Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = energetic particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5776 KiB  
Review
From “Information” to Configuration and Meaning: In Living Systems, the Structure Is the Function
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2025, 26(15), 7319; https://doi.org/10.3390/ijms26157319 - 29 Jul 2025
Viewed by 129
Abstract
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of [...] Read more.
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of ‘portion’ (building block) ascribed to the category of quantity. Instead, it is a matter of relationships and qualities in an indivisible analogical (and ontological) relationship between any presumed ‘software’ and ‘hardware’ (information/matter, psyche/soma). Furthermore, in biological systems, contrary to Shannon’s definition, which is well-suited to telecommunications and informatics, any kind of ‘information’ is the opposite of internal entropy, as it depends directly on order: it is associated with distinction and differentiation, rather than flattening and homogenisation. Moreover, the high degree of structural compartmentalisation of living matter prevents its energetics from being thermodynamically described by using a macroscopic, bulk state function. This requires the Second Principle of Thermodynamics to be redefined in order to make it applicable to living systems. For these reasons, any static, bit-related concept of ‘information’ is inadequate, as it fails to consider the system’s evolution, it being, in essence, the organized coupling to its own environment. From the perspective of quantum field theory (QFT), where many vacuum levels, symmetry breaking, dissipation, coherence and phase transitions can be described, a consistent picture emerges that portrays any living system as a relational process that exists as a flux of context-dependent meanings. This epistemological shift is also associated with a transition away from the ‘particle view’ (first quantisation) characteristic of quantum mechanics (QM) towards the ‘field view’ possible only in QFT (second quantisation). This crucial transition must take place in life sciences, particularly regarding the methodological approaches. Foremost because biological systems cannot be conceived as ‘objects’, but rather as non-confinable processes and relationships. Full article
Show Figures

Figure 1

14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 146
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

20 pages, 3323 KiB  
Review
The Structural Regulation and Properties of Energetic Materials: A Review
by Jin Yu, Siyu Xu, Weiqiang Pang, Hanyu Jiang and Zihao Zhang
Nanomaterials 2025, 15(15), 1140; https://doi.org/10.3390/nano15151140 - 23 Jul 2025
Viewed by 347
Abstract
Structural regulation is of great significance for improving the comprehensive performance of energetic materials (EMs). The structural regulation and properties of EMs were summarized. For single-component EMs, particle size control focuses on quality consistency and industrial scalability, morphology modification mainly improves sphericity through [...] Read more.
Structural regulation is of great significance for improving the comprehensive performance of energetic materials (EMs). The structural regulation and properties of EMs were summarized. For single-component EMs, particle size control focuses on quality consistency and industrial scalability, morphology modification mainly improves sphericity through monomers or aggregates and explores the possibility of layered energetic materials in improving mechanical properties, and polycrystalline regulation suppresses metastable phases and explores novel crystalline forms using simulation-guided design. Composite EMs (CEMs) employ core–shell structures to balance safety with performance via advanced coating materials, cocrystal engineering to tailor energy release through intermolecular interactions, and lattice strain modulation, and mixing structures integrates component advantages while enhancing the reaction efficiency. Future directions emphasize computational simulations and novel fabrication methods to guide the rational design and precise preparation of next-generation EMs with specific functions. Full article
Show Figures

Figure 1

15 pages, 2667 KiB  
Article
Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021
by Evgenia Belova, Simon Nils Persson, Victoria Barabash and Sheila Kirkwood
Atmosphere 2025, 16(8), 898; https://doi.org/10.3390/atmos16080898 - 23 Jul 2025
Viewed by 381
Abstract
Polar Mesosphere Winter Echoes (PMWEs) are relatively strong radar echoes from 50–80 km altitudes observed at a broad frequency range, at polar latitudes, mainly during equinox and winter seasons. Most PMWEs can be explained by neutral air turbulence creating structures in the mesosphere [...] Read more.
Polar Mesosphere Winter Echoes (PMWEs) are relatively strong radar echoes from 50–80 km altitudes observed at a broad frequency range, at polar latitudes, mainly during equinox and winter seasons. Most PMWEs can be explained by neutral air turbulence creating structures in the mesosphere and enhanced electron density. We have studied the characteristics of PMWEs and their dependence on solar and geophysical conditions using the ESrange RADar (ESRAD) located in northern Sweden during 1996–2021. We found that PMWEs start in mid-August and finish in late May. The mean daily occurrence rate varied significantly during the PMWE season, showing several relative maxima and a minimum in December. The majority of PMWEs were observed during sunlit hours at 60–75 km. Some echoes were detected at 50–60 km. The echo occurrence rate showed a pronounced maximum near local noon at 64–70 km. During nighttime, PMWEs were observed at about 75 km. PMWEs were observed on 47% of days with disturbed conditions (enhanced solar wind speed, Kp index, solar proton, and X-ray fluxes), and on only 14% of days with quiet conditions. Elevated solar wind speed and Kp index each accounted for 30% of the days with PMWE detections. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

