Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,578)

Search Parameters:
Keywords = energy distribution networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2367 KB  
Article
Blockchain-Integrated Stackelberg Model for Real-Time Price Regulation and Demand-Side Optimization in Microgrids
by Abdullah Umar, Prashant Kumar Jamwal, Deepak Kumar, Nitin Gupta, Vijayakumar Gali and Ajay Kumar
Energies 2026, 19(3), 643; https://doi.org/10.3390/en19030643 - 26 Jan 2026
Abstract
Renewable-driven microgrids require transparent and adaptive coordination mechanisms to manage variability in distributed generation and flexible demand. Conventional pricing schemes and centralized demand-side programs are often insufficient to regulate real-time imbalances, leading to inefficient renewable utilization and limited prosumer participation. This work proposes [...] Read more.
Renewable-driven microgrids require transparent and adaptive coordination mechanisms to manage variability in distributed generation and flexible demand. Conventional pricing schemes and centralized demand-side programs are often insufficient to regulate real-time imbalances, leading to inefficient renewable utilization and limited prosumer participation. This work proposes a blockchain-integrated Stackelberg pricing model that combines real-time price regulation, optimal demand-side management, and peer-to-peer energy exchange within a unified operational framework. The Microgrid Energy Management System (MEMS) acts as the Stackelberg leader, setting hourly prices and demand response incentives, while prosumers and consumers respond through optimal export and load-shifting decisions derived from quadratic cost models. A distributed supply–demand balancing algorithm iteratively updates prices to reach the Stackelberg equilibrium, ensuring system-level feasibility. To enable trust and tamper-proof execution, smart-contract architecture is deployed on the Polygon Proof-of-Stake network, supporting participant registration, day-ahead commitments, real-time measurement logging, demand-response validation, and automated settlement with negligible transaction fees. Experimental evaluation using real-world demand and PV profiles shows improved peak-load reduction, higher renewable utilization, and increased user participation. Results demonstrate that the proposed framework enhances operational reliability while enabling transparent and verifiable microgrid energy transactions. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
27 pages, 4342 KB  
Article
Energy–Latency–Accuracy Trade-off in UAV-Assisted VECNs: A Robust Optimization Approach Under Channel Uncertainty
by Tiannuo Liu, Menghan Wu, Hanjun Yu, Yixin He, Dawei Wang, Li Li and Hongbo Zhao
Drones 2026, 10(2), 86; https://doi.org/10.3390/drones10020086 (registering DOI) - 26 Jan 2026
Abstract
Federated learning (FL)-based vehicular edge computing networks (VECNs) are emerging as a key enabler of intelligent transportation systems, as their privacy-preserving and distributed architecture can safeguard vehicle data while reducing latency and energy consumption. However, conventional roadside units face processing bottlenecks in dense [...] Read more.
Federated learning (FL)-based vehicular edge computing networks (VECNs) are emerging as a key enabler of intelligent transportation systems, as their privacy-preserving and distributed architecture can safeguard vehicle data while reducing latency and energy consumption. However, conventional roadside units face processing bottlenecks in dense traffic and at the network edge, motivating the adoption of unmanned aerial vehicle (UAV)-assisted VECNs. To address this challenge, this paper proposes a UAV-assisted VECN framework with FL, aiming to improve model accuracy while minimizing latency and energy consumption during computation and transmission. Specifically, a reputation-based client selection mechanism is introduced to enhance the accuracy and reliability of federated aggregation. Furthermore, to address the channel dynamics induced by high vehicle mobility, we design a robust reinforcement learning-based resource allocation scheme. In particular, an asynchronous parallel deep deterministic policy gradient (APDDPG) algorithm is developed to adaptively allocate computation and communication resources in response to real-time channel states and task demands. To ensure consistency with real vehicular communication environments, field experiments were conducted and the obtained measurements were used as simulation parameters to analyze the proposed algorithm. Compared with state-of-the-art algorithms, the developed APDDPG algorithm achieves 20% faster convergence, 9% lower energy consumption, a FL accuracy of 95.8%, and the most robust standard deviation under varying channel conditions. Full article
(This article belongs to the Special Issue Low-Latency Communication for Real-Time UAV Applications)
47 pages, 2599 KB  
Review
The Role of Artificial Intelligence in Next-Generation Handover Decision Techniques for UAVs over 6G Networks
by Mohammed Zaid, Rosdiadee Nordin and Ibraheem Shayea
Drones 2026, 10(2), 85; https://doi.org/10.3390/drones10020085 (registering DOI) - 26 Jan 2026
Abstract
The rapid integration of unmanned aerial vehicles (UAVs) into next-generation wireless systems demands seamless and reliable handover (HO) mechanisms to ensure continuous connectivity. However, frequent topology changes, high mobility, and dynamic channel variations make traditional HO schemes inadequate for UAV-assisted 6G networks. This [...] Read more.
