The Structural Regulation and Properties of Energetic Materials: A Review
Abstract
1. Introduction
2. Structural Regulation of Single-Component EMs
2.1. Particle Size and Particle Size Distribution
2.2. Morphology
2.3. Polycrystalline
3. Structural Regulation of CEMs
3.1. Core–Shell
3.2. Cocrystal
3.3. Mixing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badgujar, D.; Talawar, M.; Asthana, S.; Mahulikar, P. Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater. 2008, 151, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Zeman, S.; Jungová, M. Sensitivity and performance of energetic materials. Propellants Explos. Pyrotech. 2016, 41, 426–451. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Meerov, D.B.; Monogarov, K.A.; Melnikov, I.N.; Kosareva, E.K.; Fershtat, L.L.; Sheremetev, A.B.; Dalinger, I.L.; Fomenkov, I.V.; Pivkina, A.N. Sensitivity of energetic materials: Evidence of thermodynamic factor on a large array of CHNOFCl compounds. Chem. Eng. J. 2021, 421, 129804. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, X.; Wei, H.; Li, J. Application of nitramines coated with nitrocellulose in minimum signature isocyanate-cured propellants. Propellants Explos. Pyrotech. 2008, 33, 279–285. [Google Scholar] [CrossRef]
- Nosratzadegan, K.; Mahdavi, M.; Ghani, K.; Barati, K. New Energetic Complex of Copper(II) Dinitramide Based Nitrogen-rich Ligand Aminoguanidine(CH6N4): Synthesis, Structural and Energetic Properties. Propellants Explos. Pyrotech. 2019, 44, 830–836. [Google Scholar] [CrossRef]
- Banik, S.; Kumar, P.; Ghule, V.D.; Khanna, S.; Allimuthu, D.; Dharavath, S. Facile synthesis of nitroamino-1,3,4-oxadiazole with azo linkage: A new family of high-performance and biosafe energetic materials. J. Mater. Chem. A 2022, 10, 22803–22811. [Google Scholar] [CrossRef]
- Huang, B.; Xue, Z.; Fu, X.; Yan, Q.-L. Advanced crystalline energetic materials modified by coating/intercalation techniques. Chem. Eng. J. 2021, 417, 128044. [Google Scholar] [CrossRef]
- Yetter, R.A. Progress towards nanoengineered energetic materials. Proc. Combust. Inst. 2021, 38, 57–81. [Google Scholar] [CrossRef]
- Pang, W.; Deng, C.; Li, H.; DeLuca, L.T.; Ouyang, D.; Xu, H.; Fan, X. Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review. Nanomaterials 2022, 12, 133. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, B.; Wang, M.; Liu, S.; Xie, Z.; An, C.; Wang, J. Accurate and efficient droplet microfluidic strategy for controlling the morphology of energetic microspheres. J. Energetic Mater. 2023, 41, 411–428. [Google Scholar] [CrossRef]
- Kosareva, E.K.; Zharkov, M.N.; Meerov, D.B.; Gainutdinov, R.V.; Fomenkov, I.V.; Zlotin, S.G.; Pivkina, A.N.; Kuchurov, I.V.; Muravyev, N.V. HMX surface modification with polymers via sc-CO2 antisolvent process: A way to safe and easy-to-handle energetic materials. Chem. Eng. J. 2022, 428, 131363. [Google Scholar] [CrossRef]
- Ghosh, M.; Banerjee, S.; Khan, M.A.S.; Sikder, N.; Sikder, A.K. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: Experimental and DFT studies. Phys. Chem. Chem. Phys. 2016, 18, 23554–23571. [Google Scholar] [CrossRef]
- Ma, R.; Sun, W.; Picu, C.R.; Sewell, T. Domain partitioning material point method for simulating shock in polycrystalline energetic materials. Comput. Methods Appl. Mech. Eng. 2023, 404, 115815. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Zhang, J.; Gong, F.; Zhao, X.; Yang, Z. Design of conductive polymer coating layer for effective desensitization of energetic materials. Chem. Eng. J. 2024, 482, 148874. [Google Scholar] [CrossRef]
- Baraboshkin, N.; Zelenov, V.; Khakimov, D.; Dzyabchenko, A.; Pivina, T. Cocrystals of polynitrogen compounds as a basis for promising energetic materials: Crystal structure prediction methods, their experimental verification, and evaluation of cocrystal properties. Russ. Chem. Bull. 2024, 73, 243–282. [Google Scholar] [CrossRef]
- Du, J.; Wang, B.; Chen, Y.; Li, X.; Wang, C. Theoretical investigation of potential energetic material CL-20/TNBP co-crystal explosive based on molecular dynamics method. J. Mol. Model. 2024, 30, 348. [Google Scholar] [CrossRef]