13 pages, 3705 KiB  
Article
Molecular Simulations of Interface-Driven Crosslinked Network Formation and Mechanical Response in Composite Propellants
by Chen Ling, Xinke Zhang, Xin Li, Guozhu Mou, Xiang Guo, Bing Yuan and Kai Yang
Polymers 2025, 17(13), 1863; https://doi.org/10.3390/polym17131863 - 3 Jul 2025
Viewed by 422
Abstract
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 [...] Read more.
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 components, including the polymer binder HTPB, curing agent IPDI, oxidizer particles AP/Al, bonding agents MAPO/T313, plasticizer DOS, etc.) and their influence on crosslinked network formation. In this study, we propose an integrated computational framework that combines coarse-grained simulations with reactive force fields to investigate these complex interactions at the molecular level. Our approach successfully elucidates the two-step reaction mechanism propagating along the AP interface in multicomponent propellants, comprising interfacial self-polymerization of bonding agents followed by the participation of curing agents in crosslinked network formation. Furthermore, we assess the mechanical performance through tensile simulations, systematically investigating both defect formation near the interface and the influence of key parameters, including the self-polymerization time, HTPB chain length, and IPDI content. Our results indicate that the rational selection of parameters enables the optimization of mechanical properties (e.g., ~20% synchronous improvement in tensile modulus and strength, achieved by selecting a side-chain ratio of 20%, a DOS molar ratio of 2.5%, a MAPO:T313 ratio of 1:2, a self-polymerization MAPO time of 260 ns, etc.). Overall, this study provides molecular-level insights into the structure–property relationships of composite propellants and offers a valuable computational framework for guided formulation optimization in propellant manufacturing. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Figure 1

55 pages, 16837 KiB  
Review
A Comprehensive Review of Plasma Cleaning Processes Used in Semiconductor Packaging
by Stephen Sammut
Appl. Sci. 2025, 15(13), 7361; https://doi.org/10.3390/app15137361 - 30 Jun 2025
Viewed by 712
Abstract
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the [...] Read more.
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the process yield. Plasma cleaning is a vital process in semiconductor manufacturing, employed to enhance production yield through precise and efficient surface preparation essential for device fabrication. This paper explores the various facets of plasma cleaning, with a particular emphasis on its application in the cleaning of lead frames used in semiconductor packaging. To provide comprehensive context, this paper also reviews the critical role of plasma in advanced and emerging packaging technologies. This study investigates the fundamental physics governing plasma generation, the design of plasma systems, and the composition of the plasma medium. A central focus of this work is the comparative analysis of different plasma systems in terms of their effectiveness in removing organic contaminants and oxide residues from substrate surfaces. By utilizing reactive species generated within the plasma—such as oxygen radicals, hydrogen ions, and other chemically active constituents—these systems enable a non-contact, damage-free cleaning method that offers significant advantages over conventional wet chemical processes. Additionally, the role of non-reactive species, such as argon, in sputtering processes for surface preparation is examined. Sputtering is the ejection of individual atoms from a target surface due to momentum transfer from an energetic particle (usually an ion). Sputtering is therefore a physical process driven by momentum transfer. Energetic ions, such as argon (Ar+), are accelerated from the plasma to bombard a target surface. Upon impact, these ions transfer sufficient kinetic energy to atoms within the material’s lattice to overcome their surface binding energy, resulting in their physical ejection. This paper also provides a comparative assessment of various plasma sources, including direct current, dielectric barrier discharge, radio frequency, and microwave-based systems, evaluating their suitability and efficiency for lead frame cleaning applications. Furthermore, it addresses critical parameters affecting plasma cleaning performance, such as gas chemistry, power input, pressure regulation, and substrate handling techniques. The ultimate aim of this paper is to provide a concise yet comprehensive resource that equips technical personnel with the essential knowledge required to make informed decisions regarding plasma cleaning technologies and their implementation in semiconductor manufacturing. This paper provides various tables which provide the reader with comparative assessments of the various plasma sources and gases used. Scoring mechanisms are also introduced and utilized in this paper. The scores achieved by both the sources and the plasma gases are then summarized in this paper’s conclusions. Full article
Show Figures