The rapid integration of unmanned aerial vehicles (UAVs) into next-generation wireless systems demands seamless and reliable handover (HO) mechanisms to ensure continuous connectivity. However, frequent topology changes, high mobility, and dynamic channel variations make traditional HO schemes inadequate for UAV-assisted 6G networks. This paper presents a comprehensive review of existing HO optimization studies, emphasizing artificial intelligence (AI) and machine learning (ML) approaches as enablers of intelligent mobility management. The surveyed works are categorized into three main scenarios: non-UAV HOs, UAVs acting as aerial base stations, and UAVs operating as user equipment, each examined under traditional rule-based and AI/ML-based paradigms. Comparative insights reveal that while conventional methods remain effective for static or low-mobility environments, AI- and ML-driven approaches significantly enhance adaptability, prediction accuracy, and overall network robustness. Emerging techniques such as deep reinforcement learning and federated learning (FL) demonstrate strong potential for proactive, scalable, and energy-efficient HO decisions in future 6G ecosystems. The paper concludes by outlining key open issues and identifying future directions toward hybrid, distributed, and context-aware learning frameworks for resilient UAV-enabled HO management. Full article
24 pages, 4205 KB  
Article
Data Fusion Method for Multi-Sensor Internet of Things Systems Including Data Imputation
by Saugat Sharma, Grzegorz Chmaj and Henry Selvaraj
IoT 2026, 7(1), 11; https://doi.org/10.3390/iot7010011 - 26 Jan 2026
Abstract
In Internet of Things (IoT) systems, data collected by geographically distributed sensors is often incomplete due to device failures, harsh deployment conditions, energy constraints, and unreliable communication. Such data gaps can significantly degrade downstream data processing and decision-making, particularly when failures result in [...] Read more.
In Internet of Things (IoT) systems, data collected by geographically distributed sensors is often incomplete due to device failures, harsh deployment conditions, energy constraints, and unreliable communication. Such data gaps can significantly degrade downstream data processing and decision-making, particularly when failures result in the loss of all locally redundant sensors. Conventional imputation approaches typically rely on historical trends or multi-sensor fusion within the same target environment; however, historical methods struggle to capture emerging patterns, while same-location fusion remains vulnerable to single-point failures when local redundancy is unavailable. This article proposes a correlation-aware, cross-location data fusion framework for data imputation in IoT networks that explicitly addresses single-point failure scenarios. Instead of relying on co-located sensors, the framework selectively fuses semantically similar features from independent and geographically distributed gateways using summary statistics-based and correlation screening to minimize communication overhead. The resulting fused dataset is then processed using a lightweight KNN with an Iterative PCA imputation method, which combines local neighborhood similarity with global covariance structure to generate synthetic data for missing values. The proposed framework is evaluated using real-world weather station data collected from eight geographically diverse locations across the United States. The experimental results show that the proposed approach achieves improved or comparable imputation accuracy relative to conventional same-location fusion methods when sufficient cross-location feature correlation exists and degrades gracefully when correlation is weak. By enabling data recovery without requiring redundant local sensors, the proposed approach provides a resource-efficient and failure-resilient solution for handling missing data in IoT systems. Full article
Show Figures

Figure 1

23 pages, 29092 KB  
Article
Power Grid Electrification Through Grid Extension and Microgrid Deployment: A Case Study of the Navajo Nation
by Mia E. Moore, Ahmed Daeli, Morgan M. Shepherd, Hanbyeol Shin, Abdollah Shafieezadeh, Mohamed Illafe and Salman Mohagheghi
Appl. Sci. 2026, 16(3), 1227; https://doi.org/10.3390/app16031227 - 25 Jan 2026
Abstract
Ensuring affordable and reliable electricity access to areas with low population density is challenging, as network sparsity and lower connectivity rates can make it nearly impossible for electric utilities to cover the cost of interconnection without raising electricity tariffs. Utility providers that consider [...] Read more.