- Zhang, X.; Jing, J.; Liu, J.; Zhang, L.; Qi, L.; An, C. Continuous pipe-stream self-assembly technology for preparation of high sphericity FOX-7/HMX energetic composite microspheres. Apl. Mater. 2024, 12, 051111. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhou, X.; Sun, Y.; Guo, D.; Xu, J. Physical cross-linked network κ-carrageenan/chitosan/NTO composites: Enhanced energy release efficiency and reduced corrosivity of NTO. Int. J. Biol. Macromol. 2025, 306, 141564. [Google Scholar] [CrossRef]
- Gao, H.; Hou, X.-t.; Ke, X.; Liu, J.; Hao, G.; Xiao, L.; Chen, T.; Zuo, Y.-y.; Jiang, W. Effects of nano-HMX on the properties of RDX-CMDB propellant: Higher energy and lower sensitivity. Def. Technol. 2017, 13, 323–326. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, C.; Liu, D. Preparation of RDX Microcrystals with Nanometer Size by Recrystalization. Chin. J. Explos. Propellants 2005, 28, 49–51. [Google Scholar]
- Xia, H.; Shi, J.; Liu, J.; Zhou, X.; Fei, Y.; Ning, J.; Liu, L.; Zhu, P.; Shen, R. Preparation of Narrow Size-distributed Micron Nitroamine Explosives by Microfluidic Crystallization System. Chin. J. Energetic Mater. 2024, 32, 256–269. [Google Scholar]
- Jiang, H.; Xu, S.; Yu, J.; Liu, B.; Zhao, S.; Wang, X. Microfluidic Crystallization Control and High-throughput Preparation of Ultrafine HMX. Chin. J. Explos. Propellants 2024, 47, 498–505. [Google Scholar]
- Zhang, Z.; Yu, J.; Wen, Y.; Jiang, H.; Xu, S.; Shao, Y.; Yao, E.; Li, H.; Zhao, F. Preparation of CL-20 with Controllable Particle Size Using Microfluidic Technology. Molecules 2025, 30, 1176. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, L.; Zhang, L.; Chen, J. Preparation of Submicron RDX Particles by High-gravity Assisted Solvent-Antisolvent Recrystallization Method. Chin. J. Explos. Propellants 2022, 45, 46–52. [Google Scholar]
- Li, Z.; Hou, C.; Zhang, H.; Cui, H.; Luo, Y. Refinement and Performance Study of Narrow Particle Size HMX. Initiat. Pyrotech. 2024, 72–76. [Google Scholar]
- Xiaoting, R.E.N.; Zhongxiang, S.U.N.; Yilin, C.A.O. Preparation and Passivation of Fine epsilon-CL-20. Chin. J. Explos. Propellants 2011, 34, 21–25. [Google Scholar]
- Pal, D.K.; Gupta, S.; Jindal, D.; Kumar, A.; Agarwal, A.; Lata, P. ANFIS Modeling for Prediction of Particle Size in Nozzle Assisted Solvent-Antisolvent Process for Making Ultrafine CL-20 Explosive. In Proceedings of the 6th Symposium on Explosion, Shock wave and High straint-rate Phenomenon (ESHP 2019), Puducherry, India, 19–21 March 2019; pp. 121–127. [Google Scholar]
- Jing, X.-F.; Xu, W.-Z.; Wang, J.-Y.; An, C.-W. Preparation and Characterization of Spherical epsilon CL-20. J. North Univ. China 2014, 35, 173–176, 181. [Google Scholar] [CrossRef]
- Pang, Z.; Xu, W.; Zhang, Y.; Ping, C.; Wang, J. Preparation of Ultrafine and Spherical CL-20 by Pressure Type of Spraying. Initiat. Pyrotech. 2018, 2, 52–55. [Google Scholar]
- Liao, D.; Liu, Q.; Li, C.; Liu, N.; Wang, M.; An, C. RDX crystals with high sphericity prepared by resonance acoustic mixing assisted solvent etching technology. Def. Technol. 2023, 28, 23–32. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Hao, S.; Zhang, S.; Gou, R.; Li, H.; Liu, Y.; Zhou, X. Membrane-cooling coupled crystallization with zero solvent discharge for spherical HMX: Process design, growth kinetics and mechanism. Chem. Eng. J. 2023, 472, 144886. [Google Scholar] [CrossRef]
- Zhou, X.; Li, H.; Zhou, X.; Hao, S.; Yan, M.; Zou, P.; Huang, S.; He, X.; Zhang, C. Imparting high polymorph transition resistance to cyclotetramethylene-tetranitramine via spherulitic aggregation enabled crystal shape constraint. Chem. Eng. J. 2023, 452, 139602. [Google Scholar] [CrossRef]
- Zhou, X.; Ren, Y.; Li, H.; Zhou, X.; Hao, S.; Xu, R.; Zhang, Q. Polymer-directed crystallization of HMX to construct nano-/microstructured aggregates with tunable polymorph and microstructure. Crystengcomm 2022, 24, 755–764. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Zhou, X.; Zhang, Q.; Chen, M.; Han, D.; Gong, J.; Li, H. Fabrication of micro/nano spherulitic hierarchical energetic materials via noncrystallographic branching induced by polymer additives: A case study of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS). Chem. Eng. J. 2023, 462, 142162. [Google Scholar] [CrossRef]
