Combustion of High-Energy Compositions (HECs) Containing Al-B, Ti-B and Fe-B Ultrafine Powders (UFPs)
Abstract
:1. Introduction
1.1. Ultrafine Powders of Metal
1.2. Use of Metal UFPs in SPs and HECs
2. Materials and Methods
2.1. Ultrafine Powders of B, Al, Fe and Ti
2.2. Ignition of HECs with Me UFPs
2.3. Combustion of HECs with Me UFPs
3. Results and Discussion
3.1. SEM and Particle Size of UFPs of B, Al, Fe and Ti
3.2. The tign of HECs with Me UFPs
3.3. Ignition Kinetics of HECs with Me UFPs
3.4. The u of HECs with Me UFPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yetter, R.A.; Risha, G.A.; Son, S.F. Metal particle combustion and nanotechnology. Proc. Combust. Inst. 2009, 32, 1819–1838. [Google Scholar]
- Dreizin, E.L. Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 2009, 35, 141–167. [Google Scholar]
- Gromov, A.; Korotkikh, A.; Il’in, A.; DeLuca, L.; Arkhipov, V.; Momogarov, K.; Teipel, U. Chapter three—Nanometals: Synthesis and application in energetic systems. In Energetic Nanomaterials; Zarko, V., Gromov, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 47–63. [Google Scholar]
- Rosenband, V.; Gany, A. Chapter six—Nanocoating for activation of energetic metals. In Energetic Nanomaterials; Zarko, V., Gromov, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 121–137. [Google Scholar]
- Sundaram, D.; Yang, V.; Yetter, R. Metal-based nanoenergetic materials: Synthesis, properties, and applications. Prog. Energy Combust. Sci. 2017, 61, 293–365. [Google Scholar]
- DeLuca, L.T. Overview of Al-based nanoenergetic ingredients for solid rocket propulsion. Def. Technol. 2018, 14, 357–365. [Google Scholar]
- Shafirovich, E. Lithium and magnesium fuels for space propulsion and power. In Nano and Micro-Scale Energetic Materials: Propellants and Explosives; Pang, W., DeLuca, L., Eds.; Wiley-VCH GmbH: Weinheim, Germany, 2023; pp. 397–416. [Google Scholar]
- Yetter, R.A. Progress towards nanoengineered energetic materials. Proc. Combust. Inst. 2021, 38, 57–81. [Google Scholar]
- Knauth, P.; Schoonman, J. Nanostructured Materials: Selected Synthesis Methods, Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Koch, C.C. Nanostructured Materials: Processing, Properties and Applications; William Andrew: New York, NY, USA, 2007. [Google Scholar]
- Berner, M.K.; Zarko, V.E.; Talawar, M.B. Nanoparticles of energetic materials: Synthesis and properties (review). Combust. Explos. Shock Waves 2013, 49, 625–647. [Google Scholar]
- Tepper, F. Nanosize powders produced by electro-explosion of wire and their potential applications. Powder Metal. 2000, 43, 320. [Google Scholar]
- Kwon, Y.S.; Jung, Y.H.; Yavorovsky, N.A.; Illyn, A.P.; Kim, J.S. Ultra-fine powder by wire explosion method. Scr. Mater. 2001, 44, 2247–2251. [Google Scholar]
- Lerner, M.I.; Pervikov, A.V.; Glazkova, E.A.; Svarovskaya, N.V.; Lozhkomoev, A.S.; Psakhie, S.G. Structures of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements. Powder Technol. 2016, 288, 371–378. [Google Scholar]
- Rao, C.N.R.; Müller, A.; Cheetham, A.K. The Chemistry of Nanomaterials: Synthesis, Properties and Applications; Wiley-VCH GmbH: Weinheim, Germany, 2004. [Google Scholar]
- Gupta, S.K.; Mao, Y. A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Prog. Mater. Sci. 2021, 117, 100734. [Google Scholar]
- Natan, B.; Gany, A. Ignition and combustion of boron particles in the flowfield of a solid fuel ramjet. J. Propul. Power 1991, 7, 37–43. [Google Scholar] [CrossRef]
- Pang, W.; Yetter, R.A.; DeLuca, L.T.; Zarko, V.E.; Gany, A.; Zhang, X. Boron-based composite energetic materials (B-CEMs): Preparation, combustion and applications. Prog. Energy Combust. Sci. 2022, 93, 101038. [Google Scholar] [CrossRef]
