomalous Aging Indicator Detection of Lithium-Ion Batteries Using Regression Generative Adversarial Network. IEEE Trans. Ind. Electron. 2023, 70, 2685–2695. [Google Scholar] [CrossRef]
- Cavus, M.; Dissanayake, D.; Bell, M. Next Generation of Electric Vehicles: AI-Driven Approaches for Predictive Maintenance and Battery Management. Energies 2025, 18, 1041. [Google Scholar] [CrossRef]
- Yang, S.; Liu, X.; Li, S.; Zhang, C. Key Technologies of BMS. In Advanced Battery Management System for Electric Vehicles; Yang, S., Liu, X., Li, S., Zhang, C., Eds.; Springer Nature: Singapore, 2023; pp. 33–51. [Google Scholar]
- Huang, H.; Ogbodo, M.; Wang, Z.; Qiu, C.; Hisada, M.; Abdallah, A.B. Smart energy management system based on reconfigurable AI chip and electrical vehicles. In Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea, 17–20 January 2021; pp. 233–238. [Google Scholar]
- Cao, Z.; Gao, W.; Fu, Y.; Mi, C. Wireless Battery Management Systems: Innovations, Challenges, and Future Perspectives. Energies 2024, 17, 3277. [Google Scholar] [CrossRef]
- Nascimento, M.; Novais, S.; Ding, M.S.; Ferreira, M.S.; Koch, S.; Passerini, S.; Pinto, J.L. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power Sources 2019, 410–411, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Song, Y.; Wang, W.; Lin, C.; He, X. Functional optical fiber sensors detecting imperceptible physical/chemical changes for smart batteries. Nano-Micro Lett. 2024, 16, 154. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, X.; Chen, Q.; Han, X.; Lu, L.; Ouyang, M.; Zheng, Y. Progress and challenges in ultrasonic technology for state estimation and defect detection of lithium-ion batteries. Energy Storage Mater. 2024, 69, 103430. [Google Scholar] [CrossRef]
- Zhang, S.; Schmidt, A. Digital twin for battery systems: Cloud-edge collaboration framework. Energy AI 2020, 2, 100013. [Google Scholar]
- de França, A.A.; Villanueva, J.M.M.; de Macêdo, E.C.T. Cloud Battery Management System Development. In Proceedings of the 2024 8th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), Joao Pessoa, Brazil, 2–6 September 2024; pp. 1–6. [Google Scholar]
- Li, T.; Hou, J.; Yan, J.; Liu, R.; Yang, H.; Sun, Z. Chiplet Heterogeneous Integration Technology—Status and Challenges. Electronics 2020, 9, 670. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Večerník, J.; Křemenáková, D.; Militký, J. Electromagnetic Interference (EMI) Shielding and Thermal Management of Sandwich-Structured Carbon Fiber-Reinforced Composite (CFRC) for Electric Vehicle Battery Casings. Polymers 2024, 16, 2291. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Shah, N.; Ramoliya, D.; Nayak, A. A Detailed Review of Cloud Security: Issues, Threats Attacks. In Proceedings of the 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; pp. 758–764. [Google Scholar]
- Ometov, A.; Molua, O.L.; Komarov, M.; Nurmi, J. A Survey of Security in Cloud, Edge, and Fog Computing. Sensors 2022, 22, 927. [Google Scholar] [CrossRef]
- Esposito, C.; Castiglione, A.; Pop, F.; Choo, K.-K.R. Challenges of Connecting Edge and Cloud Computing: A Security and Forensic Perspective. IEEE Cloud Comput. 2017, 4, 13–17. [Google Scholar] [CrossRef]
Category | Lead Acid | NiMH | NCM | LFP |
---|---|---|---|---|
Nominal voltage (V) | 2 | 1.2 | 3.7 | 3.2 |
Energy density (Wh/kg) | 30~45 | 60~70 | 200~300 | 160~200 |
Cycle life (Times) | 400~600 | 300~1000 | 1000~2000 | 1000~2000 |
Charging temperature range (°C) | 5~40 | 0~45 | 0~55 | −10~55 |
Discharge temperature range (°C) | 0~45 | −10~45 | −10~60 | −20~60 |
Element toxic (Yes/No) | Yes | Yes | Yes | No |
Cathode Material | Chemical Composition | Energy Density (Wh/kg) | Cycle Life (Times) | Cost | Safety |
---|---|---|---|---|---|
LFP | LiFePO4 | Medium (160~200) | High (1000~2000) | Low | High |
NCM | LiNixCoyMn(1−x−y)O2 | High (200~300) | High (1000~2000) | Medium | Low |
LCO | LiCoO2 | Medium (150~200) | Medium (500~1000) | High | Low |
LMO | LiMn2O4 | Low (100~150) | Low (300~700) | Low | Medium |
LNO | LiNiO2 | High (180–220) | Low (100~200) | High | Low |
Generation | Functional Characteristics | Application Area |
---|---|---|
First | Basic functional | Early electric tools, lead-acid battery systems, low-end EVs |
Second | Digitalization and algorithms | HEVs and early EVs |
Third | Intelligent and integrated | High-end EVs and energy storage systems |
Fourth | Global collaboration and AI-driven | Next-generation intelligent EVs and large-scale energy storage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Shang, Y.; Li, Y.; Zhu, R. A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles. Energies 2025, 18, 3750. https://doi.org/10.3390/en18143750
Zhang Q, Shang Y, Li Y, Zhu R. A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles. Energies. 2025; 18(14):3750. https://doi.org/10.3390/en18143750
Chicago/Turabian StyleZhang, Qi, Yunlong Shang, Yan Li, and Rui Zhu. 2025. "A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles" Energies 18, no. 14: 3750. https://doi.org/10.3390/en18143750
APA StyleZhang, Q., Shang, Y., Li, Y., & Zhu, R. (2025). A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles. Energies, 18(14), 3750. https://doi.org/10.3390/en18143750