- Jiao, F.; Zhou, X.; Sun, X.; Zhou, X.; Li, M.; Li, H.; Zhang, Q. Preparation of compact spherulite of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) via specific adsorption of antisolvent combined with polymer. Chem. Eng. J. 2024, 497, 154865. [Google Scholar] [CrossRef]
- Feng, Y.; Deng, M.; Song, S.; Chen, S.; Zhang, Q.; Shreeve, J.n.M. Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability. Engineering 2020, 6, 1006–1012. [Google Scholar] [CrossRef]
- Xue, Z.-H.; Zhang, H.; Wang, Z.; Xu, R.; Zhang, Y.; Yan, Q.-L. Layered assembling of energetic molecules with improved thermostability templated by in-situ generated 2D crosslinked macromolecules. Chem. Eng. J. 2024, 489, 151429. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.; Zhao, L.; Deng, Y.; Li, Y.; Duan, X.; Wu, B.; Pei, C. Construction of submicro rhombic RDX lamellae and the critical size effect on desensitivity originated from slipping energy dissipation. Chem. Eng. J. 2023, 474, 145602. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J.; Guo, Y.; Xue, Z.; Han, K.; Liu, S.; An, C.; Ma, Z.; Wu, B. Regulating hollow structure of CL-20 microspheres using microjet droplet technology to enhance safety and combustion performance. Fuel 2024, 361, 130748. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Jiao, F.; Zhang, Z.; Gong, J.; Han, D.; Li, H.; Zhang, Q. Constructing core@self-shell structured energetic nanomaterials by autologous surface molecular reconfiguration: The DATNBI case. Chem. Eng. J. 2023, 471, 144415. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Su, G.; Wei, H.; Dang, L. Design of solvent systems for preparation of ε-CL-20 crystals with high sphericity assisted by molecular simulation. Crystengcomm 2025, 27, 547–558. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Yang, X.; Su, G.; Wei, H.; Dang, L. Insight on Crystal Morphology of ε-CL-20 in Binary Green Solvents: From Molecular Simulations to Experiments. Ind. Eng. Chem. Res. 2025, 64, 1762–1773. [Google Scholar] [CrossRef]
- Sun, X.; Jiao, F.; Lv, R.; Duan, X.; Li, H. Preparation and Growth Mechanism of Octahedral Fine-grained High-quality RDX Crystal. Chin. J. Energetic Mater. 2024, 32, 1020–1030. [Google Scholar]
- Wang, H.; Xu, S.; Zhao, H.; Wu, W.; Wang, N.; Wang, T.; Huang, X.; Zhou, L.; Bao, Y.; Hao, H. Polymorphism of CL-20 and the Modification and Inhibition Strategies for Its Crystal Transformation. Cryst. Growth Des. 2024, 24, 9266–9296. [Google Scholar] [CrossRef]
- Liu, G.; Tian, B.; Wei, S.-H.; Zhang, C. Polymorph-Dependent Initial Thermal Decay Mechanism of Energetic Materials: A Case of 1,3,5,7-Tetranitro-1,3,5,7-Tetrazocane. J. Phys. Chem. C 2021, 125, 10057–10067. [Google Scholar] [CrossRef]
- Zihao, Z.; Siyu, X.; Hanyu, J.; Jin, Y.; Ergang, Y.; Yubao, S.; Xi, C. Research on recrystallization technology of CL-20 based on microfluidic. J. Phys. Conf. Ser. 2024, 2891, 032003. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.; Yu, J.; Zhou, W.; Zhao, S.; Xu, S.; Zhao, F. Size, Morphology and Crystallinity Control Strategy of Ultrafine HMX by Microfluidic Platform. Nanomaterials 2023, 13, 464. [Google Scholar] [CrossRef]
- Ji, J.; Li, H.; Zhu, W. Theoretical studies on the effects of solvents on the mechanisms of configuration transformation of ε-CL-20. Struct. Chem. 2025, 36, 1269–1279. [Google Scholar] [CrossRef]
- Wang, Y.; Han, D.; Zhou, X.; Zhang, Z.; Gong, J.; Li, H.; Zhang, Q. The preparation of higher performance solid form of DATNBI based on rapid in-situ solvate-mediated phase transition mechanism. Chem. Eng. J. 2023, 456, 141052. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Wang, Z.; Li, D.; Chen, S.; Shu, Q. Study on the crystal structure and properties of a new crystal form of 3-nitro-1,2,4-triazole-5-one (NTO). Crystengcomm 2024, 26, 3501–3508. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Y.; Su, L.; Wang, J.; Li, X.; Shi, X. Research on the Control and Performance of Integrated Self-Assembled Micro-Scale Structure of NC-Coated CL-20. Processes 2024, 12, 675. [Google Scholar] [CrossRef]