- Glotov, O.G. Screening of metal fuels for use in composite propellants for ramjets. Prog. Aerosp. Sci. 2023, 143, 100954. [Google Scholar] [CrossRef]
- Korotkikh, A.G.; Sorokin, I.V.; Arkhipov, V.A. Laser ignition of aluminum and boron based powder systems. Combust. Explos. Shock Waves 2022, 58, 422–429. [Google Scholar] [CrossRef]
- Korotkikh, A.G.; Sorokin, I.V.; Teplov, D.V.; Arkhipov, V.A. Combustion characteristics of high-energy material containing dispersed aluminum, boron, and aluminum borides. Combust. Explos. Shock Waves 2023, 59, 440–446. [Google Scholar] [CrossRef]
- Leuchtmann, C.; Gallegos, D.F.; Young, G.; Schoenitz, M.; Dreizin, E.L. Combustion of solid fuels containing boron, borides, and boron based composites in a solid fuel ramjet. Fuel 2024, 371, 132101. [Google Scholar] [CrossRef]
- Momtaz, M.; McNanna, J.L.; Schoenitz, M.; Dreizin, E.L. Effect of powder characteristics on thermal oxidation of boron. Thermochim. Acta 2025, 743, 179917. [Google Scholar] [CrossRef]
- Yeh, C.L.; Kuo, K.K. Ignition and combustion of boron particles. Prog. Energy Combust. Sci. 1996, 22, 511–541. [Google Scholar] [CrossRef]
- Pang, W. Boron-Based Fuel-Rich Propellant: Properties, Combustion, and Technology Aspects; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Pivkina, A.N.; Muravyev, N.V.; Monogarov, K.A.; Meerov, D.B.; Fomenkov, I.V.; Skryleva, E.A.; Presnyakov, Y.M.; Vasiliev, A.L.; Milekhin, Y.M. Comparative analysis of boron powders obtained by various methods. I. Microstructure and oxidation parameters during heating. Combust. Explos. Shock Waves 2018, 54, 450–460. [Google Scholar] [CrossRef]
- Beckstead, M.W. Correlating aluminum burning times. Combust. Explos. Shock Waves 2005, 41, 533–546. [Google Scholar] [CrossRef]
- Sundaram, D.S.; Yang, V.; Zarko, V.E. Combustion of nano aluminum particles. Combust. Explos. Shock Waves 2015, 51, 173–196. [Google Scholar] [CrossRef]
- Sundaram, D.S.; Puri, P.; Yang, V. A general theory of ignition and combustion of nano-and micron-sized aluminum particles. Combust. Flame 2016, 169, 94–109. [Google Scholar] [CrossRef]
- Braconnier, A.; Chauveau, C.; Halter, F.; Gallier, S. Experimental investigation of the aluminum combustion in different O2 oxidizing mixtures: Effect of the diluent gases. Exp. Therm. Fluid Sci. 2020, 117, 110110. [Google Scholar]
- Braconnier, A.; Gallier, S.; Halter, F.; Chauveau, C. Aluminum combustion in CO2-CO-N2 mixtures. Proc. Combust. Inst. 2021, 38, 4355–4363. [Google Scholar]
- Ohkura, Y.; Rao, P.M.; Zheng, X. Flash ignition of Al nanoparticles: Mechanism and applications. Combust. Flame 2011, 158, 2544–2548. [Google Scholar]
- Tang, Y.; Kong, C.; Zong, Y.; Li, S.; Zhuo, J.; Yao, Q. Combustion of aluminum nanoparticle agglomerates: From mild oxidation to microexplosion. Proc. Combust. Inst. 2017, 36, 2325–2332. [Google Scholar]
- Terry, B.C.; Gunduz, I.E.; Pfeil, M.A.; Sippel, T.R.; Son, S.F. A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum–lithium alloy based solid propellant. Proc. Combust. Inst. 2017, 36, 2309–2316. [Google Scholar]
- Belal, H.; Han, C.W.; Gunduz, I.E.; Ortalan, V.; Son, S.F. Ignition and combustion behavior of mechanically activated Al–Mg particles in composite solid propellants. Combust. Flame 2018, 194, 410–418. [Google Scholar] [CrossRef]
- Korotkikh, A.G.; Teplov, D.V.; Sorokin, I.V. Combustion features of dispersed aluminum and boron in high-energy composition. FirePhysChem 2024, 4, 277–282. [Google Scholar]
