Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterizations and Calculations
2.3. Electrochemical Tests
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sayahpour, B.; Hirsh, H.; Bai, S.; Schorr, N.B.; Lambert, T.N.; Mayer, M.; Bao, W.; Cheng, D.; Zhang, M.; Leung, K.; et al. Revisiting Discharge Mechanism of CFx as a High Energy Density Cathode Material for Lithium Primary Battery. Adv. Energy Mater. 2022, 12, 2103196. [Google Scholar] [CrossRef]
- Kong, L.; Li, Y.; Peng, C.; Sun, L.; Wang, K.; Liu, Y.; Feng, W. Defective nano-structure regulating C-F bond for lithium/fluorinated carbon batteries with dual high-performance. Nano Energy 2022, 104, 107905. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, B.; Wu, Z.; Qiu, J.; Ding, Z.; Zou, J.; Chen, S.; Gao, P.; Niu, X.; Wang, L.; et al. Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell. Nano Energy 2020, 70, 104552. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, J.; Chen, P.; Wu, Z.; Niu, X.; Ouyang, C.; Liu, J.; Wang, L. Lithium-ion and solvent co-intercalation enhancing the energy density of fluorinated graphene cathode. J. Energy Chem. 2024, 89, 208–215. [Google Scholar] [CrossRef]
- Fang, Z.; Peng, Y.; Zhou, X.; Zhu, L.; Wang, Y.; Dong, X.; Xia, Y. Fluorinated Carbon Materials and the Applications in Energy Storage Systems. ACS Appl. Energy Mater. 2022, 5, 3966–3978. [Google Scholar] [CrossRef]
- Li, Q.; Xue, W.; Sun, X.; Yu, X.; Li, H.; Chen, L. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries. Energy Storage Mater. 2021, 38, 482–488. [Google Scholar] [CrossRef]
- Zhang, S.; Kong, L.; Li, Y.; Peng, C.; Feng, W. Fundamentals of Li/CFx battery design and application. Energy Environ. Sci. 2023, 16, 1907–1942. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Xu, H.; Peng, C.; Kong, L.; Gui, Z.; Feng, W. Elucidating the effects of the carbon source on fluorination kinetics and the CFx structure to tailor the energy density of Li/CFx. J. Mater. Chem. A 2025, 13, 1820–1829. [Google Scholar] [CrossRef]
- Li, L.; Wu, R.; Ma, H.; Cheng, B.; Rao, S.; Lin, S.; Xu, C.; Li, L.; Ding, Y.; Mai, L. Toward the High-Performance Lithium Primary Batteries by Chemically Modified Fluorinate Carbon with δ-MnO2. Small 2023, 19, 2300762. [Google Scholar] [CrossRef]
- Hu, Y.; Kong, L.; Li, W.; Sun, L.; Peng, C.; Qin, M.; Zhao, Z.; Li, Y.; Feng, W. Fluorinated microporous carbon spheres for Li/CFx batteries with high volumetric energy density. Compos. Commun. 2023, 40, 101607. [Google Scholar] [CrossRef]
- Li, W.; Kong, L.; Hu, Y.; Sun, L.; Peng, C.; Qin, M.; Zhao, Z.; Li, Y.; Feng, W. Electroplated Silver-Modified CFx Cathode for Lithium Primary Batteries with High Rate Capability. ACS Appl. Energy Mater. 2023, 6, 6132–6140. [Google Scholar] [CrossRef]
- Long, P.; Feng, Y.; Cao, C.; Li, Y.; Han, J.; Li, S.; Peng, C.; Li, Z.; Feng, W. Self-Protective Room-Temperature Phosphorescence of Fluorine and Nitrogen Codoped Carbon Dots. Adv. Funct. Mater. 2018, 28, 1800791. [Google Scholar] [CrossRef]
- Schopf, D.; Nielsen, U.G.; Es-Souni, M. In situ processing of fluorinated carbon—Lithium fluoride nanocomposites. Mater. Des. 2018, 158, 106–112. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Liu, C.; Qiao, J.; Zhou, X. A MOF-derived multifunctional nano-porous fluorinated carbon for high performance lithium/fluorinated carbon primary batteries. Microporous Mesoporous Mater. 2021, 310, 110650. [Google Scholar] [CrossRef]