Figure 1

41 pages, 8474 KiB  
Article
GITT Limitations and EIS Insights into Kinetics of NMC622
by Intizar Abbas, Huyen Tran Tran, Tran Thi Ngoc Tran, Thuy Linh Pham, Eui-Chol Shin, Chan-Woo Park, Sung-Bong Yu, Oh Jeong Lee, An-Giang Nguyen, Daeho Jeong, Bok Hyun Ka, Hoon-Hwe Cho, Jongwoo Lim, Namsoo Shin, Miran Gaberšček, Su-Mi Hur, Chan-Jin Park, Jaekook Kim and Jong-Sook Lee
Batteries 2025, 11(6), 234; https://doi.org/10.3390/batteries11060234 - 19 Jun 2025
Viewed by 547
Abstract
Conventional applications of the Galvanostatic Intermittent Titration Technique (GITT) and EIS for estimating chemical diffusivity in battery electrodes face issues such as insufficient relaxation time to reach equilibrium, excessively long pulse durations that violate the short-time diffusion assumption, and the assumption of sequential [...] Read more.
Conventional applications of the Galvanostatic Intermittent Titration Technique (GITT) and EIS for estimating chemical diffusivity in battery electrodes face issues such as insufficient relaxation time to reach equilibrium, excessively long pulse durations that violate the short-time diffusion assumption, and the assumption of sequential electrode reaction and diffusion processes. In this work, a quasi-equilibrium criterion of 0.1 mV h−1 was applied to NMC622 electrodes, yielding 8–9 h relaxations below 3.8 V, but above 3.8 V, voltage decayed linearly and indefinitely, even upon discharging titration, showing unusual nonmonotonic relaxation behavior. The initial 36-s transients of a 10-min galvanostatic pulse and diffusion impedance in series with the electrode reaction yielded consistent diffusivity values. However, solid-state diffusion in spherical active particles within porous electrodes, where ambipolar diffusion occurs in the pore electrolyte with t+=0.3, requires a physics-based three-rail transmission line model (TLM). The corrected diffusivity may be three to four times higher. An analytic two-rail TLM approximating the three-rail numerical model was applied to temperature- and frequency-dependent EIS data. This approach mitigates parameter ambiguity and unphysical correlations in EIS. Physics-based EIS enables the identification of multistep energetics and the diagnosis of performance and degradation mechanisms. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

16 pages, 2333 KiB  
Article
Potential of DMC and PODE as Fuel Additives for Industrial Diesel Engines
by Nicholas O’Connell, Dominik Stümpfl, Rudolf Höß and Raphael Lechner
Fuels 2025, 6(2), 44; https://doi.org/10.3390/fuels6020044 - 4 Jun 2025
Viewed by 582
Abstract
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In [...] Read more.
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In this study both DMC and PODE were investigated as drop-in diesel fuel additives regarding material compatibility, injection behavior, as well as particle and exhaust emissions. Both DMC and PODE are known to be incompatible with certain materials used as seals in the fuel injection system. Therefore, the material compatibility of both neat DMC and PODE as well as blends with B0 was investigated, with both PFTE and FFKM showing good compatibility. The hydraulic injection behavior of DMC–diesel and PODE–diesel blends was investigated experimentally, showing the need for compensating injection quantities for DMC and PODE blends to match neat diesel power output due to their lower calorific values. Energetic compensation can be achieved by higher injection pressures or longer injection durations. Engine tests have been conducted with both DMC–diesel and PODE–diesel blends, demonstrating the potential to mitigate the particle–NOX trade-off. Full article
Show Figures

