Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,848)

Search Parameters:
Keywords = endothelial cell receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1016 KiB  
Article
Genetic Associations of ITGB3, FGG, GP1BA, PECAM1, and PEAR1 Polymorphisms and the Platelet Activation Pathway with Recurrent Pregnancy Loss in the Korean Population
by Eun Ju Ko, Eun Hee Ahn, Hyeon Woo Park, Jae Hyun Lee, Da Hwan Kim, Young Ran Kim, Ji Hyang Kim and Nam Keun Kim
Int. J. Mol. Sci. 2025, 26(15), 7505; https://doi.org/10.3390/ijms26157505 - 3 Aug 2025
Viewed by 217
Abstract
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women [...] Read more.
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women may experience two or more consecutive pregnancy losses. Previous studies have investigated risk factors for RPL, including maternal age, uterine pathology, genetic anomalies, infectious agents, endocrine disorders, thrombophilia, and immune dysfunction. However, RPL is a disease caused by a complex interaction of genetic factors, environmental factors (e.g., diet, lifestyle, and stress), epigenetic factors, and the immune system. In addition, due to the lack of research on genetics research related to RPL, the etiology remains unclear in up to 50% of cases. Platelets play a critical role in pregnancy maintenance. This study examined the associations of platelet receptor and ligand gene variants, including integrin subunit beta 3 (ITGB3) rs2317676 A > G, rs3809865 A > T; fibrinogen gamma chain (FGG) rs1049636 T > C, rs2066865 T > C; glycoprotein 1b subunit alpha (GP1BA) rs2243093 T > C, rs6065 C > T; platelet endothelial cell adhesion molecule 1 (PECAM1) rs2812 C > T; and platelet endothelial aggregation receptor 1 (PEAR1) rs822442 C > A, rs12137505 G > A, with RPL prevalence. In total, 389 RPL patients and 375 healthy controls (all Korean women) were enrolled. Genotyping of each single nucleotide polymorphism was performed using polymerase chain reaction–restriction fragment length polymorphism and the TaqMan genotyping assay. All samples were collected with approval from the Institutional Review Board at Bundang CHA Medical Center. The ITGB3 rs3809865 A > T genotype was strongly associated with RPL prevalence (pregnancy loss [PL] ≥ 2: adjusted odds ratio [AOR] = 2.505, 95% confidence interval [CI] = 1.262–4.969, p = 0.009; PL ≥ 3: AOR = 3.255, 95% CI = 1.551–6.830, p = 0.002; PL ≥ 4: AOR = 3.613, 95% CI = 1.403–9.307, p = 0.008). The FGG rs1049636 T > C polymorphism was associated with a decreased risk in women who had three or more pregnancy losses (PL ≥ 3: AOR = 0.673, 95% CI = 0.460–0.987, p = 0.043; PL ≥ 4: AOR = 0.556, 95% CI = 0.310–0.997, p = 0.049). These findings indicate significant associations of the ITGB3 rs3809865 A > T and FGG rs1049636 T > C polymorphisms with RPL, suggesting that platelet function influences RPL in Korean women. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

23 pages, 6148 KiB  
Article
A Naturally Occurring Urinary Collagen Type I Alpha 1-Derived Peptide Inhibits Collagen Type I-Induced Endothelial Cell Migration at Physiological Concentrations
by Hanne Devos, Ioanna K. Mina, Foteini Paradeisi, Manousos Makridakis, Aggeliki Tserga, Marika Mokou, Jerome Zoidakis, Harald Mischak, Antonia Vlahou, Agnieszka Latosinska and Maria G. Roubelakis
Int. J. Mol. Sci. 2025, 26(15), 7480; https://doi.org/10.3390/ijms26157480 - 2 Aug 2025
Viewed by 137
Abstract
Collagen type I (COL(I)) is a key component of the extracellular matrix (ECM) and is involved in cell signaling and migration through cell receptors. Collagen degradation produces bioactive peptides (matrikines), which influence cellular processes. In this study, we investigated the biological effects of [...] Read more.
Collagen type I (COL(I)) is a key component of the extracellular matrix (ECM) and is involved in cell signaling and migration through cell receptors. Collagen degradation produces bioactive peptides (matrikines), which influence cellular processes. In this study, we investigated the biological effects of nine most abundant, naturally occurring urinary COL(I)-derived peptides on human endothelial cells at physiological concentrations, using cell migration assays, mass spectrometry-based proteomics, flow cytometry, and AlphaFold 3. While none of the peptides significantly altered endothelial migration by themselves at physiological concentrations, full-length COL(I) increased cell migration, which was inhibited by Peptide 1 (229NGDDGEAGKPGRPGERGPpGp249). This peptide uniquely contains the DGEA and GRPGER motifs, interacting with integrin α2β1. Flow cytometry confirmed the presence of integrin α2β1 on human endothelial cells, and AlphaFold 3 modeling predicted an interaction between Peptide 1 and integrin α2. Mass spectrometry-based proteomics investigating signaling pathways revealed that COL(I) triggered phosphorylation events linked to integrin α2β1 activation and cell migration, which were absent in COL(I) plus peptide 1-treated cells. These findings identify Peptide 1 as a biologically active COL(I)-derived peptide at a physiological concentration capable of modulating collagen-induced cell migration, and provide a foundation for further investigation into its mechanisms of action and role in urine excretion. Full article
Show Figures