- Tu, Z.; Li, J.; Fu, X.; Liu, S.; Qu, B. Research progress abroad of CL-20 /HMX cocrystal technology. J. Ordnance Equip. Eng. 2022, 43, 145–150. [Google Scholar]
- Pang, W.-q.; Wang, K.; Zhang, W.; Luca, L.T.D.; Fan, X.-z.; Li, J.-q. CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance. Molecules 2020, 25, 4311. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sang, L.; Gou, D.; Wen, Z.; Zhang, G.; Liu, P.; He, G.; Ao, W. Controlling the combustion and agglomeration characteristics of solid propellants via new micro-unit composite fuel Al@AP. Combust. Flame 2023, 258, 113107. [Google Scholar] [CrossRef]
- Zhang, S.; Zhan, L.-w.; Zhu, G.-k.; Teng, Y.-y.; Wu, X.-g.; Hou, J.; Li, B.-d. Continuous, safe and large-scale preparation of insensitive high-energy TATB/HMX composite particles by microfluidic self-assembly technology. Chem. Eng. Sci. 2022, 264, 118160. [Google Scholar] [CrossRef]
- He, W.; Li, Y.; Bao, P.; Fan, Y.; Xue, M.; Wang, B. Utilizing surface modification in coating technology to enhance the efficiency of CL-20 desensitization. FirePhysChem 2024, 4, 72–79. [Google Scholar] [CrossRef]
- Cheng, Y.; Ren, H.; Chang, S. CL-20 Coated by the Activated and Reactible Submicron Shell and Its Performances Characterization. Chin. J. Explos. Propellants 2024, 47, 422–429. [Google Scholar]
- Bao, P.; Li, Y.; Xiao, W.; Bian, W.; Li, J.; Xue, M.; Song, S.; Wang, B. Design and preparation of a novel nano-composite coating for desensitization of CL-20. Diam. Relat. Mater. 2024, 141, 110578. [Google Scholar] [CrossRef]
- Jin, D.; Wen, T.; Li, W.; Guo, X.; Guo, C. Spherical core-shell CL-20@LLM-105 composites with excellent mechanical sensibility obtained by Pickering emulsion. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 694, 134201. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Liu, Z.; Zhan, L.; Hou, J.; Li, B. Preparation of Micro/Nano LLM-105/CL-20 Composite Energetic Materials by Microfluidic Technology. Chin. J. Explos. Propellants 2024, 47, 521–527. [Google Scholar]
- Huang, Y.; Wang, X.; Zhang, J.; Wang, D. Preparation and Performance of Low Sensitivity CL-20@GO Core-shell Composites by Electrostatic Assembly. Chin. J. Explos. Propellants 2024, 47, 44–50. [Google Scholar]
- Han, K.; Shi, H.; He, G.; Liao, F.; Wang, J.; An, C. Application of Pickering emulsion with multilayer dispersion-enhancement synergy of carbon nanotubes in composite energetic materials. Chem. Eng. J. 2025, 505, 159799. [Google Scholar] [CrossRef]
- Bao, P.; Li, H.; Chen, Y.; He, G.; Xue, M.; Xiao, W.; Wang, B. The GO composite coatings for enhancing interfacial interaction performance and desensitization of CL-20. Mater. Chem. Phys. 2024, 316, 128968. [Google Scholar] [CrossRef]
- Song, X.; Huang, L.; Peng, R.; Huang, Q.; Xu, J.; Sun, J. Hybrid HMX multi-level assembled under the constraint of 2D materials with efficiently reduced sensitivity and optimized thermal stability. Def. Technol. 2024, 39, 123–132. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Liu, D.; Zhang, H.; Wang, J.; He, G.; Yang, Z. “One Stone, Three Birds”: Unveiling the spatial interface configurations on energetic HMX for enhanced safety performances. Appl. Surf. Sci. 2025, 693, 162810. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, J.; Liu, Y.; Zhang, D.; Wang, F.; Li, J.; An, C.; Ma, Z.; Wu, B. Tunable polydopamine coating: Surface modification of polymer bonded explosives to enhance thermal stability and combustion performance. Colloids Surf. A-Physicochem. Eng. Asp. 2025, 709, 136118. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Li, B. Bioinspired tea polyphenols modification of energetic crystals with reduced impact sensitivity and enhanced thermal stability. Mater. Lett. 2024, 355, 135507. [Google Scholar] [CrossRef]