- Sosunov, A.V.; Ziolkowska, D.A.; Ponomarev, R.S.; Henner, V.K.; Karki, B.; Smith, N.; Sumanasekera, G.; Jasinski, J.B. CFx primary batteries based on fluorinated carbon nanocages. New J. Chem. 2019, 43, 12892–12895. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, S.; Kong, L.; Xu, H.; Li, Y.; Feng, W. Fluorinated Carbon Nanohorns as Cathode Materials for Ultra-High Power Li/CFx Batteries. Small Methods 2024, 8, 2301090. [Google Scholar] [CrossRef]
- Wang, X.; Song, Z.; Wu, H.; Chen, J.; Feng, W.; Armand, M.; Zhou, Z.; Zhang, H. Reconciling electrolyte donicity and polarity for lithium carbon fluoride batteries. Energy Environ. Sci. 2024, 17, 7720–7734. [Google Scholar] [CrossRef]
- Leung, K.; Schorr, N.B.; Mayer, M.; Lambert, T.N.; Meng, Y.S.; Harrison, K.L. Edge-Propagation Discharge Mechanism in CFx Batteries—A First-Principles and Experimental Study. Chem. Mater. 2021, 33, 1760–1770. [Google Scholar] [CrossRef]
- Ignatova, A.A.; Yarmolenko, O.V.; Tulibaeva, G.Z.; Shestakov, A.F.; Fateev, S.A. Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFx—Systems at temperatures up to −50 °C. J. Power Sources 2016, 309, 116–121. [Google Scholar] [CrossRef]
- Yang, X.-X.; Zhang, G.-J.; Bai, B.-S.; Li, Y.; Li, Y.-X.; Yang, Y.; Jian, X.; Wang, X.-W. Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries. Rare Met. 2021, 40, 1708–1718. [Google Scholar] [CrossRef]
- Ma, S.; Liu, W.; Luo, Y.; Ma, S.; Wan, B.; Li, Y.; Pei, H.; Guo, R.; Wu, C.; Xie, J. Insights into the reaction mechanism of a capacity contributing electrolyte for high energy density Li/CFx batteries. J. Power Sources 2025, 638, 236622. [Google Scholar] [CrossRef]
- Lai, C.; Yang, W.; Yao, Y.; Li, Z.; Peng, Y.; Dou, P.; Zhao, R.; Huang, Y.; Luo, S.; Yuan, Z. Enhanced Li/CFx primary battery energy density by relay discharge and the use of difunctional electrolytes. Electrochim. Acta 2025, 512, 145477. [Google Scholar] [CrossRef]
- Gao, H.; Yoshinaga, K.; Steinberg, K.; Swager, T.M.; Gallant, B.M. Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities. Adv. Energy Mater. 2023, 13, 2301751. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, P.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.n.M. N-functionalized nitroxy/azido fused-ring azoles as high-performance energetic materials. J. Mater. Chem. A 2016, 4, 7430–7436. [Google Scholar] [CrossRef]
- Liu, X.; Ye, Z. Nitroaromatics as High-Energy Organic Cathode Materials for Rechargeable Alkali-Ion (Li+, Na+, and K+) Batteries. Adv. Energy Mater. 2021, 11, 2003281. [Google Scholar] [CrossRef]
- Dai, G.; Liu, Y.; Niu, Z.; He, P.; Zhao, Y.; Zhang, X.; Zhou, H. The Design of Quaternary Nitrogen Redox Center for High-Performance Organic Battery Materials. Matter 2019, 1, 945–958. [Google Scholar] [CrossRef]
- Nishide, H.; Iwasa, S.; Pu, Y.-J.; Suga, T.; Nakahara, K.; Satoh, M. Organic radical battery: Nitroxide polymers as a cathode-active material. Electrochim. Acta 2004, 50, 827–831. [Google Scholar] [CrossRef]