Figure 1

14 pages, 5725 KiB  
Article
Synergistic Regulation of Combustion Behavior and Safety Characteristics of Graphene Modified Core–Shell Al@AP Composites
by Jiahui Shi, Jiahao Liang, Xiaole Sun, Yingjun Li, Haijun Zhang, Xueyong Guo, Shi Yan, Junwei Li and Jianxin Nie
Nanomaterials 2025, 15(11), 853; https://doi.org/10.3390/nano15110853 - 2 Jun 2025
Viewed by 437
Abstract
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via [...] Read more.
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via an in-situ deposition method. The structure, thermal decomposition, combustion, and safety performance of the graphene-doped Al@AP samples were investigated. Results showed that AP effectively coated aluminium to form a typical core-shell structure, with graphene uniformly loaded into the framework. Graphene contents of 1.0 and 4.0 wt.% reduced AP’s thermal decomposition temperature by 0.97 and 16.68 °C, respectively. Closed-bomb and laser ignition tests revealed that pressure rise rates and combustion intensity increased with graphene content up to 1.0 wt.% but declined beyond that. Peak pressure reached 114.65 kPa at 1.0 wt.% graphene, and the maximum pressure increase rate was 13.29 kPa ms−1 at 2.0 wt.%. Additionally, graphene significantly improved safety by reducing sensitivity to impact and friction. The enhanced performance is attributed to graphene’s large surface area and excellent thermal and electrical conductivity that promote AP decomposition and combustion, combined with its lubricating effect that enhances safety, though excessive graphene may hinder these benefits. This study provides balanced design criteria for graphene-doped Al@AP as solid propellants. Full article
Show Figures

Graphical abstract

24 pages, 649 KiB  
Article
Biothermodynamic Analysis of Norovirus: Mechanistic Model of Virus–Host Interactions and Virus–Virus Competition Based on Gibbs Energy
by Marko E. Popović, Vojin Tadić and Marijana Pantović Pavlović
Microbiol. Res. 2025, 16(6), 112; https://doi.org/10.3390/microbiolres16060112 - 1 Jun 2025
Viewed by 1869
Abstract
Norovirus is a leading cause of viral gastroenteritis worldwide and has been studied extensively from the perspective of life and biomedical sciences. However, no biothermodynamic analysis of Norovirus has been reported in the literature. Such an analysis would provide insights into the role [...] Read more.
Norovirus is a leading cause of viral gastroenteritis worldwide and has been studied extensively from the perspective of life and biomedical sciences. However, no biothermodynamic analysis of Norovirus has been reported in the literature. Such an analysis would provide insights into the role of energetic constraints in the interactions between Norovirus and its host cells and other viruses. In this research, Norovirus was characterized from the aspect of chemistry and chemical thermodynamics, with the determination of its molecular formula, empirical formula, molar mass and thermodynamic properties (enthalpy, entropy, Gibbs energy) of formation. Based on these properties, biosynthesis reactions were formulated that show how Norovirus particles are synthetized inside host cells, and the thermodynamic properties of biosynthesis were determined. Moreover, the thermodynamic properties of the binding of Norovirus to its host cell receptor were determined. These were then used to develop a model of virus–host interactions at the cell membrane (antigen-receptor binding) and inside the cytoplasm (virus multiplication), with the phenomenological equations of nonequilibrium thermodynamics. Based on the model, an analysis of the virus–virus competition between Norovirus and Rotavirus was conducted. Full article
Show Figures

Figure 1

14 pages, 3772 KiB  
Article
Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries
by Junwei Xiao, Lingchen Kong, Yong Wang, Ziyue Zhao, Yu Li and Wei Feng
Nanomaterials 2025, 15(10), 758; https://doi.org/10.3390/nano15100758 - 18 May 2025
Viewed by 384
Abstract
Li/graphite fluoride (Li/CFx) batteries display the highest energy densities among those of commercially available primary Li batteries but fail to satisfy the high-performance requirements of advanced applications. To address this drawback, two liquid organic dinitrates, namely, 1,4-butanediol dinitrate (BDE) and 2,2,3,3-tetrafluoro-1,4-butanediol [...] Read more.
Li/graphite fluoride (Li/CFx) batteries display the highest energy densities among those of commercially available primary Li batteries but fail to satisfy the high-performance requirements of advanced applications. To address this drawback, two liquid organic dinitrates, namely, 1,4-butanediol dinitrate (BDE) and 2,2,3,3-tetrafluoro-1,4-butanediol dinitrate (TBD), were employed as high-energy energetic materials, and they were highly compatible with the electrolytes of Li/CFx batteries. The use of Super P electrodes confirmed that the reduction reaction mechanisms of both nitrate ester-based compounds delivered considerable specific capacities, associated with discharge potentials matching that of the Li/CFx battery. When considering the combined mass of the electrolyte and cathode as the active material, the overall energy densities of the Li/CFx batteries increased by 25.3% (TBD) and 20.8% (BDE), reaching 1005.50 and 969.1 Wh/kg, respectively. The superior performance of TBD was due to the synergistic effects of the high electronegativities and levels of steric hindrance of the F atoms. Moreover, the nanocrystal LiF particles generated by TBD induced crack formation within the fluorinated graphite, increasing the lithium-ion accessible surface area and enhancing its utilization efficiency. These combined factors enhanced the reactivity of TBD and facilitated its involvement in electrochemical reactions, thus improving the capacity of the battery. The developed strategy enables the facile, cost-effective enhancement of the capacities of Li/CFx batteries, paving the way for their practical use in energy-demanding devices. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

