Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Heparinase-III Treatment
2.3. Flow Experiment
2.4. Fixation
2.5. Immunostaining
2.6. Imaging
2.7. Image Analysis
2.8. qPCR
2.9. Statistics and Data Representation
3. Results
3.1. ET-1 Results
3.2. ETB Results
3.3. HS Results
4. Discussion
4.1. Summary of Results
4.2. Major Findings and Importance
4.3. Alternative Explanations
4.4. Literature Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GCX | Endothelial Glycocalyx |
HLMVEC | Human Lung Microvascular Endothelial Cells |
ECs | Endothelial Cells |
GAGs | Glycosaminoglycans |
SS | Shear Stress |
UF | Uniform Flow |
HS | Heparan Sulfate |
ET-1 | Endothelin-1 |
ETB | Endothelin B Receptor |
HSPG | Heparan Sulfate Proteoglycan |
Appendix A
Appendix A.1
Primer Target | Forward Sequence | Reverse Sequence |
---|---|---|
EDN1 | TCAACACTCCCGAGCACGTT | TCACGGTCTGTTGCCTTTGT |
EDNRB | ATGATCACCTAAAGCAGAGACGG | CAGAGGGCAAAGACAAGGAC |
HSPG2 | AGCATCTCAGGAGACGACCT | GAAATTCACCAGGGCTCGGA |
SDC1 [47] | CTGCCGCAAATTGTGGCTAC | TGAGCCGGAGAAGTTGTCAGA |
GAPDH | ACCATCTTCCAGGAGCGAGA | GACTCCACGACGTACTCAGC |
Appendix A.2
References
- Reitsma, S.; Slaaf, D.W.; Vink, H.; van Zandvoort, M.A.M.J.; oude Egbrink, M.G.A. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflügers Arch.-Eur. J. Physiol. 2007, 454, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Vittum, Z.; Cocchiaro, S.; Mensah, S.A. Basal Endothelial Glycocalyx’s Response to Shear Stress: A Review of Structure, Function, and Clinical Implications. Front. Cell Dev. Biol. 2024, 12, 1371769. [Google Scholar] [CrossRef] [PubMed]
- Harding, I.C.; Mitra, R.; Mensah, S.A.; Nersesyan, A.; Bal, N.N.; Ebong, E.E. Endothelial Barrier Reinforcement Relies on Flow-Regulated Glycocalyx, a Potential Therapeutic Target. Biorheology 2019, 56, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Weinbaum, S.; Tarbell, J.; Damiano, E. The Structure and Function of the Endothelial Glycocalyx Layer. Annu. Rev. Biomed. Eng. 2007, 9, 121–167. [Google Scholar] [CrossRef] [PubMed]
- Tarbell, J.M.; Ebong, E.E. The Endothelial Glycocalyx: A Mechano-Sensor and -Transducer. Sci. Signal. 2008, 1, pt8. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.M.; Tarbell, J.M. Mechano-Sensing and Transduction by Endothelial Surface Glycocalyx: Composition, Structure, and Function. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Grantham, J.A.; Schirger, J.A.; Williamson, E.E.; Heublein, D.M.; Wennberg, P.W.; Kirchengast, M.; Muenter, K.; Subkowski, T.; Burnett, J.C.J. Enhanced Endothelin-Converting Enzyme Immunoreactivity in Early Atherosclerosis. J. Cardiovasc. Pharmacol. 1998, 31, S22. [Google Scholar] [CrossRef] [PubMed]