- Romodanova, L.D.; Pokhil, P.F. Effect of adding metals and their borides on burning rate of composite systems. Combust. Explos. Shock Waves 1973, 9, 195–198. [Google Scholar] [CrossRef]
- Korotkikh, A.G.; Sorokin, I.V.; Selikhova, E.A.; Arkhipov, V.A. Effect of B, Fe, Ti, Cu nanopowders on the laser ignition of Al-based high-energy materials. Combust. Flame 2020, 222, 103–110. [Google Scholar]
- Thomas, J.C.; Lukasik, G.D.; Rodriguez, F.A.; Kulatilaka, W.D.; Petersen, E.L. Combustion of iron particles in solid propellants at elevated pressure. FirePhysChem 2024, 4, 252–263. [Google Scholar]
- Yagodnikov, D.A.; Guseinov, S.L.; Storozhenko, P.A.; Shpara, A.P.; Sukhov, A.V.; Fedorov, S.G. Morphologic, chemical, and spectral analyses of combustion products of micro-and nanodispersed particles of aluminum borides. Dokl. Chem. 2019, 484, 5–7. [Google Scholar]
- Arkhipov, V.A.; Zhukov, A.S.; Kuznetsov, V.T.; Zolotorev, N.N.; Osipova, N.A.; Perfil’eva, K.G. Ignition and combustion of condensed systems with energy fillers. Combust. Explos. Shock Waves 2018, 54, 689–697. [Google Scholar]
- Liang, D.; Xiao, R.; Liu, J.; Wang, Y. Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend. Aerosp. Sci. Technol. 2019, 84, 1081–1091. [Google Scholar]
- Glotov, O.G.; Poryazov, V.A.; Surodin, G.S.; Sorokin, I.V.; Krainov, D.A. Combustion features of boron-based composite solid propellants. Acta Astronaut. 2023, 204, 11–24. [Google Scholar]
- Korotkikh, A.G.; Sorokin, I.V.; Arkhipov, V.A. Effect of ammonium nitrate and combustible binder on the ignition characteristics of high-energy materials containing aluminum borides. Combust. Explos. Shock Waves 2022, 58, 593–601. [Google Scholar]
- Sorokin, I.V.; Korotkikh, A.G. Effect of ultrafine Al/B, Ti/B, and Fe/B powders on the ignition and combustion characteristics of high-energy materials. Combust. Explos. Shock Waves 2023, 59, 716–723. [Google Scholar]
- Shafirovich, E.; Teoh, S.K.; Varma, A. Combustion of levitated titanium particles in air. Combust. Flame 2008, 152, 262–271. [Google Scholar]
- Badiola, C.; Dreizin, E.L. Combustion of micron-sized particles of titanium and zirconium. Proc. Combust. Inst. 2013, 34, 2237–2243. [Google Scholar]
- Zarko, V.E.; Knyazeva, A.G. Determination of kinetic parameters of exothermic condensed phase reaction using the energetic material ignition delay data. Combust. Flame 2020, 221, 453–461. [Google Scholar] [CrossRef]
HECs | E, kJ mol−1 | Q · z, W g−1 | Tign *, K at q = 60–200 W cm−2 | W **, kW g−1 at Tign |
---|---|---|---|---|
1. Alex | 119.0 | 1.82 · 1016 | 503–546 | 7.9–75.0 |
2. Al-B | 56.8 | 5.17 · 109 | 490–575 | 4.6–35.7 |
3. Ti-B | 57.0 | 1.51 · 1010 | 461–536 | 5.3–42.1 |
4. Fe-B | 81.2 | 1.58 · 1012 | 503–566 | 5.8–50.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, W.; Sorokin, I.; Korotkikh, A. Combustion of High-Energy Compositions (HECs) Containing Al-B, Ti-B and Fe-B Ultrafine Powders (UFPs). Nanomaterials 2025, 15, 543. https://doi.org/10.3390/nano15070543
Pang W, Sorokin I, Korotkikh A. Combustion of High-Energy Compositions (HECs) Containing Al-B, Ti-B and Fe-B Ultrafine Powders (UFPs). Nanomaterials. 2025; 15(7):543. https://doi.org/10.3390/nano15070543
Chicago/Turabian StylePang, Weiqiang, Ivan Sorokin, and Alexander Korotkikh. 2025. "Combustion of High-Energy Compositions (HECs) Containing Al-B, Ti-B and Fe-B Ultrafine Powders (UFPs)" Nanomaterials 15, no. 7: 543. https://doi.org/10.3390/nano15070543
APA StylePang, W., Sorokin, I., & Korotkikh, A. (2025). Combustion of High-Energy Compositions (HECs) Containing Al-B, Ti-B and Fe-B Ultrafine Powders (UFPs). Nanomaterials, 15(7), 543. https://doi.org/10.3390/nano15070543