- Li, Y.; Li, B. Biomass materials self-assembled core-shell CL-20 @Biomass materials-TiO2 energetic composites with reduced impact sensitivity and enhanced thermal stability. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 685, 133160. [Google Scholar] [CrossRef]
- Yin, S.; Hua, C.; Ye, B.; Niu, K.; Zhan, X.; Wang, J.; An, C. Core-shell synergistic effect to construct a novel ADN-based composite material with excellent anti-hygroscopicity and high energy release effect. Fuel 2025, 392, 134894. [Google Scholar] [CrossRef]
- He, Z.; Zhang, G.; Xu, C.; Zhu, W.; Yue, J.; Zhou, S.; Huang, Z. Construction and Performance Characterization of Hexahydro-1,3,5-trinitro-1,3,5-triazine/Poly(3,4-ethylene-dioxythiophene)-Poly(styrenesulfonate) Energetic Composites. Molecules 2025, 30, 1000. [Google Scholar] [CrossRef]
- Wen, Y.; Mao, J.; Ma, S.; Di, Y.; Liu, T.; Liu, J. Preparation and Properties of CL-20@PCHA Composite Particles. Chin. J. Energetic Mater. 2024, 32, 1040–1048. [Google Scholar]
- Yu, J.; Jiang, H.; Xu, S.; Yao, E.; Hao, H.; Li, H.; Wang, Y.; Li, M.; Pei, Q.; Zhang, Y.; et al. One-step preparation and characterization of insensitive HMX@PDA particles with microfluidic technology. Propellants Explos. Pyrotech. 2023, 48, e202300002. [Google Scholar] [CrossRef]
- Bolton, O.; Simke, L.R.; Pagoria, P.F.; Matzger, A.J. High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX. Cryst. Growth Des. 2012, 12, 4311–4314. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, X.; Zhang, G.; Liu, X.; Fan, X. Study on the Cocrystallization Mechanism of CL-20/HMX in a Propellant Aging Process through Theoretical Calculations and Experiments. ACS Omega 2022, 7, 7361–7369. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Liu, T.; Wang, D.; Li, Y.; Shi, W.; Li, F.; Liu, J. Particle Size-Controllable Preparation of a CL-20/HMX Cocrystal with High Energy and Low Sensitivity. Acs Omega 2025, 10, 18098–18105. [Google Scholar] [CrossRef]
- Weng, J.; Wong, S.N.; Xu, X.; Xuan, B.; Wang, C.; Chen, R.; Sun, C.C.; Lakerveld, R.; Kwok, P.C.L.; Chow, S.F. Cocrystal Engineering of Itraconazole with Suberic Acid via Rotary Evaporation and Spray Drying. Cryst. Growth Des. 2019, 19, 2736–2745. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, Z.; Han, T.; Li, J.; Han, P.; Wang, J. Preparation and Molecular Dynamic Simulation of Superfine CL-20/TNT Cocrystal Based on the Opposite Spray Method. Int. J. Mol. Sci. 2024, 25, 9501. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Z.; Qiao, S.; Piao, J.; Li, H. Morphology and properties of CL-20/MTNP cocrystal prepared via facile spray drying. Firephyschem 2023, 3, 158–163. [Google Scholar] [CrossRef]
- Hang, G.; Wang, J.; Wang, T.; Xue, H.; Shen, H.; Yu, W. High energy density with low mechanical sensitivity: A novel energetic cocrystal composed of CL-20 and FOX-7 obtained by electrostatic spray method. J. Mol. Struct. 2025, 1336, 142138. [Google Scholar] [CrossRef]
- Li, H.-j.; Li, L.; Sun, J.; Han, J.-m.; Yang, L.; Ren, X.-t.; Tong, W.-c. Construction and Preparation of the Novel ADN/CL-20 Cocrystal via Directional Hydrogen Bonding Design for Turning Hygroscopicity. Inorg. Chem. 2024, 63, 16713–16725. [Google Scholar] [CrossRef]
- Jia, H.; Luo, Q.; Shi, X.; Cao, Z.; Zhu, Z.; Lin, J. Preparation of HMX/FOX-7 Nano-cocrystal by Ultra-low-temperatureassisted Recrystallization Method. Chin. J. Explos. Propellants 2025, 48, 40–49. [Google Scholar]
- Kang, P.; Liu, W.; Wu, W.; Li, X.; Cui, X.; Cai, F.; Jiang, Q. Morphology control and crystal structure and properties analysis of FOX-7/HMX composite crystals prepared by rotary evaporation method. Particuology 2025, 98, 1–12. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Guo, J.; Li, H.; Liu, Y.; Guo, Y.; Li, M.; Pu, X. Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials. Nat. Commun. 2021, 12, 5950. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Li, H.; Liu, Y.; Huang, S.; Zhang, Q.; Yang, Z. Two Novel CL-20 Cocrystals with Different Performances Obtained by Molecular Similarity Combined with Hydrogen Bonding Pairing Energy: An Effective Strategy to Design and Screen Energetic Cocrystals. Cryst. Growth Des. 2024, 24, 1977–1986. [Google Scholar] [CrossRef]