Ensuring affordable and reliable electricity access to areas with low population density is challenging, as network sparsity and lower connectivity rates can make it nearly impossible for electric utilities to cover the cost of interconnection without raising electricity tariffs. Utility providers that consider extending their networks to remote households must balance multiple and often conflicting objectives, including investment cost, grid resilience, geographical coverage, and environmental impacts. In this paper, a multi-objective decision-making framework is proposed for the electrification of rural households, considering traditional distribution network extension as well as microgrid deployment. In order to condense a wide range of spatial inputs into a tractable problem, a multi-criteria decision-making approach is adopted to identify and rank candidate sites for microgrid deployment that offer superior performance over a variety of technical, environmental, and economic criteria. A novel optimization model is then proposed using multi-objective Chebyshev goal programming, in which project costs, environmental impacts, and energy justice criteria are jointly optimized. The applicability of this framework is demonstrated through a case study of the Shiprock region within the Navajo Nation. The results indicate that the proposed methodology provides a balanced trade-off among conflicting objectives and identifies a priority order of loads to energize first under marginally increasing budgets. Full article
(This article belongs to the Special Issue Recent Advances in Smart Microgrids)
29 pages, 6199 KB  
Article
Multi-Objective Optimization and Load-Flow Analysis in Complex Power Distribution Networks
by Tariq Ali, Muhammad Ayaz, Husam S. Samkari, Mohammad Hijji, Mohammed F. Allehyani and El-Hadi M. Aggoune
Fractal Fract. 2026, 10(2), 82; https://doi.org/10.3390/fractalfract10020082 - 25 Jan 2026
Abstract
Modern power distribution networks are increasingly challenged with nonlinear operating conditions, the high penetration of distributed energy resources, and conflicting operational objectives such as loss minimization and voltage regulation. Existing load-flow optimization approaches often suffer from slow convergence, premature stagnation in non-convex search [...] Read more.
Modern power distribution networks are increasingly challenged with nonlinear operating conditions, the high penetration of distributed energy resources, and conflicting operational objectives such as loss minimization and voltage regulation. Existing load-flow optimization approaches often suffer from slow convergence, premature stagnation in non-convex search spaces, and limited robustness when handling conflicting multi-objective performance criteria under fixed network constraints. To address these challenges, this paper proposes a Fractional Multi-Objective Load Flow Optimizer (FMOLFO), which integrates a fractional-order numerical regularization mechanism with an adaptive Pareto-based Differential Evolution framework. The fractional-order formulation employed in FMOLFO operates over an auxiliary iteration domain and serves as a numerical regularization strategy to improve the sensitivity conditioning and convergence stability of the load-flow solution, rather than modeling the physical time dynamics or memory effects of the power system. The optimization framework simultaneously minimizes physically consistent active power loss and voltage deviation within existing network operating constraints. Extensive simulations on IEEE 33-bus and 69-bus benchmark distribution systems demonstrate that FMOLFO achieves an up to 27% reduction in active power loss, improved voltage profile uniformity, and faster convergence compared with classical Newton–Raphson and metaheuristic baselines evaluated under identical conditions. The proposed framework is intended as a numerically enhanced, optimization-driven load-flow analysis tool, rather than a control- or dispatch-oriented optimal power flow formulation. Full article
(This article belongs to the Special Issue Fractional Dynamics and Control in Multi-Agent Systems and Networks)
29 pages, 7701 KB  
Review
Recent Advances in Piezoelectric and Triboelectric Nanogenerators for Ocean Current Energy Harvesting
by Yaning Chen, Mengwei Wu, Yuzhuo Tian, Rongming Zhang, Weitao Zhao, Hengxu Du, Chunyu Zhang, Yimeng Du, Taili Du, Haichao Yuan, Jicang Si and Minyi Xu
J. Mar. Sci. Eng. 2026, 14(3), 249; https://doi.org/10.3390/jmse14030249 - 25 Jan 2026
Abstract
Ocean current energy, owing to its predictability and stability, is regarded as an ideal power source for distributed marine observation networks and underwater intelligent equipment. However, conventional ocean current energy devices that rely on rigid turbines and electromagnetic generators generally suffer from high [...] Read more.