Figure 1

17 pages, 1525 KiB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 405
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

20 pages, 1953 KiB  
Review
Limited Proteolysis as a Regulator of Lymphatic Vessel Function and Architecture
by Takuro Miyazaki
Int. J. Mol. Sci. 2025, 26(15), 7144; https://doi.org/10.3390/ijms26157144 - 24 Jul 2025
Viewed by 170
Abstract
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional [...] Read more.
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional regulation of major interest. Emerging evidence suggests that limited proteolysis is a key regulatory mechanism for lymphatic vascular function. In dyslipidemic conditions, dysregulated calpain activity impairs lymphatic trafficking and destabilizes regulatory T cells, partly via the limited proteolysis of mitogen-activated kinase kinase kinase 1 and inhibitor of κBα. In addition, a disintegrin and metalloprotease with thrombospondin motifs-3-mediated proteolytic activation of vascular endothelial growth factor-C has been implicated in both developmental and tumor-associated lymphangiogenesis. Proteolytic shedding of lymphatic vessel endothelial hyaluronan receptor-1 by a disintegrin and metalloprotease 17 promotes lymphangiogenesis, whereas cleavage by membrane-type 1 matrix metalloproteinase inhibits it. This review is structured around two core aspects—lymphatic inflammation and lymphangiogenesis—and highlights recent findings on how limited proteolysis regulates each of these processes. It also discusses the therapeutic potential of targeting these proteolytic machineries and currently unexplored research questions, such as how intercellular junctions of lymphatic endothelial cells are controlled. Full article
Show Figures

Figure 1

21 pages, 1397 KiB  
Review
Advancements in Beta-Adrenergic Therapy and Novel Personalised Approach for Portal Hypertension: A Narrative Review
by Raluca-Ioana Avram, Horia Octav Minea, Laura Huiban, Ioana-Roxana Damian, Mihaela-Cornelia Muset, Simona Juncu, Cristina Maria Muzica, Sebastian Zenovia, Ana Maria Singeap, Irina Girleanu, Carol Stanciu and Anca Trifan
Life 2025, 15(8), 1173; https://doi.org/10.3390/life15081173 - 24 Jul 2025
Viewed by 388
Abstract
Liver cirrhosis is a chronic progressive disease marked by the transition from a compensated to a decompensated stage, associated with severe complications. Central to this progression is portal hypertension, which results from increased intrahepatic vascular resistance and endothelial dysfunction, as well as splanchnic [...] Read more.
Liver cirrhosis is a chronic progressive disease marked by the transition from a compensated to a decompensated stage, associated with severe complications. Central to this progression is portal hypertension, which results from increased intrahepatic vascular resistance and endothelial dysfunction, as well as splanchnic vasodilation and an augmented circulatory state. Non-selective beta-blockers (NSBBs) remain the standard of care for portal hypertension, reducing portal pressure by lowering cardiac output via beta-1 receptor blockade and decreasing splanchnic blood flow through beta-2 receptor antagonism. However, clinical application of NSBBs is often hindered by adverse effects such as bradycardia, hypotension, and fatigue, alongside inconsistent efficacy in certain patient populations. Such limitations have driven the search for alternative therapeutic strategies and effective biomarkers for identifying non-responders. Beta-3 adrenergic receptor agonists have emerged as promising candidates, acting through distinct mechanisms, different from NSBBs. By stimulating nitric oxide release from endothelial cells, beta-3 agonists induce selective vasodilation without negatively impacting cardiac function, potentially overcoming the limitations of traditional therapies. This review discusses the molecular pathways of NSBBs, their clinical role and limitations, introduces potential novel biomarkers, and highlights the growing evidence supporting beta-3 receptor agonists as novel and targeted treatments for portal hypertension. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 342
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