- Gao, Z.; Gu, Z.; Bao, M.; Zhang, P.; Chu, Y.; Zhu, Y.; Ma, P.; Ma, C. First-principles study on energetic cocrystals of CL-20/4,5-MDNI with two different stoichiometric ratios under high pressure. J. Mol. Model. 2025, 31, 96. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Meng, D.; Cao, X.; Wang, B.; Nan, F.; Chen, F.; Du, P.; Liao, X.; He, W. Construction of nitrate glycerol ether cellulose/RDX energetic composite in gun propellants and its comprehensive performance. Cellulose 2024, 31, 5725–5745. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Zhu, R.; Zhou, J.; Lin, Z.; Han, K.; An, C.; Wang, J.; Wu, B. Crystal phase control and ignition properties of HNS/CL-20 composite microspheres prepared by microfluidics combined with emulsification techniques. Particuology 2024, 85, 241–251. [Google Scholar] [CrossRef]
- Zhang, X.; Yige, W.; Tunan, Z.; Xiao, X.; Jia, X. Preparation and safety study of TKX-50/CL-20 composite explosives. J. Energetic Mater. 2024, 1–14. [Google Scholar] [CrossRef]
- Wu, W.; Fan, D.; Fu, X.; Liu, W.; Li, X.; Hu, S. Modulation of composite energetic microunit structure and performance: Synergistic effects of microdroplets and binders. Colloids Surf. A-Physicochem. Eng. Asp. 2025, 717, 136810. [Google Scholar] [CrossRef]
- Hou, C.; Ma, J.; Li, P.; Wang, J.; Jia, X.; Xu, Y.; Zheng, X. Preparation of TATB/HMX-based Composite Microspheres by Pickering Emulsion Polymerization Method. Chin. J. Explos. Propellants 2024, 47, 145–151. [Google Scholar]
- Li, W.; Zhang, S.; Shi, S.; Cheng, X.; An, C.; Wang, J.; Ye, B. Preparation of microstructure controllable CL-20/FOX-7 composite microspheres by microchannel recrystallization technology to enhance safety and combustion performance. Chem. Eng. J. 2024, 499, 155869. [Google Scholar] [CrossRef]
- Li, N.; Wang, W.; Zhang, Z.; Jin, S.; Wang, N.; Gao, J.; Li, L.; Tao, Y.; Chen, Y. Preparation and performance optimization of core@double-shell structured energetic composite materials. Surf. Interfaces 2024, 48, 104300. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhang, X.; Zhang, C.; Zhao, X.; Yang, Z.-J.; Yan, Q.-L. Desensitization and stabilization of HMX crystals by intercalation of crosslinked graphene oxide. Chem. Eng. J. 2024, 502, 158192. [Google Scholar] [CrossRef]
- Luo, L.; Guo, H.; Lu, Y.; Zheng, M.; Tang, Y.; Wang, Q.; Guo, C.; Yang, G. Preparation of low-sensitivity explosive composite spheres via oil-in-oil emulsion. Mater. Chem. Phys. 2024, 328, 129936. [Google Scholar] [CrossRef]
- Xue, Z.-H.; Xu, R.; Wang, Z.; Yu, M.; Zhao, X.; Yan, Q.-L. Interfacial self-assembling of nano-TATB@PDA embedded football-like CL-20 co-particles with reduced sensitivity. Chem. Eng. J. 2024, 488, 151010. [Google Scholar] [CrossRef]
- Xue, Z.-H.; Xu, R.; Qin, J.; Wang, Z.; Liu, Y.; Yan, Q.-L. Desensitization of spherical CL-20 composites by embedding insensitive nanosized energetic crystals. Crystengcomm 2024, 26, 5617–5631. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Qian, W.; Gong, F.; Liu, J.; Zhang, Q.; Yang, Z. Interfacial engineering endowing energetic co-particles with high density and reduced sensitivity. Chem. Eng. J. 2020, 387, 124209. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H.; Yi, X.; Qin, K.; Li, J.; Duan, X. Preparation and Properties of the 3D Network-shaped CL-20/Al@Co/NBC Composite. Chin. J. Energetic Mater. 2024, 32, 1031–1039. [Google Scholar]
- Feng, Z.; Yu, M.; Xu, R.; Pu, R.; Nie, H.; Yan, Q.-L. Preparation and Reactivity of Core-Shell Al@CL-20 Composites Embedded with Graphene-Based Complexes as Catalysts. Langmuir 2024, 40, 10228–10239. [Google Scholar] [CrossRef]
- Xu, R.; Xue, Z.; Zhang, H.; Nie, H.; Yan, Q.-L. Control of burning rate pressure sensitivity for solid propellants by changing the interfacial contact of Al/HMX/AP with precisely located graphene-based energetic catalysts. Combust. Flame 2024, 269, 113665. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Mao, Y.; Deng, Y.; Cao, W.; Nie, F.; Wang, J. Construct a 3D microsphere of HMX/B/Al/PTFE to obtain the high energy and combustion reactivity. Def. Technol. 2024, 32, 45–54. [Google Scholar] [CrossRef]