Ocean current energy, owing to its predictability and stability, is regarded as an ideal power source for distributed marine observation networks and underwater intelligent equipment. However, conventional ocean current energy devices that rely on rigid turbines and electromagnetic generators generally suffer from high cut-in flow velocity, bulky size, high maintenance costs, and significant environmental disturbance, making them unsuitable for deep-sea, miniaturized, and long-duration power supply scenarios. These limitations highlight the urgent need for flexible and low-speed energy harvesters capable of autonomous, long-term operation. In recent years, nanogenerator technology has provided new opportunities for distributed and low-power ocean current energy harvesting. PENGs and TENGs can directly convert weak mechanical energy into electricity, enabling energy harvesting in small-scale and low-velocity flow fields. PENGs offer high durability and mechanical robustness, whereas TENGs exhibit superior output performance in low-speed and intermittent flows. This paper provides a comprehensive review of structural designs, material innovations, interface engineering, hybrid energy-conversion architectures, and power-management strategies for PENG- and TENG-based ocean current energy harvesters. Overall, future progress will rely on the integration of intelligent materials, multi-field coupling mechanisms, and system-level engineering strategies to achieve durable, scalable, and autonomous ocean current energy harvesting for distributed marine systems. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

24 pages, 741 KB  
Article
Restoration of Distribution Network Power Flow Solutions Considering the Conservatism Impact of the Feasible Region from the Convex Inner Approximation Method
by Zirong Chen, Yonghong Huang, Xingyu Liu, Shijia Zang and Junjun Xu
Energies 2026, 19(3), 609; https://doi.org/10.3390/en19030609 - 24 Jan 2026
Viewed by 47
Abstract
Under the “Dual Carbon” strategy, high-penetration integration of distributed generators (DG) into distribution networks has triggered bidirectional power flow and reactive power-voltage violations. This phenomenon undermines the accuracy guarantee of conventional relaxation models (represented by second-order cone programming, SOCP), causing solutions to deviate [...] Read more.
Under the “Dual Carbon” strategy, high-penetration integration of distributed generators (DG) into distribution networks has triggered bidirectional power flow and reactive power-voltage violations. This phenomenon undermines the accuracy guarantee of conventional relaxation models (represented by second-order cone programming, SOCP), causing solutions to deviate from the AC power flow feasible region. Notably, ensuring solution feasibility becomes particularly crucial in engineering practice. To address this problem, this paper proposes a collaborative optimization framework integrating convex inner approximation (CIA) theory and a solution recovery algorithm. First, a system relaxation model is constructed using CIA, which strictly enforces ACPF constraints while preserving the computational efficiency of convex optimization. Second, aiming at the conservatism drawback introduced by the CIA method, an admissible region correction strategy based on Stochastic Gradient Descent is designed to narrow the dual gap of the solution. Furthermore, a multi-objective optimization framework is established, incorporating voltage security, operational economy, and renewable energy accommodation rate. Finally, simulations on the IEEE 33/69/118-bus systems demonstrate that the proposed method outperforms the traditional SOCP approach in the 24 h sequential optimization, reducing voltage deviation by 22.6%, power loss by 24.7%, and solution time by 45.4%. Compared with the CIA method, it improves the DG utilization rate by 30.5%. The proposed method exhibits superior generality compared to conventional approaches. Within the upper limit range of network penetration (approximately 60%), it addresses the issue of conservative power output of DG, thereby effectively promoting the utilization of renewable energy. Full article
20 pages, 2437 KB  
Article
Regression-Based Small Language Models for DER Trust Metric Extraction from Structured and Semi-Structured Data
by Nathan Hamill and Razi Iqbal
Big Data Cogn. Comput. 2026, 10(2), 39; https://doi.org/10.3390/bdcc10020039 - 24 Jan 2026
Viewed by 41
Abstract
Renewable energy sources like wind turbines and solar panels are integrated into modern power grids as Distributed Energy Resources (DERs). These DERs can operate independently or as part of microgrids. Interconnecting multiple microgrids creates Networked Microgrids (NMGs) that increase reliability, resilience, and independent [...] Read more.