- Chen, Z.; Su, H.; Sun, P.; Bai, P.; Yang, J.; Li, M.; Deng, Y.; Liu, Y.; Geng, Y.; Xu, Y. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proc. Natl. Acad. Sci. USA 2022, 119, e2116775119. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wires Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. Wires Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Allaham, M.A.; Shirley, W.A.; Mantzaris, J. A Complete Basis Set Model Chemistry. 1. The Total Energies of Closed-Shell Atoms and Hydrides of the 1st-Row Elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Petersson, G.A.; Allaham, M.A. A Complete Basis Set Model Chemistry. 2. Open-Shell Systems and the Total Energies of the 1st-Row Atoms. J. Chem. Phys. 1991, 94, 6081–6090. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Wang, C.; Huo, H.; Yang, J.; Wan, C.; Chen, S.; Xu, K. Pyrolysis behavior, properties and mechanism of high-energy oxidizer 2,3-bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate. J. Anal. Appl. Pyrolysis 2023, 174, 106158. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Shen, L.; Jin, Z.; Law, H.M.; Wang, A.; Wang, W.; Ciucci, F. Towards durable practical lithium–metal batteries: Advancing the feasibility of poly-DOL-based quasi-solid-state electrolytes via a novel nitrate-based additive. Energy Environ. Sci. 2023, 16, 4084–4092. [Google Scholar] [CrossRef]
- Hu, Z.A.-O.; Zhang, F.; Wu, F.; Li, L.A.-O.X.; Chen, R. A room temperature rechargeable Li-LiNO(3) battery with high capacity. Proc. Natl. Acad. Sci. USA 2025, 122, e2416817122. [Google Scholar] [CrossRef]
- Hansen, R.F.; Dalton, E.Z.; Abney, R.B.; Engelhard, M.H.; Castillo Valdes, G.; Burton, S.D.; Chu, R.K.; Veghte, D.P.; China, S.; Losovyj, Y.; et al. Reaction of Organic Matter with Nitronium Ion as a Source of Organic Nitrate Esters in Proxies for Organic Aerosols. ACS Earth Space Chem. 2023, 7, 1727–1738. [Google Scholar] [CrossRef]
- Beard, B.C. Cellulose nitrate as a binding energy reference in N(1s) XPS studies of nitrogen-containing organic molecules. Appl. Surf. Sci. 1990, 45, 221–227. [Google Scholar] [CrossRef]
- Xue, S.; Zhou, Y.; Liu, X.; He, M. A new fluorine-containing sulfone-based electrolyte for advanced performance lithium metal batteries. J. Energy Storage 2023, 64, 107137. [Google Scholar] [CrossRef]
- Liu, S.; Ji, X.; Piao, N.; Chen, J.; Eidson, N.; Xu, J.; Wang, P.; Chen, L.; Zhang, J.; Deng, T.; et al. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. Angew. Chem. Int. Ed. 2021, 60, 3661–3671. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, R.; Fu, Y.; Manthiram, A. Nitrate additives for lithium batteries: Mechanisms, applications, and prospects. eScience 2021, 1, 108–123. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Q.; Liu, Y.; Yan, Z.; Xu, Q.; Wu, Y.; Cheng, T. Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chin. J. Struct. Chem. 2024, 43, 100203. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, L.; Zhao, H.; Fu, Y. Significantly improved electrochemical performance of CFx promoted by SiO2 modification for primary lithium batteries. J. Mater. Chem. A 2017, 5, 796–803. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Kong, L.; Wang, Y.; Zhao, Z.; Li, Y.; Feng, W. Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries. Nanomaterials 2025, 15, 758. https://doi.org/10.3390/nano15100758
Xiao J, Kong L, Wang Y, Zhao Z, Li Y, Feng W. Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries. Nanomaterials. 2025; 15(10):758. https://doi.org/10.3390/nano15100758
Chicago/Turabian StyleXiao, Junwei, Lingchen Kong, Yong Wang, Ziyue Zhao, Yu Li, and Wei Feng. 2025. "Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries" Nanomaterials 15, no. 10: 758. https://doi.org/10.3390/nano15100758
APA StyleXiao, J., Kong, L., Wang, Y., Zhao, Z., Li, Y., & Feng, W. (2025). Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries. Nanomaterials, 15(10), 758. https://doi.org/10.3390/nano15100758