- Kinlay, S.; Behrendt, D.; Wainstein, M.; Beltrame, J.; Fang, J.C.; Creager, M.A.; Selwyn, A.P.; Ganz, P. Role of Endothelin-1 in the Active Constriction of Human Atherosclerotic Coronary Arteries. Circulation 2001, 104, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Chester, A.H.; Yacoub, M.H. The Role of Endothelin-1 in Pulmonary Arterial Hypertension. Glob. Cardiol. Sci. Pract. 2014, 2014, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, C.; Kilcoyne, C.M.; Waclawiw, M.; Cannon, R.O.; Panza, J.A. Role of Endothelin in the Increased Vascular Tone of Patients With Essential Hypertension. Hypertension 1999, 33, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Ebong, E.E.; Lopez-Quintero, S.V.; Rizzo, V.; Spray, D.C.; Tarbell, J.M. Shear-Induced Endothelial NOS Activation and Remodeling via Heparan Sulfate, Glypican-1, and Syndecan-1. Integr. Biol. Quant. Biosci. Nano Macro 2014, 6, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Bartosch, A.M.W.; Mathews, R.; Mahmoud, M.M.; Cancel, L.M.; Haq, Z.S.; Tarbell, J.M. Heparan Sulfate Proteoglycan Glypican-1 and PECAM-1 Cooperate in Shear-Induced Endothelial Nitric Oxide Production. Sci. Rep. 2021, 11, 11386. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, D.; Richter, R.P.; Anand, T.; Cardenas, J.C.; Richter, J.R. Alterations in Heparan Sulfate Proteoglycan Synthesis and Sulfation and the Impact on Vascular Endothelial Function. Matrix Biol. Plus 2022, 16, 100121. [Google Scholar] [CrossRef] [PubMed]
- Melrose, J. Perlecan, a Modular Instructive Proteoglycan with Diverse Functional Properties. Int. J. Biochem. Cell Biol. 2020, 128, 105849. [Google Scholar] [CrossRef] [PubMed]
- Florian, J.A.; Kosky, J.R.; Ainslie, K.; Pang, Z.; Dull, R.O.; Tarbell, J.M. Heparan Sulfate Proteoglycan Is a Mechanosensor on Endothelial Cells. Circ. Res. 2003, 93, e136–e142. [Google Scholar] [CrossRef] [PubMed]
- Pahakis, M.Y.; Kosky, J.R.; Dull, R.O.; Tarbell, J.M. The Role of Endothelial Glycocalyx Components in Mechanotransduction of Fluid Shear Stress. Biochem. Biophys. Res. Commun. 2007, 355, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Tarbell, J.M. The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress. PLoS ONE 2014, 9, e86249. [Google Scholar] [CrossRef] [PubMed]
- Giantsos-Adams, K.M.; Koo, A.J.-A.; Song, S.; Sakai, J.; Sankaran, J.; Shin, J.H.; Garcia-Cardena, G.; Dewey, C.F. Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation. Cell. Mol. Bioeng. 2013, 6, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Banuth, A.M.M.; Nader, H.B.; Dreyfuss, J.L. Altered Shear Stress on Endothelial Cells Leads to Remodeling of Extracellular Matrix and Induction of Angiogenesis. PLoS ONE 2020, 15, e0241040. [Google Scholar] [CrossRef] [PubMed]
- Harding, I.C.; Mitra, R.; Mensah, S.A.; Herman, I.M.; Ebong, E.E. Pro-Atherosclerotic Disturbed Flow Disrupts Caveolin-1 Expression, Localization, and Function via Glycocalyx Degradation. J. Transl. Med. 2018, 16, 364. [Google Scholar] [CrossRef] [PubMed]
- Koo, A.; Dewey, C.F.; García-Cardeña, G. Hemodynamic Shear Stress Characteristic of Atherosclerosis-Resistant Regions Promotes Glycocalyx Formation in Cultured Endothelial Cells. Am. J. Physiol.—Cell Physiol. 2013, 304, C137–C146. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.P.; Odum, J.D.; Margaroli, C.; Cardenas, J.C.; Zheng, L.; Tripathi, K.; Wang, Z.; Arnold, K.; Sanderson, R.D.; Liu, J.; et al. Trauma Promotes Heparan Sulfate Modifications and Cleavage That Disrupt Homeostatic Gene Expression in Microvascular Endothelial Cells. Front. Cell Dev. Biol. 2024, 12, 1390794. [Google Scholar] [CrossRef] [PubMed]