Renewable energy sources like wind turbines and solar panels are integrated into modern power grids as Distributed Energy Resources (DERs). These DERs can operate independently or as part of microgrids. Interconnecting multiple microgrids creates Networked Microgrids (NMGs) that increase reliability, resilience, and independent power generation. However, the trustworthiness of individual DERs remains a critical challenge in NMGs, particularly when integrating previously deployed or geographically distributed units managed by entities with varying expertise. Assessing DER trustworthiness ensuring reliability and security is essential to prevent system-wide instability. Thisresearch addresses this challenge by proposing a lightweight trust metric generation system capable of processing structured and semi-structured DER data to produce key trust indicators. The system employs a Small Language Model (SLM) with approximately 16 million parameters for textual data understanding and metric extraction, followed by a regression head to output bounded trust scores. Designed for deployment in computationally constrained environments, the SLM requires only 64.6 MB of disk space and 200–250 MB of memory that is significantly lesser than larger models such as DeepSeek R1, Gemma-2, and Phi-3, which demand 3–12 GB. Experimental results demonstrate that the SLM achieves high correlation and low mean error across all trust metrics while outperforming larger models in efficiency. When integrated into a full neural network-based trust framework, the generated metrics enable accurate prediction of DER trustworthiness. These findings highlight the potential of lightweight SLMs for reliable and resource-efficient trust assessment in NMGs, supporting resilient and sustainable energy systems in smart cities. Full article
Show Figures

Figure 1

20 pages, 1369 KB  
Article
Symmetry-Aware Interpretable Anomaly Alarm Optimization Method for Power Monitoring Systems Based on Hierarchical Attention Deep Reinforcement Learning
by Zepeng Hou, Qiang Fu, Weixun Li, Yao Wang, Zhengkun Dong, Xianlin Ye, Xiaoyu Chen and Fangyu Zhang
Symmetry 2026, 18(2), 216; https://doi.org/10.3390/sym18020216 - 23 Jan 2026
Viewed by 174
Abstract
With the rapid advancement of smart grids driven by renewable energy integration and the extensive deployment of supervisory control and data acquisition (SCADA) and phasor measurement units (PMUs), addressing the escalating alarm flooding via intelligent analysis of large-scale alarm data is pivotal to [...] Read more.
With the rapid advancement of smart grids driven by renewable energy integration and the extensive deployment of supervisory control and data acquisition (SCADA) and phasor measurement units (PMUs), addressing the escalating alarm flooding via intelligent analysis of large-scale alarm data is pivotal to safeguarding the safe and stable operation of power grids. To tackle these challenges, this study introduces a pioneering alarm optimization framework based on symmetry-driven crowdsourced active learning and interpretable deep reinforcement learning (DRL). Firstly, an anomaly alarm annotation method integrating differentiated crowdsourcing and active learning is proposed to mitigate the inherent asymmetry in data distribution. Secondly, a symmetrically structured DRL-based hierarchical attention deep Q-network is designed with a dual-path encoder to balance the processing of multi-scale alarm features. Finally, a SHAP-driven interpretability framework is established, providing global and local attribution to enhance decision transparency. Experimental results on a real-world power alarm dataset demonstrate that the proposed method achieves a Fleiss’ Kappa of 0.82 in annotation consistency and an F1-Score of 0.95 in detection performance, significantly outperforming state-of-the-art baselines. Additionally, the false positive rate is reduced to 0.04, verifying the framework’s effectiveness in suppressing alarm flooding while maintaining high recall. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Data Analysis)
Show Figures

Figure 1

28 pages, 875 KB  
Article
Adaptive Power Allocation Method for Hybrid Energy Storage in Distribution Networks with Renewable Energy Integration
by Shitao Wang, Songmei Wu, Hui Guo, Yanjie Zhang, Jingwei Li, Lijuan Guo and Wanqing Han
Energies 2026, 19(3), 579; https://doi.org/10.3390/en19030579 - 23 Jan 2026
Viewed by 43
Abstract
The high penetration of renewable energy brings significant power fluctuations and operational uncertainties to distribution networks. Traditional power allocation methods for hybrid energy storage systems (HESSs) exhibit strong parameter dependency, limited frequency-domain recognition accuracy, and poor dynamic coordination capability. To overcome these limitations, [...] Read more.