16 pages, 1480 KiB  
Article
Enhanced Drug Screening Efficacy in Zebrafish Using a Highly Oxygen-Permeable Culture Plate
by Liqing Zang, Shota Kondo, Yukiya Komada and Norihiro Nishimura
Appl. Sci. 2025, 15(15), 8156; https://doi.org/10.3390/app15158156 - 22 Jul 2025
Viewed by 295
Abstract
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. [...] Read more.
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. In this study, we evaluated the application of a novel, highly oxygen-permeable culture plate (InnoCellTM) in zebrafish development and drug screening assays. Under both normal and oxygen-restricted conditions, zebrafish embryos cultured on InnoCellTM plates exhibited significantly improved developmental parameters, including heart rate and body length, compared with those cultured on conventional polystyrene plates. The InnoCellTM plate enabled a significant reduction in medium volume without compromising zebrafish embryo viability, thereby demonstrating its advantages, particularly in high-throughput 384-well formats. Drug screening tests using antiangiogenic receptor tyrosine kinase inhibitors (TKIs) revealed enhanced sensitivity and more pronounced biological effects in InnoCellTM plates, as evidenced by the quantification of intersegmental blood vessels and gene expression analysis of the vascular endothelial growth factor receptor (vegfr, also known as kdrl). These results indicate that the InnoCellTM highly oxygen-permeable plate markedly improves zebrafish-based drug screening efficiency and assay reliability, highlighting its potential for widespread application in biomedical research. Full article
Show Figures

Figure 1

15 pages, 1711 KiB  
Article
Ajuforrestin A Inhibits Tumor Proliferation and Migration by Targeting the STAT3/FAK Signaling Pathways and VEGFR-2
by Sibei Wang, Yeling Li, Mingming Rong, Yuejun Li, Yaxin Lu, Shen Li, Dongho Lee, Jing Xu and Yuanqiang Guo
Biology 2025, 14(8), 908; https://doi.org/10.3390/biology14080908 - 22 Jul 2025
Viewed by 268
Abstract
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent [...] Read more.
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent agent against lung cancer. In vitro, this compound markedly curtailed the proliferation of A549 cells. Mechanistic explorations revealed that ajuforrestin A could arrest A549 cells in the G0/G1 phase of the cell cycle, provoke apoptosis in cancer cells, and impede their migration by modulating the STAT3 and FAK signaling cascades. Angiogenesis is indispensable for tumor formation, progression, and metastatic dissemination. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 are established as crucial mediators in tumor neovascularization, a process fundamental to both the expansion of tumor cells and the development of new blood vessels within the tumor milieu. Through the combined application of a Tg(fli1:EGFP) zebrafish model and SPR experimentation, we furnished strong evidence for the ability of ajuforrestin A to obstruct tumor angiogenesis via selective engagement with VEGFR-2. Finally, a zebrafish xenograft tumor model demonstrated that ajuforrestin A could effectively restrain tumor growth and metastasis in vivo. Ajuforrestin A therefore shows considerable promise as a lead compound for the future development of therapies against non-small cell lung cancer (NSCLC). Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