- Sun, P.; Yang, M.; You, Q.; Gao, D.; Li, C.; Zhang, X.; Guo, C. Preparation and Characterization of CL-20 /n-Al /F2605 Composite Hollow Microspheres Self-Assembled by Pickering Emulsion. Explos. Mater. 2024, 53, 9–16. [Google Scholar]
- Ye, B.; Feng, C.; An, C.; Wang, J.; Zhao, F.; Zhao, J. Preparation of TKX-50/Al/GAP Energetic Micro-units by Electrostatic Spraying Method and Its Performance. Chin. J. Explos. Propellants 2022, 45, 60–66. [Google Scholar]
- Ji, W.; Duan, Y.; Dong, J.; Wang, L.; He, X.; Li, X. ANSYS simulation and experimental analysis of an RDX/Al/NC composite explosive prepared via an electrostatic spraying method. Rsc Adv. 2025, 15, 9216–9224. [Google Scholar] [CrossRef]
- Guo, H.; Luo, L.; Li, C.; Tang, Y.; Zhou, X.; Wang, Q.; Zhang, X.; Guo, C. Preparation and Properties Characterization of CL-20-NBC/Al Spherical Complexes. Chin. J. Explos. Propellants 2024, 47, 797–804. [Google Scholar]
- Wang, R.; Zhang, Z.; Jiang, D.; Chen, Z.; Luo, Y.; Zhang, M.; Wang, D. Synthesis and characterization of submicron spherical core-shell high-energy composites via electrospray method. Mater. Today Commun. 2024, 41, 110908. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, D.; Yang, L.; Song, W.; Wang, R.; Huang, Q. Preparation of RDX/F2311/Fe2O3/Al Composite Hollow Microspheres by Electrospray and Synergistic Energy Release during Combustion between Components. Materials 2024, 17, 1623. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.; Wang, L.; Zhang, Z.; Wang, R.; Guo, C. Preparation of pCL-20/PTFE-Al composites for sensibility reduction and combustion improvement. J. Alloys Compd. 2025, 1010, 177839. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Ren, H.; Xie, L.; Liu, T.; Chen, Z. AP assembled on ultrafine aluminum particle and its application to NEPE propellant. Def. Technol. 2024, 36, 20–29. [Google Scholar] [CrossRef]
Structural Regulation | Materials | Properties | Reference |
---|---|---|---|
Particle size and particle size distribution | RDX | D50 = 3.35 μm, SPAN = 0.956, and purity = 99.80% | [21] |
0.54 μm | [23] | ||
HMX | D50 = 8.86, 4.14 and 0.86 μm | [22] | |
100 nm, impact and shock sensitivities decreased by 107.0% and 62.1% | [19] | ||
1.38–3.40 μm, Ea increased by 113.82 kJ·mol−1, and the critical temperature of thermal explosion increased by 6.23 K | [25] | ||
CL-20 | D50 = 161 μm | [26] | |
D50 = 2.77, 17.22 and 50.35 μm | [23] | ||
Morphology | RDX | Circularity = 0.92, D50 = 215.8 μm, Ea = 444.68 kJ·mol−1, impact sensitivity is 6.5 J, and friction sensitivity is 144 N | [30] |
Lamellae, impact sensitivity is 4 J, friction sensitivity is 252 N | [38] | ||
HMX | Circularity = 0.92, bulk density = 1.17 g·cm−3 | [31] | |
Spherulite aggregates, the transformation temperature increasing by 20 K | [32] | ||
Lamellae, impact sensitivity > 50 J, friction sensitivities > 200 N, VoD = 9425 km·s−1, PC-J = 41.5 GPa | [37] | ||
CL-20 | Hollow and porous hollow, D50 = 506.8 μm, 318.6 μm, and 229.6 μm | [39] | |
HNS | Spherulite aggregates, impact sensitivity is 40 J (raw material: 5 J), and friction sensitivity is 12% (raw material: 4%) | [35] | |
Polycrystalline | CL-20 | β-CL-20 (D50 = 1.04 μm), ε-CL-20 (D50 = 50.35 μm) | [46] |
HMX | γ-HMX, β-HMX | [47] | |
NTO | γ-NTO | [50] | |
DATNBI | α-DATNBI, β-DATNBI | [49] |
Structural Regulation | Materials | Properties | Reference |
---|---|---|---|
core–shell | CL-20@NC | 0.5–5 μm, Ea increased by 18.65 kJ·mol−1, impact sensitivity increased by 3 times | [51] |
CL-20/Al@C@BR/wax | friction sensitivity is 36%, impact sensitivity is 13.4 cm, heat of explosion is 5946 J·g−1 | [57] | |
CL-20@composite wax-film | Ea, Tp0, and Tb increased by >375.27 kJ·mol−1, 21.04 K, and 18.27 K, respectively | [58] | |
CL-20@LLM-105 | 50–100 μm and 0.19–3.92 μm, H50 increased by 13 cm | [59,60] | |
CL-20@GO | Ea increased by 63.0 kJ·mol−1, impact sensitivity is 23.5 cm, friction sensitivity is 24% | [61] | |