The high penetration of renewable energy brings significant power fluctuations and operational uncertainties to distribution networks. Traditional power allocation methods for hybrid energy storage systems (HESSs) exhibit strong parameter dependency, limited frequency-domain recognition accuracy, and poor dynamic coordination capability. To overcome these limitations, this study proposes an adaptive power allocation strategy for HESSs under renewable energy integration scenarios. The proposed method employs the Grey Wolf Optimizer (GWO) to jointly optimize the mode number and penalty factor of the Variational Mode Decomposition (VMD), thereby enhancing the accuracy and stability of power signal decomposition. In conjunction with the Hilbert transform, the instantaneous frequency of each mode is extracted to achieve a natural allocation of low-frequency components to the battery and high-frequency components to the supercapacitor. Furthermore, a multi-objective power flow optimization model is formulated, using the power commands of the two storage units as optimization variables and aiming to minimize voltage deviation and network loss cost. The model is solved through the Particle Swarm Optimization (PSO) algorithm to realize coordinated optimization between storage control and system operation. Case studies on the IEEE 33-bus distribution system under both steady-state and dynamic conditions verify that the proposed strategy significantly improves power decomposition accuracy, enhances coordination between storage units, reduces voltage deviation and network loss cost, and provides excellent adaptability and robustness. Full article
(This article belongs to the Section D: Energy Storage and Application)
45 pages, 1517 KB  
Article
Post-Quantum Revocable Linkable Ring Signature Scheme Based on SPHINCS for V2G Scenarios+
by Shuanggen Liu, Ya Nan Du, Xu An Wang, Xinyue Hu and Hui En Su
Sensors 2026, 26(3), 754; https://doi.org/10.3390/s26030754 - 23 Jan 2026
Viewed by 48
Abstract
As a core support for the integration of new energy and smart grids, Vehicle-to-Grid (V2G) networks face a core contradiction between user privacy protection and transaction security traceability—a dilemma that is further exacerbated by issues such as the quantum computing vulnerability of traditional [...] Read more.
As a core support for the integration of new energy and smart grids, Vehicle-to-Grid (V2G) networks face a core contradiction between user privacy protection and transaction security traceability—a dilemma that is further exacerbated by issues such as the quantum computing vulnerability of traditional cryptography, cumbersome key management in stateful ring signatures, and conflicts between revocation mechanisms and privacy protection. To address these problems, this paper proposes a post-quantum revocable linkable ring signature scheme based on SPHINCS+, with the following core innovations: First, the scheme seamlessly integrates the pure hash-based architecture of SPHINCS+ with a stateless design, incorporating WOTS+, FORS, and XMSS technologies, which inherently resists quantum attacks and eliminates the need to track signature states, thus completely resolving the state management dilemma of traditional stateful schemes; second, the scheme introduces an innovative “real signature + pseudo-signature polynomially indistinguishable” mechanism, and by calibrating the authentication path structure and hash distribution of pseudo-signatures (satisfying the Kolmogorov–Smirnov test with D0.05), it ensures signer anonymity and mitigates the potential risk of distinguishable pseudo-signatures; third, the scheme designs a KEK (Key Encryption Key)-sharded collaborative revocation mechanism, encrypting and storing the (I,pk,RID) mapping table in fragmented form, with KEK split into KEK1 (held by the Trusted Authority, TA) and KEK2 (held by the regulatory node), with collaborative decryption by both parties required to locate malicious users, thereby resolving the core conflict of privacy leakage in traditional revocation mechanisms; fourth, the scheme generates forward-secure linkable tags based on one-way private key updates and one-time random factors, ensuring that past transactions cannot be traced even if the current private key is compromised; and fifth, the scheme adopts hash commitments instead of complex cryptographic commitments, simplifying computations while efficiently binding transaction amounts to signers—an approach consistent with the pure hash-based design philosophy of SPHINCS+. Security analysis demonstrates that the scheme satisfies the following six core properties: post-quantum security, unforgeability, anonymity, linkability, unframeability, and forward secrecy, thereby providing technical support for secure and anonymous payments in V2G networks in the quantum era. Full article