10 pages, 2671 KiB  
Proceeding Paper
Enhancing Solar Radiation Storm Forecasting with Machine Learning and Physics Models at Korea Space Weather Center
by Ji-Hoon Ha, Jae-Hyung Lee, JaeHun Kim, Jong-Yeon Yun, Sang Cheol Han and Wonhyeong Yi
Eng. Proc. 2025, 94(1), 1; https://doi.org/10.3390/engproc2025094001 - 5 May 2025
Viewed by 464
Abstract
Solar radiation storms, caused by high-energy solar energetic particles (SEPs) released during solar flares or coronal mass ejections (CMEs), have a substantial impact on the Earth’s environment. These storms can disrupt satellite operations, interfere with high-frequency (HF) communications, and increase the radiation exposure [...] Read more.
Solar radiation storms, caused by high-energy solar energetic particles (SEPs) released during solar flares or coronal mass ejections (CMEs), have a substantial impact on the Earth’s environment. These storms can disrupt satellite operations, interfere with high-frequency (HF) communications, and increase the radiation exposure of high-altitude flights. To reduce these effects, the Korea Space Weather Center (KSWC) monitors and forecasts solar radiation storms using satellite data and predictive models. This paper introduces the space weather forecasting methods employed by the KSWC and the analysis approach for satellite data from GOES, SDO, the LASCO coronagraph, and STEREO. We introduce a predictive model for solar radiation storms, which is composed of two key components: (1) a machine learning model, which is trained using solar flare and CME data obtained from satellite observations, and (2) a physics-based model that incorporates the mechanisms of SEP generation through CMEs approaching the Earth. The machine learning model primarily forecasts the peak intensity of solar radiation storms based on real-time solar activity data, while the physics-informed model enhances the interpretability and understanding of the machine learning model’s predictions. The effectiveness and operability of this approach have been tested at the KSWC. Full article
Show Figures

Figure 1

13 pages, 1409 KiB  
Article
Comparison of the Chemical Composition of the Middle Atmosphere During Energetic Particle Precipitation in January 2005 and 2012
by Grigoriy Doronin, Irina Mironova and Eugene Rozanov
Atmosphere 2025, 16(5), 506; https://doi.org/10.3390/atmos16050506 - 27 Apr 2025
Viewed by 532
Abstract
We compare enhancements of mesospheric volume mixing ratios of hydroperoxyl radical HO2 and nitric acid HNO3, as well as ozone depletion in the Northern Hemisphere (NH) polar night regions during energetic particle precipitation (EPP) in January of 2005 and 2012. [...] Read more.
We compare enhancements of mesospheric volume mixing ratios of hydroperoxyl radical HO2 and nitric acid HNO3, as well as ozone depletion in the Northern Hemisphere (NH) polar night regions during energetic particle precipitation (EPP) in January of 2005 and 2012. We utilize mesospheric observations of HO2, HNO3, and ozone from the Microwave Limb Sounder (MLS/Aura). During the second half of January 2005 and 2012, the GOES satellite identified strong solar proton events with virtually the same proton flux parameters. Geomagnetic disturbances in January of 2005 were stronger, with Dst decreasing up to 100 nT compared to January 2012 while the Dst drop did not exceed 70 nT. Comparison of observations made with the MLS/Aura shows the highest change of HO2 and HNO3 concentrations and also the deepest ozone destruction at the latitudinal range from 60 NH to 80 NH inside the north polar vortex right after the spike in energetic particle flux registered by GOES satellites. MLS/Aura observations show HNO3 maximum enhancements of about 1.90 ppb and 1.66 ppb around 0.5 hPa (about 55 km) in January 2005 and January 2012, respectively. The HOx increases lead to short-term ozone destruction in the mesosphere, which is seen in MLS/Aura ozone data. The maximum HO2 enhancement is about 1.05 ppb and 1.62 ppb around 0.046 hPa (about 70 km) after the onset of EPP in the second half of January 2005 and January 2012, respectively. Ozone maximum depletion is observed around 0.02 hPa (about 75 km). Ozone recovery after EPP was much faster in January 2005 than in January 2012. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