15 pages, 2893 KiB  
Article
NRP1 and GFAP Expression in the Medulloblastoma Microenvironment: Implications for Angiogenesis and Tumor Progression
by Margarita Belem Santana-Bejarano, María Paulina Reyes-Mata, José de Jesús Guerrero-García, Daniel Ortuño-Sahagún and Marisol Godínez-Rubí
Cancers 2025, 17(15), 2417; https://doi.org/10.3390/cancers17152417 - 22 Jul 2025
Viewed by 241
Abstract
Background/Objectives: Medulloblastoma (MB) is the second leading cause of cancer-related death in children. Its tumor microenvironment (TME) includes endothelial, glial, and immune cells that influence tumor architecture and progression. Neuropilin-1 (NRP1), a co-receptor for semaphorins and vascular endothelial growth factor (VEGF), is [...] Read more.
Background/Objectives: Medulloblastoma (MB) is the second leading cause of cancer-related death in children. Its tumor microenvironment (TME) includes endothelial, glial, and immune cells that influence tumor architecture and progression. Neuropilin-1 (NRP1), a co-receptor for semaphorins and vascular endothelial growth factor (VEGF), is expressed in various cell types during oncogenesis, yet its role in MB progression remains unclear. This study aimed to evaluate the expression and localization of NRP1 and glial fibrillary acidic protein (GFAP) in MB tissue. Methods: We analyzed MB tissue samples using immunohistochemistry, immunofluorescence, and quantitative PCR. Samples were stratified by molecular subgroup (WNT, SHH, non-WNT/non-SHH). We assessed NRP1 expression in tumor-associated microglia/macrophages (TAMs) and endothelial cells, as well as GFAP expression in astrocytes and tumor cells. Histopathological correlations and survival analyses were also conducted. Results: NRP1 was consistently expressed by TAMs across all MB molecular subgroups. Tumor vasculature showed strong endothelial NRP1 expression, while perivascular astrocytic coverage was frequently absent. Astrocytic processes exhibited spatial differences according to tumor histology. In SHH-MBs, a subset of tumor cells showed aberrant GFAP expression, which correlated with tumor recurrence or progression. Conclusions: NRP1 and GFAP display distinct expression patterns within the MB microenvironment, reflecting subgroup-specific biological behavior. Endothelial NRP1 positivity combined with limited vascular-astrocytic interaction and aberrant GFAP expression in SHH-MB may contribute to dysregulated angiogenesis and tumor progression. These findings warrant further investigation to explore their prognostic and therapeutic implications. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Malignant Nervous System Cancers)
Show Figures

Graphical abstract

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 558
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

20 pages, 3053 KiB  
Article
ERRα and HIF-1α Cooperate to Enhance Breast Cancer Aggressiveness and Chemoresistance Under Hypoxic Conditions
by Dimas Carolina Belisario, Anna Sapino, Ilaria Roato, Amalia Bosia, Sophie Doublier and Serena Marchiò
Cancers 2025, 17(14), 2382; https://doi.org/10.3390/cancers17142382 - 18 Jul 2025
Viewed by 389
Abstract
Background/Objectives: HIF-1α and ERRα are both implicated in breast cancer progression, yet their functional interplay remains poorly understood. This study investigates their molecular crosstalk in the context of hypoxia-induced drug resistance. Methods: MCF-7 (estrogen receptor, ER-positive) spheroids and CoCl2-treated [...] Read more.
Background/Objectives: HIF-1α and ERRα are both implicated in breast cancer progression, yet their functional interplay remains poorly understood. This study investigates their molecular crosstalk in the context of hypoxia-induced drug resistance. Methods: MCF-7 (estrogen receptor, ER-positive) spheroids and CoCl2-treated SK-BR-3 (ER-negative) cells were used to model tumor hypoxia. Protein expression, coimmunoprecipitation, chromatin immunoprecipitation (ChIP), pharmacological inhibition, and siRNA-mediated gene silencing were employed to assess physical and functional interactions. Immunohistochemistry (IHC) on a tissue microarray (TMA) of 168 invasive breast carcinomas was performed to evaluate clinical relevance. Results: ERRα levels remained unchanged under hypoxia, while its coactivator, Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 α (PGC-1α), was upregulated. ERRα physically interacted with HIF-1α and was required for HIF-1 transcriptional activity under hypoxic conditions. ChIP assays showed that ERRα-driven overexpression of Permeability glycoprotein 1 (P-gp) and Vascular Endothelial Growth Factor (VEGF) was mediated by HIF-1α binding to the MDR1 and VEGF promoters. Inhibition or silencing of ERRα reversed P-gp overexpression and restored intracellular doxorubicin. TMA analysis confirmed the clinical correlation between ERRα, HIF-1α, and P-gp expression, highlighting the role of ERRα in hypoxia-induced drug resistance. ERRα expression was independent of ER status, suggesting an estrogen-independent function. Conclusions: This study identifies a novel physical and functional interaction between ERRα and HIF-1α that promotes chemoresistance in hypoxic breast tumors. Targeting ERRα may represent a promising therapeutic strategy to overcome drug resistance in aggressive, ER-independent breast cancer subtypes. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