(This article belongs to the Special Issue Cyber Security and Privacy in Internet of Things (IoT))
21 pages, 5177 KB  
Article
Identification of FDA-Approved Drugs as Potential Inhibitors of WEE2: Structure-Based Virtual Screening and Molecular Dynamics with Perspectives for Machine Learning-Assisted Prioritization
by Shahid Ali, Abdelbaset Mohamed Elasbali, Wael Alzahrani, Taj Mohammad, Md. Imtaiyaz Hassan and Teng Zhou
Life 2026, 16(2), 185; https://doi.org/10.3390/life16020185 - 23 Jan 2026
Viewed by 121
Abstract
Wee1-like protein kinase 2 (WEE2) is an oocyte-specific kinase that regulates meiotic arrest and fertilization. Its largely restricted expression in female germ cells and absence in somatic tissues make it a highly selective target for reproductive health interventions. Despite its central role in [...] Read more.
Wee1-like protein kinase 2 (WEE2) is an oocyte-specific kinase that regulates meiotic arrest and fertilization. Its largely restricted expression in female germ cells and absence in somatic tissues make it a highly selective target for reproductive health interventions. Despite its central role in human fertility, no clinically approved WEE2 modulator is available. In this study, we employed an integrated in silico approach that combines structure-based virtual screening, molecular dynamics (MD) simulations, and MM-PBSA free-energy calculations to identify repurposed drug candidates with potential WEE2 inhibitory activity. Screening of ~3800 DrugBank compounds against the WEE2 catalytic domain yielded ten high-affinity hits, from which Midostaurin and Nilotinib emerged as the most mechanistically relevant based on kinase-targeting properties and pharmacological profiles. Docking analyses revealed strong binding affinities (−11.5 and −11.3 kcal/mol) and interaction fingerprints highly similar to the reference inhibitor MK1775, including key contacts with hinge-region residues Val220, Tyr291, and Cys292. All-atom MD simulations for 300 ns demonstrated that both compounds induce stable protein–ligand complexes with minimal conformational drift, decreased residual flexibility, preserved compactness, and stable intramolecular hydrogen-bond networks. Principal component and free-energy landscape analyses further indicate restricted conformational sampling of WEE2 upon ligand binding, supporting ligand-induced stabilization of the catalytic domain. MM-PBSA calculations confirmed favorable binding free energies for Midostaurin (−18.78 ± 2.23 kJ/mol) and Nilotinib (−17.47 ± 2.95 kJ/mol), exceeding that of MK1775. To increase the translational prioritization of candidate hits, we place our structure-based pipeline in the context of modern machine learning (ML) and deep learning (DL)-enabled virtual screening workflows. ML/DL rescoring and graph-based molecular property predictors can rapidly re-rank docking hits and estimate absorption, distribution, metabolism, excretion, and toxicity (ADMET) liabilities before in vitro evaluation. Full article
(This article belongs to the Special Issue Role of Machine and Deep Learning in Drug Screening)
Show Figures

Figure 1

28 pages, 3944 KB  
Article
A Distributed Energy Storage-Based Planning Method for Enhancing Distribution Network Resilience
by Yitong Chen, Qinlin Shi, Bo Tang, Yu Zhang and Haojing Wang
Energies 2026, 19(2), 574; https://doi.org/10.3390/en19020574 - 22 Jan 2026
Viewed by 40
Abstract
With the widespread adoption of renewable energy, distribution grids face increasing challenges in efficiency, safety, and economic performance due to stochastic generation and fluctuating load demand. Traditional operational models often exhibit limited adaptability, weak coordination, and insufficient holistic optimization, particularly in early-/mid-stage distribution [...] Read more.