HMX@CNTs | elastic modulus and hardness increased by 303% and 311%, impact and friction sensitivity reduced by 68.5% and 233% | [62] | |
CL-20@GO@EPDM | Ea = 351.43 kJ·mol−1 | [63] | |
HMX-PEI@rGO/g-C3N4 | impact sensitivity is 21 J, friction sensitivity is 216 N | [64] | |
HMX/F2604@PDA | Tp increased by 9.67 K | [66] | |
CL-20@TP-TiO2 | Tp increased by 9.79 K | [68] | |
CL-20@DA-TiO2 | Tp increased by 9.09 K | [68] | |
RDX@TP | Tp increased by 4.4 K | [67] | |
ADN@HMX | water contact angle is 98.92°, still burns stably for 6 h at 68% humidity | [69] | |
RDX@ PEDOT:PSS | electrostatic spark sensitivity reduced by 40% | [70] | |
CL-20@ PCHA | Tp increased by 7 K, crystal transition temperature increased by 16 K | [71] | |
β-HMX@PDA | friction sensitivity is 36%, impact sensitivity is 56% | [72] | |
cocrystal | CL-20/HMX | D50 = 20, 63 and 130 μm | [75] |
CL-20/TNT | <10 μm | [77] | |
CL-20/MTNP | 0.2–2 μm | [78] | |
1:1 CL-20/FOX-7 | impact and friction sensitivity decreased by 64% and 68%, compared to raw CL-20. the predicted crystal density and detonation parameters are 1.928 g·cm−3, 9178 m·s−1, and 40.44 GPa | [79] | |
ADN/CL-20 | Isp = 272.6 s | [80] | |
HMX/FOX-7 | 0.1~0.5 μm, impact sensitivity is >45 J, friction sensitivity is 288 N | [81,82] | |
1:2 CL-20/3,4-MDNP | density = 1.787 g·cm–3, detonation parameters are 8556 m·s−1, 31.87 GPa, E50 is 16 J, friction sensitivity is 180 N | [84] | |
2:1 CL-20/3,5-MDNP | density = 1.889 g·cm–3, detonation parameters are 9079 m·s−1, 37.30 GPa, E50 is 12 J, friction sensitivity is 120 N | [84] | |
mixing | NGEC/RDX-GPs | impact sensitivity improved by 15.3%~117.1%, 3.9%~34.6%, 6.9%~31.1% under conditions of -40 °C, 20 °C, and 50 °C; the compression strength improved by 2.5%~23.1%, 10.7%~27.9%, 7.3%~28.5%, the tensile strength was improved by 15.4%~35.0%, 10.4%~33.0%, 11.8%~35.5% | [86] |
HNS/CL-20 | density is 1.83 g·cm–3, detonation parameters are 8293.19 m·s−1, 29.97 GPa, | [87] | |
TKX-50/CL-20 | Ea = 185.07 kJ·mol−1, impact sensitivity is 4.5 J, friction sensitivity is 216 N | [88] | |
FOX-7/HMX | angle of repose is 26.6°,bulk density is 0.522 g·cm–3 | [17] | |
TATB/HMX | CV < 10%, theoretical density is 1.918 g·cm–3, detonation parameters are 9027.31 m·s−1, 36.34 GPa | [89] | |
bulk density is 0.729 g·cm–3, real density is 1.925 g·cm–3, H50 is >100 cm | [90] | ||
CL-20/FOX-7 | D50 = 72.03, 232.16, 322.69 μm | [91] | |
TKX-50/CMCAB@CAB | friction sensitivity is 324 N | [92] | |
NTO/KC/CTS | Tp decreased by 14.4 K, Ea decreased by 290.9 kJ·mol−1 | [18] | |
γ-HMX/GO-TAGP | VoD is 9254 m·s−1, impact energy is 26.5 J, friction sensitivity: >360 N | [93] | |
TKX-50/TATB | H50 is 66.1 cm, friction sensitivity is 24% | [94] | |
CL-20/Al@Co/NBC | Tp of Al is 1002.2 °C, impact sensitivity is 30 J, friction sensitivity is 192 N | [98] | |
Al@PDA/CL-20 | the heat of reaction is 6482 J·g–1 | [99] | |
Al@PDA/HMX | n is 0.29 within 1~20 MPa | [100] | |
HMX@B/Al/PTFE | initial oxidation temperature of B is 762.45 °C | [101] | |
CL-20/Al/F2605 | elastic modulus increased by 131%, the detonation speed reached over 8500 m·s−1 | [102] | |
TKX-50/Al/GAP | Ea increased by 12.07 kJ·mol−1, impact and friction sensitivity decreased by 83 J, 80 N | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Xu, S.; Pang, W.; Jiang, H.; Zhang, Z. The Structural Regulation and Properties of Energetic Materials: A Review. Nanomaterials 2025, 15, 1140. https://doi.org/10.3390/nano15151140
Yu J, Xu S, Pang W, Jiang H, Zhang Z. The Structural Regulation and Properties of Energetic Materials: A Review. Nanomaterials. 2025; 15(15):1140. https://doi.org/10.3390/nano15151140
Chicago/Turabian StyleYu, Jin, Siyu Xu, Weiqiang Pang, Hanyu Jiang, and Zihao Zhang. 2025. "The Structural Regulation and Properties of Energetic Materials: A Review" Nanomaterials 15, no. 15: 1140. https://doi.org/10.3390/nano15151140
APA StyleYu, J., Xu, S., Pang, W., Jiang, H., & Zhang, Z. (2025). The Structural Regulation and Properties of Energetic Materials: A Review. Nanomaterials, 15(15), 1140. https://doi.org/10.3390/nano15151140