6 pages, 205 KiB  
Editorial
Recent Advances in Molecularly Imprinted Polymers and Emerging Polymeric Technologies for Hazardous Compounds
by Ana-Mihaela Gavrilă, Mariana Ioniță and Gabriela Toader
Polymers 2025, 17(8), 1092; https://doi.org/10.3390/polym17081092 - 18 Apr 2025
Viewed by 543
Abstract
Addressing hazards from dangerous pollutants requires specialized techniques and risk-control strategies, including detection, neutralization and disposal of contaminants. Smart polymers, designed for specific contaminants, provide powerful solutions for hazardous compound challenges. Their remarkable performance capabilities and potential applications present exciting opportunities for further [...] Read more.
Addressing hazards from dangerous pollutants requires specialized techniques and risk-control strategies, including detection, neutralization and disposal of contaminants. Smart polymers, designed for specific contaminants, provide powerful solutions for hazardous compound challenges. Their remarkable performance capabilities and potential applications present exciting opportunities for further exploration and development in this field. This editorial aims to provide a comprehensive overview of smart materials with unique features and emerging polymeric technologies that are being developed for isolation, screening, removal, and decontamination of hazardous compounds (e.g., heavy metals, pharmaceutically active contaminants, hormones, endocrine-disrupting chemicals, pathogens, and energetic materials). It highlights recent advancements in synthesis methods, characterization, and the applications of molecularly imprinted polymers (MIPs), along with alternative smart polymeric platforms including hydrogels, ion-imprinted composites, screen-printed electrodes, nanoparticles, and nanofibers. MIPs offer highly selective recognition properties, reusability, long-term stability, and low production costs. Various MIP types, including particles and films, are used in applications like sensing/diagnostic devices for hazardous chemicals, biochemicals, pharmaceuticals, and environmental safety. Full article
12 pages, 1880 KiB  
Article
Combustion of High-Energy Compositions (HECs) Containing Al-B, Ti-B and Fe-B Ultrafine Powders (UFPs)
by Weiqiang Pang, Ivan Sorokin and Alexander Korotkikh
Nanomaterials 2025, 15(7), 543; https://doi.org/10.3390/nano15070543 - 2 Apr 2025
Viewed by 489
Abstract
Metal and metalloid powders are widely used in high-energy compositions (HECs) and solid propellants (SPs), increasing their energetic characteristics in the combustion chamber. The particle size distribution, protective coatings of the particles and heat of combustion of the metal powders influence the ignition [...] Read more.
Metal and metalloid powders are widely used in high-energy compositions (HECs) and solid propellants (SPs), increasing their energetic characteristics in the combustion chamber. The particle size distribution, protective coatings of the particles and heat of combustion of the metal powders influence the ignition and combustion parameters of the HECs as well as the characteristics of the propulsion systems. Boron-based metallic fuels achieve high-energy potentials during their combustion. The effect of Al-B, Fe-B and Ti-B (Me-B) mixture ultrafine powders (UFPs) on the ignition and combustion characteristics of a model HEC based on a solid oxidizer and a polymer combustible binder was investigated. The Me-B mass ratios in the mixture UFPs corresponded to the phase composition of the borides AlB2, FeB and TiB2. It was found that replacing the aluminum UFP with Al-B, Fe-B and Ti-B UFPs in the HECs changed the exponent (n) in the correlations of the ignition delay time tign(q) and burning rate u(p). The maximum burning rate and n over the pressure range of 0.5–5.0 MPa were obtained for the HEC with Al-B UFPs due to the increase in the heat release rate near the sample surface during the joint combustion of the Al and B particles. Full article
Show Figures

Figure 1

Back to TopTop