23 pages, 2728 KiB  
Article
Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate
by Camden Holm, Son Nam Nguyen and Solomon A. Mensah
Cells 2025, 14(14), 1088; https://doi.org/10.3390/cells14141088 - 16 Jul 2025
Viewed by 376
Abstract
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) [...] Read more.
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) on endothelial cells (ECs), stimulating vasodilation, and to the endothelin A receptor on smooth muscle cells, stimulating vasoconstriction. While the shear stress (SS) dependence of ET-1 and HS is well documented, there is limited research documenting the SS dependence of the ETB. Understanding the SS dependence of the ETB is crucial for clarifying the role of hemodynamic forces in the endothelin system. We hypothesize that GCX HS regulates the expression of the ETB on the EC surface in an SS-dependent manner. Human lung microvascular ECs were exposed to SS in a parallel-plate flow chamber for 12 h. Damage to the GCX was simulated by treatment with 15 mU/mL heparinase-III during SS exposure. Immunostaining and qPCR were used to evaluate changes in ET-1, ETB, and HS expression. Results indicate that ETB expression is SS sensitive, with at least a 1.3-fold increase in ETB protein expression and a 0.6 to 0.4-fold-change decrease in ETB mRNA expression under SS. This discrepancy suggests post-translational regulation. In some cases, enzymatic degradation of HS attenuated the SS-induced increase in ETB protein, reducing the fold-change difference to 1.1 relative to static controls. This implies that ETB expression may be partially dependent on HS-mediated mechanotransduction, though inconclusively. Furthermore, ET-1 mRNA levels were elevated two-fold under SS without a corresponding rise in ET-1 protein expression or significant impact from HS degradation, implying that post-translational regulation of ET-1 occurs independently of HS. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Vascular-Related Diseases)
Show Figures

Figure 1

27 pages, 2385 KiB  
Review
Butyrate Produced by Gut Microbiota Regulates Atherosclerosis: A Narrative Review of the Latest Findings
by Leon M. T. Dicks
Int. J. Mol. Sci. 2025, 26(14), 6744; https://doi.org/10.3390/ijms26146744 - 14 Jul 2025
Viewed by 622
Abstract
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques [...] Read more.
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques on the intima of arterial walls. Butyrate maintains gut barrier integrity and modulates immune responses. Butyrate regulates G-protein-coupled receptor (GPCR) signaling and activates nuclear factor kappa-B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factors (IFRs) involved in the production of proinflammatory cytokines. Depending on the inflammatory stimuli, butyrate may also inactivate NF-κB, resulting in the suppression of proinflammatory cytokines and the stimulation of anti-inflammatory cytokines. Butyrate modulates mitogen-activated protein kinase (MAPK) to promote or suppress macrophage inflammation, muscle cell growth, apoptosis, and the uptake of oxidized low-density lipoprotein (ox-LDL) in macrophages. Activation of the peroxisome proliferator-activated receptor γ (PPARγ) pathway plays a role in lipid metabolism, inflammation, and cell differentiation. Butyrate inhibits interferon γ (IFN-γ) signaling and suppresses NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) involved in inflammation and scar tissue formation. The dual role of butyrate in AS is discussed by addressing the interactions between butyrate, intestinal epithelial cells (IECs), endothelial cells (ECs) of the main arteries, and immune cells. Signals generated from these interactions may be applied in the diagnosis and intervention of AS. Reporters to detect early AS is suggested. This narrative review covers the most recent findings published in PubMed and Crossref databases. Full article
Show Figures