- Thacker, B.E.; Xu, D.; Lawrence, R.; Esko, J.D. Heparan Sulfate 3-O-Sulfation: A Rare Modification in Search of a Function. Matrix Biol. J. Int. Soc. Matrix Biol. 2014, 35, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xu, X.; Xie, S.; Sheng, A.; Han, N.; Tian, Z.; Wang, X.; Li, F.; Linhardt, R.J.; Zhang, F.; et al. Improving Impact of Heparan Sulfate on the Endothelial Glycocalyx Abnormalities in Atherosclerosis as Revealed by Glycan-Protein Interactome. Carbohydr. Polym. 2024, 330, 121834. [Google Scholar] [CrossRef] [PubMed]
- Morawietz, H.; Talanow, R.; Szibor, M.; Rueckschloss, U.; Schubert, A.; Bartling, B.; Darmer, D.; Holtz, J. Regulation of the Endothelin System by Shear Stress in Human Endothelial Cells. J. Physiol. 2000, 525, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Kuchan, M.J.; Frangos, J.A. Shear Stress Regulates Endothelin-1 Release via Protein Kinase C and cGMP in Cultured Endothelial Cells. Am. J. Physiol.-Heart Circ. Physiol. 1993, 264, H150–H156. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.; Izumo, S. Physiological Fluid Shear Stress Causes Downregulation of Endothelin-1 mRNA in Bovine Aortic Endothelium. Am. J. Physiol.-Cell Physiol. 1992, 263, C389–C396. [Google Scholar] [CrossRef] [PubMed]
- Banecki, K.M.R.M.; Dora, K.A. Endothelin-1 in Health and Disease. Int. J. Mol. Sci. 2023, 24, 11295. [Google Scholar] [CrossRef] [PubMed]
- Halaka, M.; Hired, Z.A.; Rutledge, G.E.; Hedgepath, C.M.; Anderson, M.P.; St. John, H.; Do, J.M.; Majmudar, P.R.; Walker, C.; Alawawdeh, A.; et al. Differences in Endothelin B Receptor Isoforms Expression and Function in Breast Cancer Cells. J. Cancer 2020, 11, 2688–2701. [Google Scholar] [CrossRef] [PubMed]
- Mazzuca, M.Q.; Khalil, R.A. Vascular Endothelin Receptor Type B: Structure, Function and Dysregulation in Vascular Disease. Biochem. Pharmacol. 2012, 84, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Pollock, D.M.; Schneider, M.P. Clarifying Endothelin Type B Receptor Function. Hypertension 2006, 48, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, R.M.; Zuccarello, M. EndothelinA-endothelinB Receptor Cross-Talk and Endothelin Receptor Binding. J. Pharm. Pharmacol. 2011, 63, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, R.M.; Zuccarello, M. EndothelinA–EndothelinB Receptor Cross Talk in Endothelin-1–Induced Contraction of Smooth Muscle. J. Cardiovasc. Pharmacol. 2012, 60, 483. [Google Scholar] [CrossRef] [PubMed]
- Ivy, D.D.; McMurtry, I.F.; Yanagisawa, M.; Gariepy, C.E.; Le Cras, T.D.; Gebb, S.A.; Morris, K.G.; Wiseman, R.C.; Abman, S.H. Endothelin B Receptor Deficiency Potentiates ET-1 and Hypoxic Pulmonary Vasoconstriction. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2001, 280, L1040–L1048. [Google Scholar] [CrossRef] [PubMed]