With the widespread adoption of renewable energy, distribution grids face increasing challenges in efficiency, safety, and economic performance due to stochastic generation and fluctuating load demand. Traditional operational models often exhibit limited adaptability, weak coordination, and insufficient holistic optimization, particularly in early-/mid-stage distribution planning where feeder-level network information may be incomplete. Accordingly, this study adopts a planning-oriented formulation and proposes a distributed energy storage system (DESS) planning strategy to enhance distribution network resilience under high uncertainty. First, representative wind and photovoltaic (PV) scenarios are generated using an improved Gaussian Mixture Model (GMM) to characterize source-side uncertainty. Based on a grid-based network partition, a priority index model is developed to quantify regional storage demand using quality- and efficiency-oriented indicators, enabling the screening and ranking of candidate DESS locations. A mixed-integer linear multi-objective optimization model is then formulated to coordinate lifecycle economics, operational benefits, and technical constraints, and a sequential connection strategy is employed to align storage deployment with load-balancing requirements. Furthermore, a node–block–grid multi-dimensional evaluation framework is introduced to assess resilience enhancement from node-, block-, and grid-level perspectives. A case study on a Zhejiang Province distribution grid—selected for its diversified load characteristics and the availability of detailed historical wind/PV and load-category data—validates the proposed method. The planning and optimization process is implemented in Python and solved using the Gurobi optimizer. Results demonstrate that, with only a 4% increase in investment cost, the proposed strategy improves critical-node stability by 27%, enhances block-level matching by 88%, increases quality-demand satisfaction by 68%, and improves grid-wide coordination uniformity by 324%. The proposed framework provides a practical and systematic approach to strengthening resilient operation in distribution networks. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 8863 KB  
Article
A Multi-Scale Residual Convolutional Neural Network for Fault Diagnosis of Progressive Cavity Pump Systems in Coalbed Methane Wells with Imbalanced and Differentiated Data
by Jiaojiao Yu, Yajie Ou, Ying Gao, Youwu Li, Feng Gu, Jinhuang You, Bin Liu, Xiaoyong Gao and Chaodong Tan
Processes 2026, 14(2), 383; https://doi.org/10.3390/pr14020383 - 22 Jan 2026
Viewed by 30
Abstract
Coalbed methane, an abundant clean energy resource in China, is gaining significant attention. Electric submersible progressive cavity pumps, ideal for downhole extraction with high solids content, are vital in coalbed methane operations. Current fault diagnosis research for these pumps mainly relies on machine [...] Read more.
Coalbed methane, an abundant clean energy resource in China, is gaining significant attention. Electric submersible progressive cavity pumps, ideal for downhole extraction with high solids content, are vital in coalbed methane operations. Current fault diagnosis research for these pumps mainly relies on machine learning algorithms to identify fault features, but complex working conditions and imbalanced sample distributions challenge these models’ ability to perceive multi-scale and multi-dimensional features. To enhance the model’s perception of deep abnormal data in complex multi-case industrial datasets, this study proposes a deep learning model based on a multi-scale extraction and residual module convolutional neural network. Innovatively, a cross-attention module using global autocorrelation and local cross-correlation is introduced to constrain the multi-scale feature extraction process, making the model better suited to specific and differentiated data environments. Post feature extraction, the model employs Borderline-SMOTE to augment minority class samples and uses Tomek Links for noise removal. These enhancements improve the comprehensive perception of fault types with significant differences in period, amplitude, and dimension, as well as the learning capability for rare faults. Based on field-collected fault data and using enhanced and cleaned features for classifier training, tests on a real industrial dataset show the proposed model achieves an F1 Measure of 90.7%—an improvement of 13.38% over the unimproved model and 9.15–31.64% over other common fault diagnosis models. Experimental results confirm the method’s effectiveness in adapting to extremely imbalanced sample distributions and complex, variable field data characteristics. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

Back to TopTop