Figure 1

29 pages, 1280 KiB  
Review
Defibrotide for Protecting Against and Managing Endothelial Injury in Hematologic Malignancies and COVID-19
by Edward Richardson, Clifton C. Mo, Eleonora Calabretta, Francesco Corrado, Mehmet H. Kocoglu, Rebecca M. Baron, Jean Marie Connors, Massimo Iacobelli, Lee-Jen Wei, Emily J. Benjamin, Aaron P. Rapoport, Maribel Díaz-Ricart, Antonio José Martínez-Mellado, Carmelo Carlo-Stella, Paul G. Richardson and José M. Moraleda
Biomolecules 2025, 15(7), 1004; https://doi.org/10.3390/biom15071004 - 14 Jul 2025
Viewed by 823
Abstract
Defibrotide, which is approved for treating hepatic veno-occlusive disease (VOD)/sinusoidal obstruction syndrome (SOS), exhibits pleiotropic anti-inflammatory, anti-thrombotic, and fibrinolytic properties, conferring broad endothelial protective effects. Given these mechanisms, defibrotide has potential utility in various conditions involving endothelial injury or activation. In this review [...] Read more.
Defibrotide, which is approved for treating hepatic veno-occlusive disease (VOD)/sinusoidal obstruction syndrome (SOS), exhibits pleiotropic anti-inflammatory, anti-thrombotic, and fibrinolytic properties, conferring broad endothelial protective effects. Given these mechanisms, defibrotide has potential utility in various conditions involving endothelial injury or activation. In this review we outline the endothelial-protective mechanisms of defibrotide and comprehensively summarize current evidence supporting its applications in hematologic malignancies, including the prevention and treatment of hepatic VOD/SOS, graft-versus-host disease, and transplant-associated thrombotic microangiopathy. Additionally, we discuss its role in mitigating key toxicities linked to chimeric antigen receptor (CAR) T-cell therapies and bispecific antibodies, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). We also explore emerging evidence on defibrotide’s potential in SARS-CoV-2 infection-associated endotheliopathies, including acute COVID-19 and post-acute sequelae of SARS-CoV-2 infection (“long-COVID”), and the endothelial protective activity of defibrotide in these settings. Finally, we highlight potential future applications of defibrotide in hematologic malignancies and viral infections, emphasizing its multimodal mechanism of action. Full article
Show Figures

Figure 1

17 pages, 5511 KiB  
Article
Distinct Roles of apoE Receptor-2 Cytoplasmic Domain Splice Variants in Cardiometabolic Disease Modulation
by Anja Jaeschke, April Haller and David Y. Hui
Biomedicines 2025, 13(7), 1692; https://doi.org/10.3390/biomedicines13071692 - 10 Jul 2025
Viewed by 377
Abstract
Background/Objectives: Apolipoprotein E receptor-2 (apoER2) exists in various alternatively spliced forms, including variants that express apoER2 with or without exon 19 in the cytoplasmic domain. This study compared vascular response to endothelial denudation, as well as diet-induced atherosclerotic and metabolic diseases, between [...] Read more.
Background/Objectives: Apolipoprotein E receptor-2 (apoER2) exists in various alternatively spliced forms, including variants that express apoER2 with or without exon 19 in the cytoplasmic domain. This study compared vascular response to endothelial denudation, as well as diet-induced atherosclerotic and metabolic diseases, between genetically modified mice that exclusively expressed the apoER2 splice variant with or without exon 19 to determine the impact of apoER2 exon 19 motif in cardiometabolic disease modulation. Methods: Vascular response to injury was assessed by measuring neointima area of the carotid arteries after endothelial denudation. The genetically modified mice were also fed a high-fat high-cholesterol diet for 16 weeks for the determination of body weight gain, glucose and insulin levels, glucose tolerance and insulin secretion. Additionally, adipose tissue inflammation was assessed by analysis of adipose gene expression, and atherosclerosis was characterized by measuring fatty lesion size in the whole aorta, as well as in the aortic roots. Results: The results showed that whereas the expression of either splice variant is sufficient to impede denudation-induced fibrotic neointima formation and complex necrotic atherosclerotic lesions, the expression of the apoER2 splice variant containing exon 19 is necessary for the complete protection of injury-induced neointima formation in the vessel wall. However, exclusive expression of either apoER2 cytoplasmic splice variant does not influence the early phase of atherogenesis. Additionally, the exclusive expression of apoER2 without exon 19 promotes adipocyte inflammation and accelerates diet-induced insulin resistance and glucose intolerance. Conclusions: These results indicate that the apoER2 cytoplasmic variants have distinct and cell type-specific roles in influencing cardiometabolic disease development. Full article
(This article belongs to the Special Issue Molecular and Cellular Research in Diabetes and Metabolic Diseases)
Show Figures

Figure 1

Back to TopTop