- Perez-Aguilar, S.; Torres-Tirado, D.; Martell-Gallegos, G.; Velarde-Salcedo, J.; Barba-de la Rosa, A.P.; Knabb, M.; Rubio, R. G Protein-Coupled Receptors Mediate Coronary Flow- and Agonist-Induced Responses via Lectin-Oligosaccharide Interactions. Am. J. Physiol.-Heart Circ. Physiol. 2014, 306, H699–H708. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Luo, B.; Patel, R.P.; Ling, Y.; Zhang, J.; Fallon, M.B. Modulation of Pulmonary Endothelial Endothelin B Receptor Expression and Signaling: Implications for Experimental Hepatopulmonary Syndrome. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2007, 292, L1467–L1472. [Google Scholar] [CrossRef] [PubMed]
- Redmond, E.M.; Cahill, P.A.; Sitzmann, J.V. Flow-Mediated Regulation of Endothelin Receptors in Cocultured Vascular Smooth Muscle Cells: An Endothelium-Dependent Effect. J. Vasc. Res. 1997, 34, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Dragovich, M.A.; Chester, D.; Fu, B.M.; Wu, C.; Xu, Y.; Goligorsky, M.S.; Zhang, X.F. Mechanotransduction of the Endothelial Glycocalyx Mediates Nitric Oxide Production through Activation of TRP Channels. Am. J. Physiol.-Cell Physiol. 2016, 311, C846–C853. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Kurihara, H.; Maemura, K.; Yoshizumi, M.; Yazaki, Y. Disruption of Cytoskeletal Structures Mediates Shear Stress-Induced Endothelin-1 Gene Expression in Cultured Porcine Aortic Endothelial Cells. J. Clin. Investig. 1993, 92, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Foote, C.A.; Soares, R.N.; Ramirez-Perez, F.I.; Ghiarone, T.; Aroor, A.; Manrique-Acevedo, C.; Padilla, J.; Martinez-Lemus, L.A. Endothelial Glycocalyx. Compr. Physiol. 2022, 12, 3781–3811. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mathur, J.; Vessières, E.; Hammack, S.; Nonomura, K.; Favre, J.; Grimaud, L.; Petrus, M.; Francisco, A.; Li, J.; et al. GPR68 Senses Flow and Is Essential for Vascular Physiology. Cell 2018, 173, 762–775.e16. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, M.; Wang, M.; Li, X. Flow-Mediated Vasodilation through Mechanosensitive G Protein-Coupled Receptors in Endothelial Cells. Trends Cardiovasc. Med. 2022, 32, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Stirling, D.R.; Swain-Bowden, M.J.; Lucas, A.M.; Carpenter, A.E.; Cimini, B.A.; Goodman, A. CellProfiler 4: Improvements in Speed, Utility and Usability. BMC Bioinform. 2021, 22, 433. [Google Scholar] [CrossRef] [PubMed]
- Mensah, S.A.; Nersesyan, A.A.; Harding, I.C.; Lee, C.I.; Tan, X.; Banerjee, S.; Niedre, M.; Torchilin, V.P.; Ebong, E.E. Flow-Regulated Endothelial Glycocalyx Determines Metastatic Cancer Cell Activity. FASEB J. 2020, 34, 6166–6184. [Google Scholar] [CrossRef] [PubMed]
- Cancel, L.M.; Ebong, E.E.; Mensah, S.; Hirshberg, C.; Tarbell, J.M. Endothelial Glycocalyx, Apoptosis and Inflammation in an Atherosclerotic Mouse Model. Atherosclerosis 2016, 252, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; Abdullah, S.; Shaheen, F.; Mueller, L.; Gagen, B.; Duchesne, J.; Steele, C.; Pociask, D.; Kolls, J.; Jackson-Weaver, O. Glycocalyx Degradation and the Endotheliopathy of Viral Infection. PLoS ONE 2022, 17, e0276232. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Fiji. Available online: https://imagej.github.io/software/fiji/index (accessed on 11 March 2025).
- Charoenphol, P.; Onyskiw, P.J.; Carrasco-Teja, M.; Eniola-Adefeso, O. Particle-Cell Dynamics in Human Blood Flow: Implications for Vascular-Targeted Drug Delivery. J. Biomech. 2012, 45, 2822–2828. [Google Scholar] [CrossRef] [PubMed]
- Yoshizumi, M.; Kurihara, H.; Sugiyama, T.; Takaku, F.; Yanagisawa, M.; Masaki, T.; Yazaki, Y. Hemodynamic Shear Stress Stimulates Endothelin Production by Cultured Endothelial Cells. Biochem. Biophys. Res. Commun. 1989, 161, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yan, Z.; Zhang, Y.; Wu, J.; Liu, X.H.; Zeng, Y. Hemodynamic Shear Stress Regulates the Transcriptional Expression of Heparan Sulfate Proteoglycans in Human Umbilical Vein Endothelial Cell. Cell. Mol. Biol. 2016, 62, 28–34. [Google Scholar] [PubMed]
- Boulanger, C.; Lüscher, T.F. Release of Endothelin from the Porcine Aorta. Inhibition by Endothelium-Derived Nitric Oxide. J. Clin. Investig. 1990, 85, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Emori, T.; Hirata, Y.; Ohta, K.; Kanno, K.; Eguchi, S.; Imai, T.; Shichiri, M.; Marumo, F. Cellular Mechanism of Endothelin-1 Release by Angiotensin and Vasopressin. Hypertension 1991, 18, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Kourembanas, S.; McQuillan, L.P.; Leung, G.K.; Faller, D.V. Nitric Oxide Regulates the Expression of Vasoconstrictors and Growth Factors by Vascular Endothelium under Both Normoxia and Hypoxia. J. Clin. Investig. 1993, 92, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Hynynen, M.M.; Khalil, R.A. The Vascular Endothelin System in Hypertension—Recent Patents and Discoveries. Recent Pat. Cardiovasc. Drug Discov. 2006, 1, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.M.; Zhang, J.; Jiang, J.; Alper, S.L.; Izumo, S. Endothelin-1 Gene Suppression by Shear Stress: Pharmacological Evaluation of the Role of Tyrosine Kinase, Intracellular Calcium, Cytoskeleton, and Mechanosensitive Channels. J. Mol. Cell. Cardiol. 1999, 31, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Thi, M.M.; Tarbell, J.M.; Weinbaum, S.; Spray, D.C. The Role of the Glycocalyx in Reorganization of the Actin Cytoskeleton under Fluid Shear Stress: A “Bumper-Car” Model. Proc. Natl. Acad. Sci. USA 2004, 101, 16483–16488. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Edwards-Bennett, S.; Bubb, M.R.; Block, E.R. Regulation of Endothelial Nitric Oxide Synthase by the Actin Cytoskeleton. Am. J. Physiol.-Cell Physiol. 2003, 284, C1542–C1549. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, K.K.; Skovsted, G.F.; Perisic, L.; Dreier, R.; Berg, J.O.; Hedin, U.; Rippe, C.; Swärd, K. Expression of Endothelin Type B Receptors (EDNRB) on Smooth Muscle Cells Is Controlled by MKL2, Ternary Complex Factors, and Actin Dynamics. Am. J. Physiol.-Cell Physiol. 2018, 315, C873–C884. [Google Scholar] [CrossRef] [PubMed]
- Oh, P.; Horner, T.; Witkiewicz, H.; Schnitzer, J.E. Endothelin Induces Rapid, Dynamin-Mediated Budding of Endothelial Caveolae Rich in ET-B. J. Biol. Chem. 2012, 287, 17353–17362. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Waters, M.; Andrews, A.; Honarmandi, P.; Ebong, E.E.; Rizzo, V.; Tarbell, J.M. Fluid Shear Stress Induces the Clustering of Heparan Sulfate via Mobility of Glypican-1 in Lipid Rafts. Am. J. Physiol.-Heart Circ. Physiol. 2013, 305, H811–H820. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Hama, H.; Kasuya, Y. Molecular Pharmacology and Pathophysiological Significance of Endothelin. Jpn. J. Pharmacol. 1996, 72, 261–290. [Google Scholar] [CrossRef] [PubMed]
- Ishibazawa, A.; Nagaoka, T.; Takahashi, T.; Yamamoto, K.; Kamiya, A.; Ando, J.; Yoshida, A. Effects of Shear Stress on the Gene Expressions of Endothelial Nitric Oxide Synthase, Endothelin-1, and Thrombomodulin in Human Retinal Microvascular Endothelial Cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8496–8504. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Tomita, H.; Okada, H. Form Follows Function: The Endothelial Glycocalyx. Transl. Res. 2022, 247, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.K.; LLanos, P.; Boroda, N.; Rosenberg, S.R.; Rabbany, S.Y. A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress. Cell. Mol. Bioeng. 2016, 9, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Chachisvilis, M.; Zhang, Y.-L.; Frangos, J.A. G Protein-Coupled Receptors Sense Fluid Shear Stress in Endothelial Cells. Proc. Natl. Acad. Sci. USA 2006, 103, 15463–15468. [Google Scholar] [CrossRef] [PubMed]
- Lauth, M.; Berger, M.-M.; Cattaruzza, M.; Hecker, M. Elevated Perfusion Pressure Upregulates Endothelin-1 and Endothelin B Receptor Expression in the Rabbit Carotid Artery. Hypertension 2000, 35, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Cahill, P.A.; Hou, M.; Hendrickson, R.; Wang, Y.; Zhang, S.; Redmond, E.M.; Sitzmann, J.V. Increased Expression of Endothelin Receptors in the Vasculature of Portal Hypertensive Rats: Role in Splanchnic Hemodynamics. Hepatology 1998, 28, 396. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.W.; Teichert-Kuliszewska, K.; Monge, J.C.; Stewart, D.J. Regulation of Endothelin-B Receptor mRNA Expression in Human Endothelial Cells by Cytokines and Growth Factors. J. Cardiovasc. Pharmacol. 1998, 31, S158. [Google Scholar] [CrossRef] [PubMed]
- Muller, G.; Catar, R.A.; Niemann, B.; Barton, M.; Knels, L.; Wendel, M.; Morawietz, H. Upregulation of Endothelin Receptor B in Human Endothelial Cells by Low-Density Lipoproteins. Exp. Biol. Med. 2006, 231, 766–771. [Google Scholar] [CrossRef]
Parameter | 5 Dynes/cm2 | 15 Dynes/cm2 | 25 Dynes/cm2 |
---|---|---|---|
ET-1 Protein (ICC) | No change | No change | No change |
EDN1 Gene (qPCR) | ↑ HS independent | ↑ HS independent | ↑ Partial HS dependence |
↑ SS dependent | ↑ SS dependent | ↑ SS dependent | |
ETB Protein (ICC) | ↑ Partial HS dependence | ↑ Partial HS dependence | ↑ HS independent |
↑ SS dependent | ↑ SS dependent | ↑ SS dependent | |
EDNRB Gene (qPCR) | No change | ↓ HS independent | ↓ HS independent |
↓ SS dependent | ↓ SS dependent | ||
Surface HS (ICC) | ↑ SS induced | ↑ SS induced | ↑ SS induced |
HS Proteoglycan Gene (qPCR) | No change | No change | No change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holm, C.; Nguyen, S.N.; Mensah, S.A. Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate. Cells 2025, 14, 1088. https://doi.org/10.3390/cells14141088
Holm C, Nguyen SN, Mensah SA. Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate. Cells. 2025; 14(14):1088. https://doi.org/10.3390/cells14141088
Chicago/Turabian StyleHolm, Camden, Son Nam Nguyen, and Solomon A. Mensah. 2025. "Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate" Cells 14, no. 14: 1088. https://doi.org/10.3390/cells14141088
APA StyleHolm, C., Nguyen, S. N., & Mensah, S. A. (2025). Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate. Cells, 14(14), 1088. https://doi.org/10.3390/cells14141088